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Testing Hypotheses 
 
Aside from estimating unknown parameters, testing hypotheses on those parameters is 
the most important aspect of an empirical study. 
 
Sampling distributions are ABSOLUTELY FUNDAMENTAL to testing. 
 
Four steps to hypothesis testing procedure: 
 Formulate two opposing hypotheses: H0 and HA 
 Compute the sample mean or variance or other quantity of interest 
 Derive a test statistic and identify its sampling distribution when H0 is true 
 Derive a decision rule  

 
These steps are explained in more detail below: 
 
The null hypothesis (H0) is the assumption we anticipate rejecting. The alternative 
hypothesis (HA) describes the population if the null hypothesis is not true. 
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Examples of H0 and HA formulated on the mean of a population: 
 

 (a) (b) (c) 
H0    
HA    

 
Once we specify the null and alternative hypotheses, we collect our sample data. We then 
compute our test statistic. A test statistic is the estimator that will be used to either 
“reject the null hypothesis” or “do not reject the null hypothesis”. 
 
Once we have a test statistic we need to derive the its sampling distribution under the 
null hypothesis. We need this distribution in order to determine how likely our test 
statistic value is when the null hypothesis is true. 
 
The final step is to derive a decision rule based on the observed value of the test statistic.  
 
The range of values for which the test procedure recommends rejecting the null 
hypothesis (unlikely value of the test statistic) is called the critical region and the range 
for which it recommends not rejecting the null hypothesis (likely value of the test 
statistic) is called the nonrejection region. 
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Type I and Type II errors 
 
For any test procedure three outcomes are possible: 
 A correct decision 
 Rejecting H0 when it is true (Type I error) 
 Not rejecting H0 when it is false (Type II error) 

 
Associated with each of these errors is a probability. The probability of committing a 
Type I error is denoted as  and is also referred to as the significance level of the test. 
The probability of committing a Type II error is denoted as . The power of the test, 
defined as , is the probability of rejecting H0 when it is false. 
 
Ideally, we would like to keep the probability of both these errors as low as possible. 
Unfortunately, an attempt to reduce the probability of a type I error automatically 
increases the probability of a type II error. 
 
In practice, for hypothesis testing, we choose a maximum value for the type I error that is 
acceptable to us (say 5%) and then derive the decision rule for which the type II error is a 
minimum. 
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Let’s consider the task of testing the mean of a normal distribution. 
 
Consider a random variable X that is normally distributed with mean  and variance . 
The most common null hypothesis is of the form :	 . The alternative  may be 
one-sided (or one-tailed) as in :	  or two-sided (or two-tailed) as in        :	 . 
 
A one-sided test 
 
Suppose we are interested in testing :	  vs :	 .  
 
We obtain a random sample , , … , . 
 
We know that the sample mean  is a good estimator of . So, if the observed  is 
considerably larger than , we would suspect that the true  is probably larger than . 
 
The sampling distribution of  tell us the probability that a sample of size n would give a 
sample average of what we observe.  
 
The sampling distribution of  when  is true (i.e.  ):  ~	 , / . 
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It is difficult however to compute this probability without standardizing the random 
variable . 
 
Using ~	 , / , we can standardized  as  
 	 /√  

 
This variable is distributed as 0, 1 . 
 
We are looking for very large value of Z (  far from ) to reject the null hypothesis.  
 
Unfortunately, we do not know  and so we need to estimate it with the sample standard 
deviation (s). The actual test statistic we use is now 
 /√ 	~	  

 
Why is this true? 
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As this sampling distribution is known, Table B-1 in the text can be used to pin down 
what “large” means in a statistical sense. 
 
Look up the entry corresponding to n – 1 degrees of freedom and the given level of 
significance  and obtain the critical value, , . 
 
Reject  if the observed t is greater than the critical value, otherwise do not reject . 
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Example: 
 
An insurance company needs to estimate the average amount claimed by its policyholders 
over one year. A random sample of 81 policyholders reveals that the sample mean is 
$839.98 and the sample standard deviation is $312.70. Suppose the insurance analyst 
wants to test the hypothesis that the average claim is more than $800. Test at the 5% 
level. Assume that the amount claimed is distributed normally with a mean  and 
variance . 
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A two-sided test 
 
Suppose we are instead interested in testing :	  vs :	 .  
 
Again, we obtain a random sample , , … , . 
 
As before we use the test statistic 
 /√ 	~	  

 
If the observed sample mean  deviates substantially from the null hypothesis , 
the calculated t statistic will be either too large or too small. When this is the case, we 
reject . 
 
From the t-table B-1 look up the entry corresponding to n – 1 degrees of freedom and the 
given level of significance /2 and obtain the critical value, , / . 
 
Reject  if if the observed t is greater than the critical value or less than the negative of 
the critical value, otherwise do not reject . 
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Example: 
 
The label on a carton of light bulbs states that the bulbs are “long-life” with an average 
life of 935 hours. An unhappy customer does not believe this claim. She files a complaint 
alleging that the claim is false, in her experience the bulbs last longer or shorter than the 
claimed 935 hours. An analyst at the complaint’s department tested a random sample of 
25 bulbs and found that the average life of the bulbs was 917 hours with a standard 
deviation of 54 hours. 
 
Can the analyst reject the company’s claim? Assume that the life of a bulb is distributed 
normally with a mean  and variance . Test at the 5% level. 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 17: TESTING 

 

Page 12 of 15 
 

P-values 
 
We could have conducted our hypothesis test using a p-value. A p-value is the 
probability of observing a value of a test statistic as large as we did when the null 
hypothesis is true. It is also the largest probability of a Type I error when  is true. 
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Interval Estimation 
 
The estimation we have considered up to this point has given us a single estimated value 
for the unknown parameters of a distribution. These estimators are therefore called point 
estimators. 
 
Rather than using a point estimator, we can use an interval estimator to provide a range 
of possible values for the population quantity with a certain probability. 
 
Let’s think about constructing a confidence interval for the mean of a normal distribution. 
We know that if a random variable X is distributed as ,  then the sample mean  is 
distributed as , / . Further we know that 
 /√ 	~	  
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Now if , /  represents the point on this t-distribution such that the area to the right of , /  is /2 and the area to the left of , /  is /2, then 
 Pr , √⁄ , 1  

 
 
Multiplying through by √⁄  and rearranging terms gives us 
 Pr √ , / √ , / 1  

 
 
This interval is known as the 1 % confidence interval for . 
 
What does this mean? 
 
 
 
 
Choice of confidence level is up to researcher. 
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Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A relationship exists between two-tailed tests and confidence intervals: 
 
We reject the null hypothesis if the confidence interval does not include the value of the 
parameter in the null hypothesis. We do not reject the null hypothesis if the confidence 
interval includes the value of the parameter in the null hypothesis. 
 


