Criteria for Optical Systems: Optical Path Difference
e How do we determine the quality of a lens system?
e Several criteria used in optical design Computer Aided Design
e Several CAD tools use Ray Tracing (see lesson 4)
e Then measure these criteria using the CAD tools
e Optical Path Difference (OPD) measures quality
e Measures path different from different parts of lens
e Plot OPD difference across the image relative to spherical wave
e Related to the Airy disk creation of a spot
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Point Sources and OPD
e Simplest analysis: what happens to a point source
e Know that point sources should give perfect Airy disc
e Adding the OPD delay creates the distortion
o Little effect at A/4
e By OPD A/2 get definite distortion
e ). OPD point is really distorted
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Point Spread Function
e Point Spread Function (PSF) is distribution of point source
e Like the response to an impulse by system in electrical circuits
e Often calculate for a system
e Again distorted by Optical path differences in the system
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Wave Front Error
e Measure peak to valley (P-V) OPD
e Measures difference in wave front closest to image
e and furthest (lagging behind) at image
e Eg. in mirror system a P-V <A/8 to meet Rayleigh criteria
e Because P-V is doubled by the reflection in mirrors
e Also measure RMS wave front error
e Difference from best fit of perfect spherical wave front
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Depth of Focus
e Depth of focus: how much change in position is allowed
e With perfect optical system <A/4 wave front difference needed
e Set by the angle 6 of ray from edge of lens
e This sets depth of focus o for this OPD <A/4

=1, "
(2nsm29

- +2 1(f#)

e Thus f# controls depth of focus

e f#:4 has 16 micron depth

e f#:2 only 2 micron

e Depth of Focus used with microscopes

e Depth of Field is term used in photography

e Depth that objects appear in focus at fixed plan

e ~a $0.25A
Figure 4.7
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Depth of Field in Photography
e Depth of Field is the range over which item stays in focus
¢ \WWhen focusing close get a near and far distance
¢ \When focusing at distance want to use the Hyperfocal Distance
e Point where everything is in focus from infinity to a near distance
e Simple cameras with fixed lens always set to Hyperfocal Distance
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Depth of Field Formulas
e Every camera has the “circle of confusion” ¢
e Eg for 35 mm it is 0.033 mm, point & shoot 0.01 mm
e Then Hyperfocal Distance H (in mm)

f2
:F#c

H + f

f is lens focal length in mm
¢ \When focused at closer point distance s in mm
¢ Then nearest distance for sharp image is D,

_s(H-f)
" H+s-2f
e Furthers distance for sharp image Dy
D, - s(H-f)
H+s

As get closer Depth of focus becomes very small
Get good DOF tools at google play or itunes
https://play.google.com/store/apps/details?id=jds.dofcalc&hl=en
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Modulation Transfer Function
e Modulation Transfer Function or MTF
e Basic measurement of Optical systems
e L ook at a periodic target
e Measure Brightest (Iax) and darkest I,

MTE = Imax B Imin

max + Imin

e Contrast is simply

|
constrast = Imax

min

e MTF more accurate than contrast




Square Wave vs Sin wave
e Once MTF know for square wave can get sine wave response
e Use fourier components
e If S(v) at frequency v is for square waves
e Then can give response of sine wave
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Diffraction Limited MTF
e For a perfect optical system

MTF = £(¢ —cos(g)sin(¢))
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Figure 11.15 The modulation transfer function of an aberration-
free system (solid line). Note that frequency is expressed as a
fraction of the cutoff frequency. The dashed line is the modula-
tion factor for a square wave (bar) target. Both curves are based
on diffraction effects and assume a system with a uniformly

transmitting circular aperture.



Defocus in MTF
e Adding defocus decreases MTF
e Defocus MTF

defocus MTF = 2J1(X)
X
Where X IS
y = 275 NA Yo =Y)
Vo
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Figure 11.16 The effect of defocusing on the modulation
transfer function of an aberration-free system.

(a) In focus OPD = 0.0
(b) Defocus = M(2n sin? U) OPD = M4
(¢) Defocus = M(n sin? U) OPD = M2
(d) Defocus = 3\M(2n sin? U) OPD = 3\/4
(e) Defocus = 2M(n sin? U) OPD =\~
(f) Defocus = 4AN(n sin? U) OPD = 2\

(Curves are based on diffraction effects—not on a geo-

metric calculation.)



MTF and Aberrations
e Aberrations degrade MTF
e Eg. 3" order spherical aberrations
e Effect goes as wavelength defect
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Figure 11.18 The effect of third-order spherical aberra-
tion on the modulation transfer function.
(a) LA, = 0.0 OPD =0
(b) LA, = 4M(n sin® U) OPD = M4
(¢) LA,, = 8M(n sin® U) OPD = N2
(d) LA, = 16M(n sin? U) ~ OPD = \

These curves are based on diffraction wave-front com-
putations for an image plane midway between the mar-
ginal and paraxial foci.



MTF and Filling Lens

e MTF decreases as lens is not filled
e i.e. object blocking part of the lens
e Best result when image fills lens
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Figure 11.19 The effect of a central obscuration on the

Eodulation transfer function of an aberration-free sys-
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MTF Specifications
e MTF in lenses are specified in lines per millimetre
e Typically 10 and 30 lines
e Specified separately for Saggittal and tangential
e Saggittal — vertical aberrations on focus plane
e Tangential or Meridional: horizontal on focus plane
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Reading MTF in Camera Lenses
e Camera lenses often publish MTF charts
e Below example for Nikon 18-55 mm zoom
e Plots show MTF at 10 lines/mm and 30/mm
e Shown with radius in mm from centre of image
e For a 24x15 mm image area
e Usually specified for single aperature (/5.6 here)
e 10/mm measures lens contrast
e 30/mm lens resolution
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Poor MTF Charts
e Some companies give charts but little info
e Entry level Cannon 18-55 mm lens
e Chart give MTF but does not say lines/mm
e Cannot compare without that
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e Resolution set in Aerial Image Modulation (AIM)

e Combines the lens and the detector (eg film or digital sensor)
e Measures the smallest resolution detected by sensor

e Sensor can significantly change resolutions
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Film or Sensor MTF
e Film or sensor has MTF measured
e Done with grating directly on sensor
e Eg Fuji fine grain Provia 100 slide film
¢ 50% MTF frequency (fso) is 42 Ip/mm
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MTF/AIM and System
e Adding each item degrades system
e Also need to look at f/# for the lens
e Adding digitization degrades image
e This is 4000 dpi digitizing of negative

Criginal
Lens onl

Film onl

Film + le

Digitizer

Sharpen

1 2
10 10
Line pairs per mm; MTF = 50% 10% @@ 36.8, B8.6/mm; Max MTF = 1.2




MTF and Coherent Light
e MTF is sharpest with coherent light
e Decreases as coherence decreases
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Low Power Laser Applications: Alignment & Measurement
Circularizing Laser Diodes

e Laser diodes are important for low power applications
e But laser diodes have high divergence & asymmetric beams
e Get 5-30° beam divergence
e Start with collimator: high power converging lens: stops expansion
e Then compensate for asymmetry
e Use cylindrical lens beam expander
e Cylindrical lenses: curved in one axis only unlike circular lenses
e Expands/focuses light in one direction only (along curved axis)
¢ Results in circular collimating beam
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Figure 9-1 Optics used to circularize and collimate beam from diode laser. (Courtesy of Melle
Griot.)




Quadrature Detectors for Alignment
e Often put detector on object being aligned to laser
e Use 4 quadrant detector Silicon photodiode detector
e Expand beam so some light in each quadrant
e Amount of photocurrent in each quadrant proportional to light
e Detect current difference of right/left & top bottom
e Higher current side has more beam
e Perfect alignment null current for both sides

Vertical position
indicator

Quadrant detector

/5\ Horizontal position
Beam expander indicator

Figure 9-2 Simplified diagram of a laser alignment system.

Laser



Laser Leveling
e Lasers used to project lines of light
e Accuracy is set by the level of the beam source
e Used in construction projects: lines and cross lines
e Get vertical and horizonal
e Laser diodes give low cost levels now
e More complex: reflect light back from object
e Make certain light is reflected along the same path
e Called Autocolation
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} Beam expander
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Figure 9-4 Diagram of a laser scanner system used for leveling.



Laser Size Gauging
e Gauging is measuring the size of objects in the beam
e Simplest expand beam the refocus
e Object (eg sphere) in beam reduces power
e Estimate size based on power reduction
e More accurate: scanning systems
e Scan beam with moving mirror (focused to point)
e Then measure time beam is blocked by object
e Knowing scan range then measure size of object
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Figure 9-5 Simplified diagram of laser scanner gage.

Figure 9-7 Laser scanner and detector being used to measure the diameter of a round bar.
(Courtesy of Zygo.)



Laser & Linear Detector Array
e Use laser diode to illuminate a linear or 2D detector array
e L aser diode because creates collimated beam
e Expand beam to fill area
e Image is magnified or shrunk by lens
e Use pixel positions to determine object profile
e Low cost pixel arrays makes this less costly to gage scanners

Beam expander Camera lens Diode array

Laser
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Figure 9-16 Typical linear photodiode array camera system.
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Laser Scanner to Detect Surface Defects
e Laser beam scanned across surface of reflective (eg metal) sheets
e Detect reflected light
e Flaws result in reduce or increase light
e Timing (when scanning) determines defect size
e Instead of spot use cylindrical expander to beam line of light
e Moving sheet (eg metal, glass, paper) crosses beam
e Use line or 2D images to detect changes
e Use both reflection and transmission depending on material
e Transmission can detect changes in thickness or quality




Bar Code Scanners
e Diode laser now widely used in Bar code scanners
e Typically use two axis scanner
e Laser beam reflected from mirror on detector lens
e Bar code reflected light comes back along same path
e Detect rising and falling edge of the pattern
e Note: have the laser beam & return light on same path
e Use small mirror or beam splitter to put beam in path
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Figure 9-10 Bar-code scanner/reader.



Laser Triangulation
e Lasers aimed at precise angles depth/profiles using triangulation
e Single spot for depth measurement
e L aser spot focused by lens onto detector array
e Change in laser spot depth position Az
e Gives change in position Az’ at detector
e Change set by magnification caused by lens
e O laser to lens angle
e ¢ angle between detector an lens axis

¢ Resulting equations
A7’ = m(s!ﬂjglz
sing

e Get real time measurement of distance changes
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Figure 9-11 Diagram of optical triangulation system.



Laser Profileometry
e Use cylindrical lens to create line of laser light
e Use 2D detector array (imager) & lens to observe line
e If object is moving get continuous scan of profile
e Problems: Background light eg sunlight
e Changes in surface reflectance makes signal noisy
e Eg log profileometry for precise cutting of logs
e Problem is log surface changes eg dark knots, holes
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Figure 9-13 Line-of-sight optical triangulation unit.



LIDAR
e Laser equivalent of Radar (RAdio Detection And Ranging)
o LIDAR: LIght Detection And Ranging
e Can use pulses & measure time of flight (like radar)
¢ Related distance to return time
e But only hard to measure <10*° sec or 3 cm
¢ \When using plane as source must use GPS to get initial position
e Need to deal with multiple returns (eg trees)
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Lidar: Phase method
e Better phase method
e Modulate the laser diode current with frequency f,
¢ Then detector compares phase of laser to detector signal
¢ Phase shift for distance R is

¢:i—”(2R) and c=A_f
e Then the distance is
C
v f 4
¢ > modulation wavelength A, need to get number of cycles
e In extreme phase changes in the laser light
e That requires a very stable (coherent) laser: HeNe not diode
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Figure 9-14 Diagram of laser range finder that uses an amplitude-modulated laser beam.



