
DeePar: A Hybrid Device-Edge-Cloud Execution
Framework for Mobile Deep Learning Applications

Yutao Huang1, Feng Wang2, Fangxin Wang1, Jiangchuan Liu1
1School of Computing Science, Simon Fraser University, Canada

2Department of Computer and Information Science, The University of Mississippi, USA

Abstract—With the deep penetration of mobile devices, more
and more mobile deep learning applications have been widely
used in daily life. However, since deep learning tasks are compu-
tationally intensive, the limited computation resource on mobile
devices cannot execute the application effectively. The common
approaches are transmitting the data from mobile devices and
offloading the computation to the cloud. This brings another issue
that the high data transmission delay may become the bottleneck
of the performance. In this paper, we explore a new rising
concept, edge computing, into mobile deep learning applications.
Comparing with cloud computing, the communication delay
can be significantly reduced. To this end, we note that there
exists a layer-level partitioning strategy for deep neural networks
to distribute the computation loads more smoothly among the
device, the edge and the cloud, which can further reduce the
overall execution delay. We propose a framework called DeePar
which exploits all the available resources from the device, the edge
server, and the cloud to collaboratively optimize the inference
performance. We also formulate a scheduling problem for the
multi-task execution and propose an efficient solution. Both
our prototype experiments and extensive simulations show that
DeePar can achieve up to 80% delay reduction.

I. INTRODUCTION

In recent years, machine learning, particularly deep learning
has attracted significant attentions from both industry and
academia, where the key component of deep learning, the
Deep Neural Networks (DNNs) have significantly innovated
the state-of-the-art techniques in computer vision [1], pattern
recognition [2] as well as other research fields. On the other
hand, the deep penetration of mobile devices and applications
in our daily life have called upon more and more demands for
them to interact with deep learning techniques. Some popular
mobile applications, including Apple Siri, FaceID and Google
Now, are by default integrated with mobile systems, where the
key modules are implemented with deep learning models.

Though shown great potentials, mobile deep learning appli-
cations are facing the challenges with the low capacities of
mobile devices and high resource demands of deep learning
tasks. One commonly used approach to solve this problem
is to reroute the input data from mobile devices and offload
the intensive deep neural network processing remotely to
the cloud. However, despite that major cloud providers like
Amazon, Google and Microsoft all start to provide convenient
cloud services for deep learning applications, the concerns of
the high communication cost and the high data transmission
latency over the Internet as well as the privacy issue therein
are still hindering the quality of users’ experiences.

On the other hand, the emerging concept of edge computing
brings new opportunities to offer delay-sensitive and cost-
efficient services. The concept of edge is referred to the
network edge, which is in close proximity to the end devices.
Comparing to the cloud, the communication latency is much
lower between the edge and the mobile device. By offloading
the data, applications and services to the near-end edge servers,
the network transmission delay can be greatly reduced [3].
Although the edge computing has plenty of advantages over
the cloud computing, performance issues may still exist if the
deep learning applications are solely supported by edge com-
puting, especially when a large number of application requests
are involved. Since the computation and storage resources of
edge servers are often limited and less powerful comparing
to cloud servers, making the deep learning network design
have to be comprised to trade off between the achievable
performance and the available resource. Therefore, having an
all-round scalable, responsive, and cost-effective solution for
mobile deep learning applications still remains an illusive goal.

In this paper, we take a close investigation of several typical
state-of-the-art deep learning models, revealing that instead
of executing the entire deep learning inference process either
on the device, the edge server or the cloud, the execution
load can actually be carefully split among all of them with
a layer-level partitioning strategy based on the hierarchical
structure of DNNs. To this end, we propose a framework
named DeePar which can hybridly exploit all the available
resources from the device, the edge server and the cloud to
unleash the full power of the deep learning networks therein.
To maximize the achieved performance while still keeping it
cost-effective, we further formulate a multi-task partitioning
optimization problem for our DeePar framework as well as
propose a smart and efficient scheduling solution. We evaluate
our DeePar solution with both prototype experiments and
extensive simulations. The results demonstrate our DeePar can
achieve up to 80% inference delay reduction.

The remainder of this paper is organized as follows. In
Section II, we discuss the background and motivation to
partition deep learning networks in mobile applications to
hybridly run on the device, the edge server, and the cloud.
Section III provides an overview of our DeePar framework and
formulates the multi-task partitioning problem to maximize the
achieved performance while still being cost-effective. We then
propose a smart scheduling solution to efficiently address the
formulated problem in Section IV. Section V describes the



Device-only Cloud-only Edge-only Hybrid
Execution environment

0

70

140

210

280

350

D
el

ay
 (m

s)

Computation delay
Data transmission delay

(a) AlexNet Performance Comparison

0

240

480

720

960

1200

O
ut

pu
t s

iz
e 

(K
B)

inp
ut

co
nv

_1

max
po

ol_
1

no
rm

_1

co
nv

_2

max
po

ol_
2

no
rm

_2

co
nv

_3

co
nv

_4

co
nv

_5

max
po

ol_
3

no
rm

_3 fc_
1

dro
p_

1
fc_

2

dro
p_

2
fc_

3

Execution environment

0

4

8

12

16

20

D
el

ay
 (m

s)

Device
Edge
Cloud
Output size

(b) AlexNet Layer-level Performance

Fig. 1: AlexNet Delay Performance

experiment and simulation setup and presents the evaluation
results. Finally, we conclude the paper in Section VI.

II. BACKGROUND AND OVERVIEW

In this section, we discuss the background of deep learning
over the network and the performance of DNNs in a layer-level
perspective which motivates our work.

A. Mobile Deep Learning with the Cloud and the Edge

Mobile deep learning applications are facing the challenges
of limited and less powerful computation resource on mobile
devices, where the developers commonly choose to push
the computation process on the remote cloud [4]. However,
due to the high latency and the limited bandwidth of the
network connection between the device and the cloud, the
data transmission delay has become a bottleneck especially for
applications involving with large-scale datasets. Recently, edge
computing has been proposed to provide a new opportunity to
overcome this challenge. The concept of edge is referred to the
network topology in close proximity to the end device which
is near the wireless access points such as Wi-Fi routers and
4G/5G base stations. By deploying servers which are equipped
with computation and storage resource at the edge, deep learn-
ing models and input data can be pushed to the edge server,
resulting in a significant reduction in the entire inference delay
compared to conventional cloud-based approaches [5].

There are also continuing research efforts to identify ap-
propriate offloading strategies based on deep learning applica-
tion’s own characteristics. For example, Kang et al. proposed
Neurosurgeon [4], which considered mobile devices as edge
hosts and only investigated the partitioning of one mobile deep
learning application task between the mobile devices and the
cloud. Different from these aforementioned efforts, we seek a
more general and flexible framework that can well balance and
optimize the overall performance of all the considered mobile
deep learning application tasks across mobile devices, edge
servers and the cloud.

B. DNN Execution with Layer-level Partitioning Optimization

To fully utilize the convenient edge and the high-
performance cloud to further improve the overall DNN infer-
ence performance, we propose to a hybrid offloading approach
to collaboratively utilize all the resources available on the
device, the edge, and the cloud. Instead of partitioning the

neural network into two parts, we bring the power of edge
servers into our framework. By introducing one extra partition
of the neural network, we investigate the possibility and
opportunity to run separate parts of the inference process on
the device, the edge server and the cloud collaboratively, which
can better improve the overall performance.

To validate the feasibility of our layer-level partitioning
strategy, we further conduct a real-world case study to verify
the effectiveness of our idea. To this end, we choose the
AlexNet [6] as our DNN model, which is a representative
state-of-the-art Convolutional Neural Network for image clas-
sification. The experiment setup environment is stated in Sec-
tion V. We first execute the entire DNN inference separately
on the device, the edge, and the cloud. The total delays are
shown in Fig. 1(a). We observe that the execution on the cloud
has the longest average delay (314 ms) per sample due to the
extremely high data communication delay, while the execution
on the edge has a smaller delay (64 ms) per sample compared
to the execution on the mobile device which takes 84 ms.

Then we investigate in the layer-level execution perfor-
mance of AlexNet, which is measured on our edge server.
The results are shown in Fig. 1(b), where the x-axis describes
each layer in the AlexNet, while the average computation
delay and the output data size for each layer are shown as bar
charts respectively. We can see that the major computation
delays are contributed by Convolutional Layers (shown as
conv x) and Fully-Connected Layers (shown as fc x), while
the computation delays for Max-Pooling Layers, Normaliza-
tion Layers and Dropout Layers (shown as maxpool x, norm x
and drop x respectively) are negligible when comparing with
Convolutional Layers and Fully-Connected Layers. From the
perspective of the output size, we can find that Convolutional
Layers will usually increase the output size and Max-Pooling
Layer will significantly reduce the output size.

Based on the above observations, we can infer that making
partitions either before the Convolutional Layer or the Fully-
Connected Layer, as well as after the Max-Pooling Layer, may
be effective to reduce computation and data communication
delay. To this end, we further conduct experiments for each
feasible partitioning scheme and find out that making two
partitions after layer maxpool 1 and maxpool 3, and hybridly
executing the resulted three parts on the device, the edge
server and the cloud respectively will yield the shortest overall



Horse

Device Edge Cloud

Fig. 2: DeePar Framework

inference delay (43ms) as shown in Fig. 1(a).

C. DeePar: a Hybrid Execution Framework

Motivated by our observations and experiment results, we
propose DeePar, a hybrid device-edge-cloud execution frame-
work to fully unleash the power of the deep leaning in
mobile applications. As illustrated in Fig. 2, we make two
partitions which push the front, the intermediate and the last
remaining part of the model inference to the mobile device,
the edge server, and the cloud, respectively. The input of the
partial DNN model on the edge server (cloud) is exactly the
same as the output generated on the device (edge server).
After finishing three stages of the computation, the final
inference result will be generated as the last layer’s output
and transmitted back to the device.

Since the processing power increases when moving the
computation from the device to the edge and from the edge
to the cloud, the performance gain of the total inference delay
can be obtained if the reduction of computation delay on
the higher-performance computation platform is greater than
the transmission delay of the intermediate layer’s output. To
better understand the partitioning gain and design appropriate
algorithms to maximize the advantage of our DeePar frame-
work, we further formulate it as a mathematical optimization
problem in the next section.

III. PROBLEM STATEMENT

In this section, we formulate an optimization problem based
on our DeePar framework to further maximize its benefits.
Since our target is on mobile deep learning applications, we
consider each DNN inference task is generated by a mobile
device. Currently, there are multiple communication standards
that can be selected as the mobile network, for example,
Bluetooth, Wi-Fi, 3G/4G/LTE or even 5G network. If edge
servers are deployed at the gateway or base station for each
accessible connection, then multiple choices are available for
the task execution. Therefore, our formulated problem should
not only determine the optimal DNN partitioning, but also
consider the appropriate scheduling of the partitioned deep
learning tasks across the device, the edge server and the cloud.

Suppose there are n mobile devices, m edge servers and one
centralized cloud platform. Each mobile device can connect to
one of the connectable edge servers, and each edge server
is connecting to the cloud through the backbone network.
Each edge server and the cloud is implemented on virtual

machines(VMs) or containers in the physical servers equipped
with all types of resources including GPU, CPU, memory and
disk storage. The computation resource on each edge server,
as well as the bandwidth resource on each edge server and
the cloud is limited. For simplicity, we assume that a mobile
device only generates one deep learning task i, where the total
number of data samples involved is denoted as Ni.

For the network resources, each job will occupy reserved
uplink bandwidth for either the connections between the
mobile device and the edge server or the connections between
the connected edge server and the cloud, to guarantee data
transfer performance. Once the connection is established, the
reserved bandwidth will not be allowed to change. Bandwidth
reservation for a VM or container is common for accelerated
computing in cloud platforms [7], e.g., the reserved bandwidth
of EC2 GPU instance P2 on AWS is 10 Gbps or 20 Gbps. For
each job i, we define the bandwidth of the two links as b1i and
b2i . Also, due to the limitation of hardware resources and the
specific requirements of each task, the bandwidth will have
an upper bound for allocation and we defined it as B1

i and
B2

i . The allocable maximum downlink or uplink bandwidth
for each edge server is denoted as B1

e and B2
e respectively.

Since the edge server locates near the network gateway, the
link connecting each mobile device to the cloud should include
one edge as the intermediate hop.

For the computation and storage resources, we assume the
cloud provides abundant computation resources which can
support all tasks’ execution. Different from the cloud, each
edge server has finite computation and storage resource to
allocate. To this end, we use re to denote the maximum
number of concurrent tasks that can be executed on each edge
server, ∀e ∈ E.

For the edge network connection, xie and yie are defined
as the edge network occupation and core network occupation
indicator respectively. Also, zie is defined as the edge resource
utilization indicator. Each mobile device ∀i ∈ I can only
connect to a subset of all the edge servers. We define this
subset as Ei ⊆ E.

Because of the hierarchical structure of a neural network,
each layer’s computations only can be performed after com-
pleting the previous layer’s inference. Thus, the total inference
delay equals the sum of each layer’s delay. Let Fi(j, k) denote
the cumulative computation delay from the 1st to the jth
neural network layer for one sample inference of task i on
device k where k ∈ (I ∪ E ∪ C), and let Gi(j) denote the
output size of the jth layer for one sample. Also for task i, c1i
and c2i are the two partitioning parameters to represent the first
and the second partitioning position, where c1i , c

2
i ∈ 0, 1, ..., li.

For ease of exposition, we use t̄1i , t̄2i , t̄3i , t̄4i and t̄5i to
represent the five intermediate delay components for task i’s
inference. The five delays represent the device computation
delay, the data transmission delay over the edge network, the
edge server computation delay, the data transmission delay
over the backbone network and the cloud computation delay,
respectively. We also use t̄6i to denote the communication delay
for sending the inference result back to the device. These



delays can be calculated as follows:

t̄1i = Fi(c
1
i , i) ∗Ni,∀i ∈ I (1)

t̄2i =
∑
e∈E

xie ∗Gi(c
1
i )/b1i ∗Ni,∀i ∈ I (2)

t̄3i =
∑
e∈E

xie ∗ (Fi(c
2
i , e)− Fi(c

1
i , e)) ∗Ni,∀i ∈ I (3)

t̄4i =
∑
e∈E

yie ∗Gi(c
2
i )/b2i ∗Ni,∀i ∈ I (4)

t̄5i =
∑
e∈E

yie ∗ (Fi(li, c)− Fi(c
2
i , c)) ∗Ni,∀i ∈ I (5)

t̄6i =
∑
e∈E

(yie ∗Gi(li)/b
2
i + xie ∗Gi(li)/b

1
i ) ∗Ni,∀i ∈ I (6)

Our objective is to minimize the total of each job’s delay,
which can be calculated as below:

min
∑
i∈I

(t̄1i + t̄2i + t̄3i + t̄4i + t̄5i + t̄6i ) (7)

s.t. ∑
i∈I

zie ≤ re,∀e ∈ E (8)

∑
i∈I

b1i ∗ xie ≤ B1
e ,∀e ∈ E (9)

∑
i∈I

b2i ∗ yie ≤ B2
e ,∀e ∈ E (10)

0 ≤ bvi ≤ Bv
i ,∀i ∈ I, v ∈ {1, 2} (11)

xie, yie, zie ∈ {0, 1},∀i ∈ I, e ∈ E (12)
xie, yie, zie = 0,∀i ∈ I,∀e /∈ Ei (13)

0 ≤ c1i ≤ c2i ≤ li,∀i ∈ I (14)
yie ≤ xie,∀i ∈ I, e ∈ E (15)
zie ≤ xie,∀i ∈ I, e ∈ E (16)∑

e∈E
xie =

{
0, c1i = li
1, c1i 6= li

∀i ∈ I (17)

∑
e∈E

yie =

{
0, c2i = li
1, c2i 6= li

∀i ∈ I (18)

∑
e∈E

zie =

{
0, c1i = c2i
1, c1i 6= c2i

∀i ∈ I (19)

Equation (8) - (11) are the edge server workload constraint,
the downlink bandwidth constraint of each edge server, the
uplink bandwidth constraint of each edge server, and upper
bound constraint of each connection respectively, demanding
that the allocation of the computation and bandwidth resources
should not exceed the limitation. Equation (14) is the parti-
tioning constraint which requires the first partitioning position
in the neural network should not be set behind the second
partitioning position. Equation (15) - (19) are the constraints
for the three indicator variables.

IV. PARTITIONING AND SCHEDULING SOLUTION

In the problem formulated in Section III, the variables c1i
and c2i which control the partitioning position will influence
the variables xie, yie and zie which correspond to the schedul-
ing scheme in Equations (16) - (18), while the scheduling
scheme will in turn influence the partitioning strategy defined
in Equations (1) - (6). However, if we fix the values of network
environment variables, we can calculate the best partitioning
position for the shortest inference delay using the simple ex-
haustive search. To this end, we solve the problem in two steps.
We first make a reformulation for the problem after we get the
best partitioning scheme for each task under certain network
environment, then we use a delayed scheduling strategy to
solve the scheduling problem.

A. Problem Reformulation

Because of different partitioning schemes will influence
the resource utilization, to circumvent this problem, we first
calculate the different optimal delays under different execution
environment by using the simple exhaustive search. We use a
matrix W = {wi,j |i ∈ I, 0 ≤ j ≤ 3m} to describe the optimal
delays, where wi,0 equals to the optimal delay when running
the entire model on the mobile device; wij ,∀1 ≤ j ≤ m equals
to the optimal delay when using the computation resource
on device i and edge server j; wi,j+m equals to the optimal
delay when using the computation resource on device i and the
cloud c while the communication link is set via edge server
j; and wi,j+2m equals to the optimal delay when using the
computation resource on device i, edge server j and the cloud
c. We also define qi,j ∈ {0, 1}, i ∈ I, 0 ≤ j ≤ 3m as the
resource utilization indicator , where qi,j = 1 means task i is
scheduled using the corresponding resource indexed by j, and
qi,j = 0 otherwise.

We can thus reformulate our problem (1)-(18) as below:

min
∑
i∈I

∑
0≤j≤3m

wi,j ∗ qi,j (20)

s.t. ∑
i∈I

qi,j + qi,j+2m ≤ rej ,∀1 ≤ j ≤ m (21)

∑
i∈I

b1i ∗ (qi,j + qi,j+m + qi,j+2m) ≤ B1
j ,∀1 ≤ j ≤ m (22)

∑
i∈I

b2i ∗ (qi,j+m + qi,j+2m) ≤ B2
j ,∀1 ≤ j ≤ m (23)

∑
0≤j≤3m

qi,j = 1,∀i ∈ I (24)

qi,j ∈ {0, 1},∀i ∈ I, 0 ≤ j ≤ 3m (25)
and (11).
The constraints (21) - (23) are equivalent to constraints (8)

- (10). Constraint (24) and (25) restrict that for each task, the
scheduler must provide exactly one execution scenario.

B. Online Scheduling for the Multi-task Execution

In this subsection, we will propose a scheduling solution for
the multi-task execution. Under the real-world environment,



tasks are usually not generated at the same time. Therefore,
we design an online scheduling algorithm to better handle this
situation, as illustrated in Algorithm 1.

In Algorithm 1, we propose a new concept, event, which
can be defined as a scheduled task’s starting or ending, or an
unscheduled task’s coming. Triggering an event is the only
way to affect the system’s resource usage. When the triggered
event is the start or the end of a scheduled task, the algorithm
will update the current set of tasks (Line 2 - 3). When the
event is a new task’s coming, Algorithm 1 will arrange the
edge network connection and allocate the bandwidth resource
for the task. For the bandwidth allocation, since the optimized
objective is the delay, we allocate the bandwidth as large as
possible (Line 11). The highest allocable bandwidth between
the device i and the edge server j is decided by B1

i , as well
as the current allocable downlink bandwidth of edge server
j. It can be calculated as B1

j −
∑

i∈I b
1
i ∗ xij . The highest

allocable bandwidth between the edge server j and the cloud
c can be calculated similarly.

Algorithm 1 also adopts the delayed scheduling strategy.
For a specific task, it is possibly to achieve lower delay when
queuing it for the incoming freed resource by other tasks.
When adopting the delayed scheduling, we enumerate each of
the coming events. We will choose to delay a task’s starting
if total delay can be reduced (Line 12 - 17).

To analyze the complexity our algorithm, we define ncurrent
as the current number of the concurrent executing tasks.
The enumeration of events will take O(ncurrent) time since
each task will trigger the event when it starts or ends after
scheduled. And in each enumeration, to calculate the current
resource capacity of each edge server will take O(ncurrent ∗
m) time. Thus, the time complexity of Algorithm 1 is
O(ncurrent

2 ∗m) for each coming task and O(n ∗ncurrent2 ∗
m) for all n tasks. Note ncurrent is constrained by the limited
resource on the edge servers, so it is far smaller than n.V. PERFORMANCE EVALUATION

We conduct prototype experiments and extensive simula-
tions to evaluate our framework and solutions. In particular, we
first use real-world prototype experiments to gather execution
information about the DNN inference delay for each layer on
each platform, which further verifies the practical usefulness
of our framework. Based on the gathered information, we then
conduct extensive simulations to examine the performance of
our solutions proposed in Section. IV.

A. Real-world Prototype Experiments for Delay Reduction

In our experiments, we implement a simple prototype and
examine more state-of-the-art deep neural networks such as
VGG [8], DeepFace [1] and LeNet [9], to better investigate the
effectiveness of our DeePar framework. The mobile device is a
Google Pixel XL mobile phone with a Qualcomm Snapdragon
835 CPU. The edge server is a Dell server (OPTIPLEX
7010) and equipped with an NVIDIA GeForce GTX 1080
Ti GPU, an Intel Core i7-3770 3.4 GHz quad core CPU and
a 16 GB 1333 MHz DDR3 RAM. The cloud platform is the
Google Cloud Platform with five instances with each equipped
with a 13 GB RAM and a NVIDIA Telsa K80 GPU. The

Algorithm 1: Online Scheduling

Data: i;
m range = set of integers in [0, 3m];
wi,j ,∀j ∈ m range;
Result: opt, optdelay;
qi,j ,∀j ∈ m range

1 while there is an event et happens do
2 if et is task i’s start(end) then
3 Add(remove) task i in set I;

4 if et is a new task i coming then
5 opt = +infinty;
6 for each known event etknown happens not

before et do
7 Temporarily update the task set I for

etknown;
8 Calculate the time interval between et and

etknown as δt;
9 for ∀j ∈ m range do

10 if arrange qi,j doesn’t violate current
resource restriction then

11 Allocate the maximum allocable
bandwidth for b1i and b2i ;

12 if wi,j + δt < opt then
13 optdelay = δt;
14 opt = wi,j + δt;
15 temp = j;

16 else
17 Reset b1i and b2i with value 0;

18 return optdelay, opt, qi,temp = 1, b1i and b2i ;

mobile device connects to the edge server through a Wi-Fi
environment. The programming backend is Tensorflow [10].
For VGG and DeepFace, the used dataset is a set of pictures
with each of the size around 200KB, while for LeNet, the
dataset is the MNIST dataset with each picture around 1KB.

The experiment result is shown in Fig. 3. Our DeePar
outperforms all other approaches for VGG and DeepFace, with
overall 10% -30% delay reduction comparing to the edge-only
execution. The result for LeNet is quite different, since the data
size is very small here, data communication delay is not the
largest overhead here. In this case, our DeePar achieves the
same delay as the cloud-only execution, which is much lower
than the device or the edge-only execution, demonstrating that
edge computing is not always effective to reduce the delay.

B. Simulations for Multi-task Scheduling

Based on the data gathered in the above real-world experi-
ments, we further conduct extensive simulation tests to exam-
ine the performance of our solutions for multi-task execution,
where the tasks are mixed with all the four types of DNNs we
have examined previously, namely, AlexNet, VGG, DeepFace
and LeNet. Specifically, B1

i is set between [20, 300] Mbps



Device-only DeePar-only -only
Execution environment

0

70

140

210

280

350

D
el

ay
 (m

s)
Computation delay
Data transmission delay

(a) VGG

Device-only DeePar-only -only
Execution environment

0

300

600

900

1200

1500

D
el

ay
 (m

s)

Computation delay
Data transmission delay

(b) DeepFace

Device-only DeePar-only -only
Execution environment

0

3

6

9

12

15

D
el

ay
 (m

s)

Computation delay
Data transmission delay

(c) LeNet

Fig. 3: Inference delay of various DNNs by real-world prototype experiments

20 40 60 80
Number of IoT devices

450

1300

4500

13000

45000

De
la

y(
s)

Device
Edge
Cloud
Device-Edge-Cloud

(a) Time interval within 300s

20 40 60 80
Number of IoT devices

450

1300

4500

13000

45000

De
la

y(
s)

Device
Edge
Cloud
Device-Edge-Cloud

(b) Time interval within 50s

20 40 60 80
Number of IoT devices

450

1300

4500

13000

45000

De
la

y(
s)

Device
Edge
Cloud
Device-Edge-Cloud

(c) With 40 edge servers

Fig. 4: Inference delay of various DNNs by simulations for multi-task scheduling

and B2
i is set between [10, 50] Mbps, where ∀i ∈ I; B1

e is
set in [5, 20] Gbps, B2

e is set in [0.1, 5] Gbps, and re is set in
[1, 10], where ∀e ∈ E; Ni is set in [1, 1000] and each input’s
size (Gi(0)) is set in [10, 1000] KB, where ∀i ∈ I . The above
used notations are defined in Section III.

We first examine how our solutions perform with 10 edge
servers, where the number of devices changes from 20 to 80,
and all tasks arrive one by one within a time interval of 300
seconds. The result is shown in Fig. 4(a). We can see that
DeePar achieves over 60% delay reduction compared to the
device-only or the cloud-only execution, and about 20% delay
reduction compared to the edge-only execution. When we
shorten the time intervals for each task within 50 seconds, as
shown in Fig. 4(b), DeePar can still reduce the total inference
delay for about 70% comparing to the cloud-only execution
and up to 30% comparing to the edge-only execution. We
then increase the number of edge servers to 40. As shown in
Fig. 4(c), DeePar can still achieve the best performance with
about 80% delay reduction compared to the device-only and
40% delay reduction compared to the edge-only execution.

VI. CONCLUSION

In this paper, we proposed the DeePar framework which
explores edge computing to reduce data communication de-
lay and adopts a layer-level partitioning strategy to further
improve the overall inference performance. We also designed
an efficient heuristic online algorithm to solve the multi-task
execution problem. Through real-world prototype experiments
and simulations, we showed that our DeePar solution can
achieve the best performance among all approaches with up
to 80% reduction in total inference delay.

VII. ACKNOWLEDGMENTS

This research is supported by a Canada NSERC Discovery
Grant and an Engage Grant.

REFERENCES

[1] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recognition.”
in British Machine Vision Conference (BMVC), 2015.

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in Neural Information Processing Systems (NIPS),
2013.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[5] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep learning for the
internet of things with edge computing,” IEEE Network, vol. 32, no. 1,
pp. 96–101, 2018.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2012.

[7] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in IEEE International Conference on Com-
puter Communications (INFOCOM), 2018.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.


