
Requirements Engineering In Feature Oriented Software
Product Lines: An Initial Analytical Study

Mohsen Asadi
1
, Ebrahim Bagheri

2
,Bardia Mohabbati

1
, Dragan Gašević

2

1Simon Fraser University, Canada, 2Athabasca University, Canada

{ masadi, mohhabati}@sfu.ca, dgasevic@acm.org, ebagheri@athabascau.ca

ABSTRACT

Requirements engineering is recognized as a critical stage in

software development lifecycle. Given the nature of Software

Product Lines (SPL), the importance of requirements engineering

is more pronounced as SPLs pose more complex challenges than

development of a ‘single’ product. Several methods have been

proposed in the literature, which encompass activities for

capturing requirements, their variability and commonality. To

investigate the maturity and effectiveness of the current

requirements engineering approaches in software product lines,

we develop an evaluation framework containing a set of

evaluation criteria and assess feature oriented requirements

engineering methods based on the proposed criteria. As a result

of this initial study, we find out the majority of approaches lacks

proper techniques for supporting the validation of family

requirements models as well as dealing with delta requirements.

Additionally, capturing stakeholders’ preferences and applying

them during the course of software feature configuration have not

been taken into account and addressed in the proposed

approaches.

Categories and Subject Descriptors

D.2.1 [Software]: Software Engineering – Requirements/

Specification, methodologies, tools.

General Terms

Algorithms, Languages, Software Engineering

Keywords

Software Product Line Engineering, Requirements Engineering,

Evaluation Criteria.

1. INTRODUCTION
Software Product Line (SPL) engineering is a paradigm in

software engineering that aims at improving the quality of

products, decreasing the cost of development, and reducing time

to market [1]. SPL is defined as “a set of software-intensive

systems sharing a common, managed set of features that satisfy

the specific needs of a particular market segment or mission and

are developed from a common set of core assets in a prescribed

way” [2]. Key concepts in software product lines are reusability

(a set of core assets designed and developed for reuse) and

variability management (i.e., the commonalities and

dissimilarities between products) [3]. Feature-oriented software

product line development is one of the most well-known

approaches, which relies on the notion of features for identifying

variability and commonality between the members of a product

line. A feature is defined as a distinguishable aspect, quality or

characteristic of a software system or systems [4]. Features are

modeled in a tree representation called a feature model.

Software product line processes encompass two lifecycles

namely the domain and the application engineering [1]. Domain

engineering (development for reuse) aims at understanding the

target domain and developing reusable artifacts via performing

domain requirements analysis, domain design, and domain

implementation phases [5]. On the other hand, the application

engineering receives the reusable artifacts developed in the

domain engineering phase and creates an appropriate application

instance for the given requirements. To this end, application

engineers identify the requirements of a target application, and

design and realize the application by reusing the existing domain

concepts and developed artifacts.

Requirements engineering is at the core of software product

line engineering. Similar to requirements engineering for a

single system [6] [7] the success of a software product line highly

depends on the correct understanding of the context in which the

software product line will be used, the understanding of the

domain requirements, and also the proper modeling, and analysis

of the requirements [8]. Additionally, due to the new

development principles (i.e., variability management and

extensive reuse) in software product lines, requirements

engineering is more challenging and critical than requirements

engineering for a single system. Requirements engineering in

product lines can be divided into domain requirements

engineering and application requirements engineering lifecycles.

In the domain requirements engineering, requirements are

developed with the purpose of incorporating reusability and

variability into requirements artifacts. On the other hand, in the

application requirements engineering phase, target requirements

are developed by reusing reference requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC - Vol. II, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1095-6/12/09…$15.00.

Several approaches have been developed in the product line

engineering community to deal with requirements engineering

activities [11] [12] [13] [14] [15] [16]. In this paper, we concentrate

on feature-oriented approaches and analyze them against a set of

evaluation criteria. These evaluation criteria were developed in

top-down (investigating existing evaluation frameworks) and

bottom-up (investigating feature-oriented approaches) manners.

In order to ensure the quality of the criteria set, we applied a set

of meta-criteria, criteria for evaluating the criteria set [17]. As a

result of the evaluation, existing challenges in the requirements

engineering for software product lines are highlighted.

The initial results of our study show that there have not yet

been enough works on the verification and validation of

requirements models. Additionally, stakeholders’ preferences

have been neglected in many of the approaches along with delta

requirements [26], i.e., the requirements that are not covered

with the product line.

The paper is organized as follow: Section 2 consists of process-

centered description of feature-oriented methods for domain and

application requirements engineering. The evaluation criteria

are explained in Section 3, which is followed by analysis of the

results in Section 4 and conclusion in Section 5.

2. REQUIREMENTS ENGINEERING

TECHNIQUES IN FEATURE ORIENTED

SOFTWARE PRODUCT LINE
This section reviews a number of prominent feature-oriented

software product line requirements engineering approaches. The

criteria for selecting these approaches were: 1) The approach

proposes a process and defines the steps for developing family

requirements models and/or application requirements models; 2)

The approach adopts feature driven strategy for variability

management; 3) the approach covers the most of requirements

engineering activities.

In order to find requirements engineering approaches in software

product lines that satisfy abovementioned criteria, we

investigated existing literature review papers on the software

product line requirements engineering [8] [9]and variability

management [10]. Using these sources, we selected Feature-

Oriented Domain Analysis (FODA) [4], Feature-Oriented Reuse

Method (FORM) [18], Cardinality-based Feature Modeling

(CBFM) [5], Goal and Scenario Based Domain Requirements

Engineering [15], FeatuRSEB [11], and Product Line Use-case for

Software and System engineering (PLUSS) [12]. Afterwards,

three other approaches i.e. AMPLE [14], Goal-Driven Product

Line engineering [16], and AoURN-based Software Product Line

 [20] were selected based on the knowledge of authors on existing

approaches on software product line requirements engineering.

Since our work is still work-in-progress, this is not meant to be a

comprehensive list.

For each of the approaches we provide a brief overview of its

characteristics and description of its processes. Of course, a

detail description of these approaches is beyond the scope of this

paper and interested readers can find the description in the

relevant citations.

2.1 Feature-Oriented Domain Analysis

(FODA)
FODA [4] is the first approach developed based on the notion of

features and defines a process for developing domain artifacts.

The domain requirements engineering in FODA consists of

information analysis, feature analysis, and operational analysis

 [4]. Information analysis captures the domain knowledge in the

form of domain entities and relations between them and produces

artifacts such as semantic networks, object models, and entity-

relationship models; Feature Analysis activity identifies visible

features – i.e., the capabilities of a domain which are visible to

stakeholders, and then variability analysis is performed based on

the notion of features in order to identify and extract which

features are common or variable between different products of a

family. Next, a feature model is constructed and developed. The

feature model represents the variability types and relations

among features, i.e., Optional, Alternative, and Or relations.

Operational analysis captures the relationships between objects

in the information system and features in the feature model.

2.2 Feature-Oriented Reuse Method (FORM)
FORM [18] extends FODA [4] with activities for the design and

implementation of a family and refines the requirements

engineering activities.

FORM defines two engineering processes namely domain

engineering and application engineering [18]. Domain

engineering aims at analyzing systems in a domain and creating

reference architectures as well as reusable components based on

the analysis results. Domain engineering consists of context

analysis, domain (or feature) modeling, and architecture (and

component) modeling phases. The context analysis phase

determines the scope of a domain and the intended use of the

domain applications. The domain modeling phase identifies the

features of the domain and their relations and develops a feature

model. Finally, architecture modeling produces a reference

architecture model including subsystem models, process models,

and module models, and establishes mappings between the

feature and architecture models. The application engineering

phase aims at developing applications using artifacts created in

domain engineering. The application engineering process

encompasses the analysis of user requirements, the selection of

appropriate and valid domain features from a feature model, and

the identification of the corresponding reference model.

2.3 Cardinality-based Feature Modeling

(CBFM)
Cardinality-based feature modeling proposes extending the

original FODA notation with UML-like multiplicities (so-called

cardinalities). The main motivation has been derived by practical

application and “conceptual completeness” [32]. The cardinality-

based feature resembles to the original FODA proposal, where

each feature has associated a feature cardinality which

determines the number of instances of the features that can be

part of a product and how many clones of the feature are allowed

in a specific configuration. Furthermore, features can be

organized in feature groups, which also can feature group

cardinality enabling for the restriction of the minimum and

maximum number of group members that can be selected for

configuration. A feature is also extended by attribute. This

extension enables to add more information about features and

include non-functional requirements into feature model, which

are used during the configuration process. These types of feature

models where feature models extended by attributes and

additional information are also called extended, advances or

attributed feature model [27] [33]. The requirements engineering

process in CBFM is similar to the process in FORM approach.

2.4 Goal and Scenario Based Domain

requirements analysis
This approach proposes the use of goals and scenarios for

capturing requirements in the domain engineering process and

representing them as variable use-cases for a product family [15].

Goals are defined as high-level objectives of a business, an

organization or a system and are generally categorized into four

types including business goals, service goals, interaction goals,

and internal goals. Scenarios are also defined as possible

behaviors limited to a set of purposeful interactions which take

place among several agents. Accordingly, for scenarios and

requirements, four abstraction levels are considered namely

business, service, interaction, and internal levels.

In the domain requirements engineering, business goals are

defined by the organization, and then the business goals are

refined into service goals whose combination leads to the

achievement of the business goals. From the service goals

scenarios showing the functions of products are identified and

classified into common, alternative, and optional variant types.

From the service level scenarios, interaction goals and

interactions scenarios are identified and categorized into proper

variation types. The process continues for internal level goals and

scenarios. This approach uses variable use case models – a use

case model with optional and alternative relations for modeling

variable requirements. A number of transfer guideline rules are

described to derive use case models from goals and scenarios. To

the best of our knowledge, no process for application

requirements engineering has been described.

2.5 Goal-driven software product line

engineering
This approach integrates goal-oriented requirements

engineering into software product lines [16]. Goal models and

feature models are used for representing intentional and software

variability in product line engineering. Goal-oriented techniques

are applied for capturing objectives in a domain and for modeling

composition and variability relations between the objectives. In

this context, the i* modeling framework was used widely [19].

This approach defines both domain requirements

engineering and application requirements engineering processes

and provides a pre-configuration algorithm based on the

stakeholders’ objectives. The domain requirements engineering

starts with identifying the high-level objectives of products and

refining them using mechanisms provided by goal modeling.

Afterwards, by investigating tasks and plans in the goal model,

candidate features are extracted. Then, features are composed to

form a feature model and variability relations are captured and

represented. Simultaneously, the features are mapped to the tasks

in the goal model. Application engineering process identifies

high-level functional and non-functional objectives of

stakeholders and performs backward reasoning to select related

tasks. Afterward, the corresponding features from feature models

are selected.

2.6 AoURN-based Software Product Line
Mussbacher et al. [20] proposed and developed the

Aspect-oriented User Requirements Notation (AoURN) for the

context of software product lines. Features, stakeholders, and

products are considered as concerns. This approach covers both

the domain requirements engineering and application

requirements engineering life-cycles.

Domain requirements engineering process starts by creating a

goal model and follows by developing a feature model using

AoURN profile. Afterwards, AoURN scenario models are used to

defined the behavior and structure of each feature in the feature

model. Finally, the impacts of features on the stakeholders’ goals

are formalized in order to create feature impact model. During

application engineering, after analyzing the satisfaction level of

business objectives of the users in a top-down or bottom-up

manner, the final product configuration is created.

2.7 FeatuRSEB
Griss et al. [11] proposed the integration of feature-oriented

domain analysis (FODA) with Reuse-driven Software

Engineering Business (RSEB) to form FeatuRSEB. RSEB uses

reference architecture to provide a reuse-oriented model. In

RSEB, the architecture and reusable subsystems are described by

use-cases and then are transformed into object models. Finally,

traceability links are established between the use-cases and the

object models. RSEB manages variability by structuring use-case

and object model using explicit variation points and variants.

The FeatuRSEB process includes constructing a use-case model

for the product line and simultaneously developing a feature

model. After developing the feature model and the use-case

model, commonality and variability analysis is performed for the

use-case model and the feature model. The use-case construction

process includes: 1) constructing a domain actor model; 2)

constructing a domain use-case model; 3) performing robustness

analysis on the domain use-case model. The process of extracting

a feature model from the domain use-case model performs the

following steps: 1) identifying mandatory and optional features;

2) decomposing features into sub-features; 3) identifying variants

and variation points; 4) performing robustness analysis on the

feature model. In the next stages of FeatuRSEB when other

products such as object models and implementation models are

created, their variability is incorporated into the feature model.

2.8 Product Line Use-case for Software and

System engineering (PLUSS)
PLUSS is an approach developed based on FeatuRSEB [11]

and aims at managing natural-language requirements

specifications for software product lines [13]. The main artifacts

developed in PLUSS are 1) a use-case model which shows the

whole requirements of the family and 2) a feature model that

visualizes variability in the abstract product family use-case

model. PLUSS extends the existing notions in the feature model

proposed by FODA and adds “at-least-one-must-be-selected”

relation called ‘‘multiple adaptor features”. Moreover,

alternative features in the feature model were renamed into

“single adaptor features”. With respect to the use-case model,

“black box flow of evens” is adopted for describing use-case

scenarios which provides tabular descriptions of use-case

scenarios in natural language. Using these notions, the authors

were able to relate non-functional requirements to use-cases.

Domain requirements engineering encompasses activities

for modeling scenarios in the use-case model and activities for

representing variabilities and commonalities in the feature

model. Application requirements engineering is performed by

introducing new requirements (i.e., requirements of the target

application) into the feature model and selecting the proper

variants to address the new requirements.

2.9 AMPLE
This approach is based on model driven development of

requirements and provides a traceability model between

requirement engineering products [14]. Use-case models and

feature models are employed to represent requirements in the

family and their variability commonality relations, respectively.

It defines activities for domain requirements engineering

and application requirements engineering. Domain requirements

engineering encompasses: identifying requirements, grouping

requirements into features, refactoring requirements and

features, modeling SPL features and use-cases, relating features

to use -cases, generating SPL use-cases annotated with features,

and modeling use-cases as activity diagrams, and specifying

composition rules between requirements. The application

engineering process includes: defining a software product line

configuration, generating a use-case model from the SPL

configuration, and producing activity diagrams from a software

product line configuration.

The artifacts developed in the domain requirements engineering

are family use-case models, activity models, feature models, and

traceability models.

3. CRITERIA BASED EVALUATION

REQUIREMENTS ENGINEERING

APPROACHES
In this section, we evaluate requirements engineering

approaches for feature-oriented product line engineering

according to a set of the proposed criteria. The criteria set is

extracted by investigating research literature on requirements

engineering [6] [7] [8] and software product line engineering [23]

 [24] [25] [26]. In order to ensure about the quality of the criteria

set, we have applied meta-criteria notion, criteria for evaluating a

criteria set [17]. We defined three meta-criteria: coverage of

requirements engineering, coverage of variability and

commonality analysis, and coverage of tooling support. The first

meta-criterion investigates if the criteria-set contains the required

aspects for evaluating techniques with respect to requirements

engineering principles and processes. Variability and

commonality analysis - the key principles in the success of

software product line engineering- forms the second meta-

criterion. Adoption of technique by software developers in

addition to detailed guidelines (processes) and explicit

representations requires tooling support. The third meta-criterion

investigates whether the criteria-set contains required criteria to

evaluate this aspect.

For the first meta-criterion, we further defined three

subcategories based on the knowledge on software development

methods formulated in Software Process Engineering Meta-

Model (SPEM) [38] and principles related to the context of meta-

criterion (i.e. requirements engineering). According to SPEM,

two important aspects of software development methods are

process and artifact. Therefore, we considered both process and

artifact aspects for evaluating the proposed approaches. With

respect to process aspect, the generic requirements engineering

process needs to encompass requirements elicitation,

requirements modeling, requirements validation and verification,

and requirements management [6] [7]. Hence, these steps form

criteria for evaluating process aspects of requirements

engineering in the SPL. Several artifacts have been used in the

requirements engineering literature to represent requirements.

Among the existing artifacts, we selected more commonly used

artifacts i.e. goal model, use-case model, scenario based model,

and non-functional model as criteria. Also, according to

requirements engineering papers, the needs of stakeholders

include functional and non-functional requirements as well as

preferences over the functional and non-functional requirements.

For the second meta-criterion, similarly we defined both

process and artifacts aspects. Due to the nature of software

product lines, a variability and commonality management process

is distributed in both the domain engineering and the application

engineering lifecycles. In the domain engineering lifecycle, the

purpose mainly is to capture and model the variability and

commonality while in the application engineering the purpose is

to reuse the variability and commonality artifacts. According to

the variability management literature [34] [10], the variability

process includes identifying, analyzing, modeling, and binding

(configuring) the variability. Hence, requirements engineering

approaches should cover these steps to manage variability in

requirements models. Managing delta requirements (i.e.

requirements that are not covered by the product line) is an

important step in the application engineering lifecycle. With

respect to artifacts, variability can be represented in a variability

dimension (i.e. feature models) or in software development

artifacts (e.g. use-cases) or combination of the variability

dimension and the development artifacts. Regarding principles in

variability management, we considered types of variability and a

strategy adopted for developing a product line.

For the third meta-criterion, modeling support, support for

traceability, and automatic validation criteria were selected based

on criteria defined in [17] for evaluating tooling support.

Table 1 shows the criteria set for evaluating requirements

engineering in the software product line domain. We do not

claim that the criteria set is complete, but it provides a proper set

of criteria to highlight some challenges in the existing

requirements modeling techniques in product lines. The results

of analysis are shown in table 2. The results are achieved by

reading publications related to each method and exploring for

coverage of criteria in the publications.

Table 1: A set of criteria for evaluating requirements engineering methods in software product line

Meta-

Criteria
Criteria Description

C
o

v
e
r
a

g
e
 o

f R
e
q

u
ir

e
m

e
n

ts E
n

g
in

e
e
r
in

g

R
eq

u
irem

en
ts

T
y

p
es

Functional Requirements Ability of the technique to manage functional requirements of stakeholders.

Non-functional Requirements Ability of the method to manage non-functional requirements of stakeholders.

Preferences
Ability of the method to manage preferences of stakeholder in terms of prioritization
of both functional and non-functional requirements.

P
ro

cess A
sp

ect

Requirements Elicitation
Method explicitly defined an activity or mentioned reusing traditional requirements
elicitation techniques for requirements elicitation in SPL

Requirements Modeling and analysis
Method explicitly defined an activity or mentioned reusing traditional requirements
modeling and analysis techniques for requirements modeling in SPL

Requirements Validation and Verification
Method explicitly defined an activity or mentioned reusing traditional requirements
validation and verification techniques for requirements validation in SPL

Requirements Management
Method explicitly defined an activity or mentioned reusing traditional requirements
management techniques for requirements management in SPL A

rtifact A
sp

ect

Goal-Model A representation for objectives of stakeholders

Use-case model Representation for functional requirements in the family

Scenario based model Representation for behavior part of the systems in family

Non-functional model Representation for non-functional requirements in family

C
o

v
e
r
a

g
e
 o

f V
a

r
ia

b
ility

 a
n

d
 c

o
m

m
o

n
a

lity

V
ariab

ility

T
y

p
es

Optional Variability special case of single variant when only available variant set consists of one variant

Alternative Variability from a set of variants in the binding time a single variant is picked

Multi-parallel variability From set of variants in the binding time one or more variants can be picked

P
ro

cess

Domain Engineering

Identification
A method is explicitly defined for identifying variability and commonality in the
approach

Analyzing
A method explicitly is defined for identifying types of variation and dependency
between them

Modeling A method is explicitly defined for representing the variability.

Application engineering

Configuring
A method is explicitly defined about how to bind the variation points and when to
bind them.

Reusing
A method is explicitly defined about how to instantiate reusable requirements
artifacts

Identify Deltas
A method is explicitly defined about how to manage application requirements not
covered in the family.

P
ro

d
u

ct

Variability Dimension If there is a separate variability dimension for visualizing variability in the family

Artifact Dimension If the existing artifacts were extended to incorporate variability into them.

A
d

o
p

tio
n

S
trateg

y

Proactive Strategy whether method considers developing the product line from scratch

Extractive Strategy Whether method considers developing the product line from set of existing products

Reactive Strategy Whether method considers evolving product line for new requirements.

C
o

v
erag

e o
f

to
o

lin
g

su
p

p
o

rt

Automatic Validation
Whether method describes a validation approach for checking inconsistency between
variability in variability dimension and other requirements artifacts

Support for traceability If method provides vertical and horizontal traceability

Modeling support If the method explicitly develop a tooling support

4. ANALYSIS OF THE RESULTS
All the requirements engineering methods under study

consider functional requirements in their processes and provide

techniques and guidelines to model them and their variability.

However, non-functional requirements have received less

attention by these methods. Feature-Oriented Domain Analysis

(FODA) did not explicitly deal with non-functional requirements,

but some extensions such as Benavides et al. [27] and Bagheri et

al. [28] extended feature models to capture non-functional

requirements and encounter with their variability. PLUSS

mentions representing non-functional requirements in use-case

notation, but no explanation about capturing and modeling their

variability is given. Due to the nature of non-functional

requirements, they may conflict with each other and trade-off

decisions are required. For example, in many cases security is in

conflict with performance and higher security leads to lower

performance. Hence, stakeholders should specify their

preferences over non-functional requirements. Stakeholders’

preferences might be defined in the form of standard priorities (A

is more important than B) or in the form of conditional relative

priorities (A is more important than B if C holds, otherwise, B is

more important). None of existing approaches except AoURN

considers

Table 2: the evaluation result of requirements engineering method - method - √√√√ covered with method, ×××× not covered with method,

⊕⊕⊕⊕ partially covered with some extensions of the method

Criteria FODA [4] FROM [18]
CBFM

 [5]

Goal-

Driven

SPLE [16]

Goal

and

Scenario

 [15]

AoURN

Based

PLUSS

 [13]

FeatuRSEB

 [11]
AMPLE [14]

R
eq

u
irem

en
ts T

y
p

es

Functional Requirements √ √ √ √ √ √ √ √ √

Non-functional Requirements ⊕ × × ⊕ × √ √ √ ×

Preferences × × × × × × × × ×

P
ro

cess A
sp

ect

Requirements Elicitation √ √ √ √ √ √ √ √ √

Requirements Modeling and analysis √ √ √ √ √ √ √ √ √

Requirements Validation and

Verification
× × √ × × × × × ×

Requirements Management × × × × × × √ √ √

A
rtifact A

sp
ect

Goal-Model × × × √ √ √ × × ×

Use-case model ⊕ × √ × √ × √ √ √

Scenario based models × × × × √ √ × √ ×

Non-functional representation × × × √ × √ √ × ×

V
ariab

ility

T
y

p
es

Optional Variability √ √ √ √ √ √ √ √ √

Alternative Variability √ √ √ √ √ √ √ √ √

Multi-parallel variability √ √ √ √ √ √ √ √ √

P
ro

cess

Domain

Engineering

Identification √ √ √ √ √ √ √ √ √

Analyzing √ √ √ √ √ √ √ √ √

Modeling √ √ √ √ √ √ √ √ √

Application

engineering

Configuring × √ √ √ × √ ⊕ √ √

Reusing × √ √ √ √ √ ⊕ √ ×

Identify Deltas × × × × × × √ × ×

P
ro

d
u

ct

Variability Dimension √ √ √ √ × √ √ √ √

Artifact Dimension × × × √ √ × × √ √

A
d

o
p

tio
n

S
trateg

y

Proactive Strategy √ √ √ √ √ √ √ √ √

Extractive Strategy ⊕ × √ × × × × √ √

Reactive Strategy ⊕ × × × × × √ √ ×
 T

o
o

lin
g

S
u

p
p

o
rt

Automatic Validation ⊕ × √ ⊕ × √ × × ×

Support for traceability √ √ √ √ × √ √ √ √

Modeling support √ √ √ √ √ √ √ √ √

capturing stakeholders’ preferences. Bagheri et al [28] and

Ognjanovic et al [29] introduced the notion of relative

importance between non-functional requirements and proposed

algorithms to rank requirements based on stakeholders’

preferences over non-functional requirements.

Requirements elicitation and analysis and modeling were

covered by all the approaches, but a few of the reviewed

approaches such as CBFM defined techniques for the validation

and verification activities. Additionally, Benavides et al [36]

provided verification techniques for feature models using SAT

solvers and CSPs. Since inconsistent and incomplete

requirements models cause further problems for later stages, i.e.,

design and implementation, hence it is essential to develop

proper techniques to manage validity of a family requirements

model. Requirements management activities such as

requirements evaluation were covered by featuRSEB, PLUSS,

and AMPLE.

In many approaches, goal models or use-cases are used for

representing family requirements besides feature models, which

represents variability between the features of the product line.

The activities related to identifying and modeling variability and

commonality are covered by all techniques and modeling

languages employed in the discussed methods cover three

variability types (i.e., optional, alternative, and multiple

parallel). Due to diversity of the stakeholders in software product

lines, a wide range of functional and non-functional requirements

may exist whose variability should be modeled. Proposed

methods mainly discuss functional variability and non-functional

variability has been neglected.

With respect to application engineering, it is important that in

the configuration process when critical decisions need to be

made, the stakeholders’ judgments and opinions are taken into

account and properly addressed. Most of the approaches except

FODA and [15] provides mechanisms for configuring feature

models and reusing reference requirements models for

developing the application requirements model. Moreover, in

many cases some requirements for target applications cannot be

satisfied through instantiating domain requirements model and

the application engineers need to identify delta requirements. All

reviewed methods except PLUSS provided no support for this

case.

Regarding development strategies, most of the approach adopted

a proactive strategy which is most expensive and a high risk

strategy with respect to the other strategies. Some extensions to

FODA like Chen et al [34] and Alves et al [35] cover reactive

and extractive strategies. Also She et al [37]provided technique

to extract feature model for the existing product lines. Extractive

strategy is the second most adopted strategy and only FeatuRSEB

contains all three development strategies.

To summarize, according to initial results of our study, major

shortcomings of requirements engineering approaches in

software product lines encompass: lack of techniques for

validating and verifying requirements models; lack of

mechanisms for capturing stakeholder preferences and applying

them for the selection of features; and managing delta

requirements during application engineering life-cycle.

Additionally, most of techniques emphasize on proactive strategy

for developing requirements models, which has the highest cost

among the other strategies.

5. CONCLUSION
In this paper, we explored requirements engineering in the

software product line domain. Product line requirements

engineering differs from single system requirements engineering,

because 1) there is a set of software products instead of one

system; 2) the purpose of requirements engineering in software

product lines is the development for reuse and development by

reuse; 3) new notions ,i.e., commonality and variability emerged

in product lines that must be considered in the process of

requirements management; 4) the range and number of involved

stakeholders is more than those involved with a single system.

Product line requirements engineering is divided into two sub-

processes, domain requirements engineering and application

requirements engineering.

We identified a set of criteria for evaluating existing

requirements engineering approaches. Afterwards, we

systematically applied the criteria set into reviewed methods and

showed the results in tabular format. The results revealed that

non-functional requirements, validation and verification, and

preferences have been neglected by researchers. Additionally,

delta requirements should be handed during the application

engineering process.

6. REFERENCES
[1] K. Pohl, G. Böckle, and F. J. van der Linden. 2005.

Software Product Line Engineering: Foundations, Principles

and Techniques. Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

[2] P. Clements, L., and Northrop. 2001. Software Product

Lines: Practices and Patterns. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[3] J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of

variability in software product lines,” in Software

Architecture, 2001. Proceedings. Working IEEE/IFIP

Conference on, 2001, p. 45–54.

[4] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.

Feature-Oriented Domain Analysis (FODA) Feasibility

Study. (1990).

[5] K. Czarnecki, and U. Eisenecker, Generative Programming:

Methods, Tools, and Applications. Addison-Wesley, 2000.

[6] B. H. C. Cheng and J. M. Atlee, “Research Directions in

Requirements Engineering,” in 2007 Future of Software

Engineering, Washington, DC, USA, 2007, p. 285–303.

[7] B. Nuseibeh and S. Easterbrook, “Requirements

engineering: a roadmap,” in Proceedings of the Conference

on the Future of Software Engineering, 2000, p. 35–46.

[8] V. Alves, N. Niu, C. Alves, and G. Valença, “Requirements

engineering for software product lines: A systematic

literature review,” Information and Software Technology,

vol. 52, p. 806–820, Aug. 2010.

[9] M. Khurum, T. Gorschek, A systematic review of domain

analysis solutions for product lines, Journal of Systems and

Software 82 (12) (2009) 1982–2003.

[10] L. Chen, M.A. Babar, N. Ali, Variability management in

software product lines: a systematic review, in: Proceedings

of the 13th Software Product Line International Conference

(SPLC 2009), San Francisco, CA, USA, 2009, pp. 81–90.

[11] M. Griss, J. Favaro, M. d’Alessandro, Integrating feature

modeling with the RSEB. Proceedings of the Fifth

International Conference on Software Reuse. p. 76–85

(1998).

[12] I. John and D. Muthig, Modeling Variability with Use

Cases. Fraunhofer IESE, Technical Report IESE Report No.

063.02/E, 2002.

[13] M. Eriksson, J. Börstler, and K. Borg, “The PLUSS

approach-domain modeling with features, use cases and use

case realizations,” Software Product Lines, p. 33–44, 2005.

[14] M. Alférez, U. Kulesza, N. Weston, J. Araujo, V. Amaral,

A. Moreira, A. Rashid, and M. C Jaeger., A Metamodel for

Aspectual Requirements Modelling and Composition.

Technical report. Universidade Nova de Lisboa, Portugal,

2008.

[15] J. Kim, M. Kim, and S. Park, “Goal and scenario based

domain requirements analysis environment,” Journal of

Systems and Software, vol. 79, p. 926–938, Jul. 2006.

[16] M. Asadi, E. Bagheri, D. Gašević, M. Hatala, and B.

Mohabbati, “Goal-driven software product line

engineering,” in Proceedings of the 2011 ACM Symposium

on Applied Computing, New York, NY, USA, 2011, p. 691–

698.

[17] M. Asadi and R. Ramsin, “MDA-Based Methodologies: An

Analytical Survey,” in Proceedings of the 4th European

conference on Model Driven Architecture: Foundations and

Applications, Berlin, Heidelberg, 2008, p. 419–431.

[18] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,

“FORM: A feature-oriented reuse method with domain-

specific reference architectures,” Annals of Software

Engineering, vol. 5, no. 1, p. 143–168, 1998.

[19] E. Yu, and J. Mylopoulos, From E-R to “A-R” —

Modelling strategic actor relationships for business process

reengineering. In Proc. ER '94 Conf. (1994), 548-565.

[20] G. Mussbacher, J. Araújo, A. Moreira, and D. Amyot,

AoURN-based Modeling and Analysis of Software Product

Lines. Software Quality Journal (2011),

doi:10.1007/s11219-011-9153-8

[21] S. Deelstra, M. Sinnema, and J. Bosch, “Variability

assessment in software product families,” Information and

Software Technology, vol. 51, no. 1, p. 195–218, 2009.

[22] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G.

Saval, “Disambiguating the Documentation of Variability in

Software Product Lines: A Separation of Concerns,

Formalization and Automated Analysis,” in 15th IEEE

International Requirements Engineering Conference (RE

2007), Delhi, India, 2007, pp. 243-253.

[23] F. Bachmann, “Managing Variability in Software

Architectures,” p. 126--132, 2001.

[24] J. Bosch, with M. Svahnberg, J. Van Gurp, and J. Van,

Gurp, “A Taxonomy of Variability Realization Techniques,”

SOFTWARE—PRACTICE AND EXPERIENCE, vol. 35, p.

705--754, 2001.

[25] G. Halmans and K. Pohl, “Communicating the variability of

a software-product family to customers,” Software and

Systems Modeling, vol. 2, no. 1, pp. 15-36, 2003.

[26] M. Sinnema and S. Deelstra, “Classifying variability

modeling techniques,” Information and Software

Technology, vol. 49, p. 717–739, Jul. 2007.

[27] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated

reasoning on feature models,” in LNCS, Advanced

Information Systems Engineering: 17th International

Conference, CAiSE 2005, 2005, vol. 3520, p. 491–503.

[28] E. Bagheri, M. Asadi, D. Gasevic, and S. Soltani,

“Stratified analytic hierarchy process: prioritization and

selection of software features,” in Proceedings of the 14th

international conference on Software product lines: going

beyond, Berlin, Heidelberg, 2010, p. 300–315.

[29] I. Ognjanovic, D. Gašević, E. Bagheri, and M. Asadi,

“Conditional preferences in software stakeholders’

judgments,” in Proceedings of the 2011 ACM Symposium

on Applied Computing, New York, NY, USA, 2011, p. 683–

690.

[30] J. Mylopoulos, L. Chung, B. Nixon “Representing and

using nonfunctional requirements: a process-oriented

approach,” Software Engineering, IEEE Transactions on,

vol. 18, no. 6, pp. 483-497, Jun. 1992.

[31] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged

configuration using feature models,” Software Product

Lines, p. 162–164, 2004.

[32] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing

cardinality-based feature models and their staged

configuration,” Software Process Improvement and Practice,

vol. 10, no. 1, pp. 7–29, 2005.

[33] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated

analysis of feature models 20 years later: A literature

review,” Information Systems, Mar. 2010.

[34] K. Chen, W. Zhang, H. Zhao, and H. Mei, "An Approach to

Constructing Feature Models Based on Requirements

Clustering", in Proceedings of the 13th IEEE International

Conference on Requirements Engineering, Paris, France,

IEEE Computer Society, 2005, pp. 31-40.

[35] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and

C. Lucena, "Refactoring Product Lines", in Proceedings of

the 5th International Conference on Generative

Programming and Component Engineering, Portland,

Oregon, USA, ACM Press, 2006, pp. 201-210.

[36] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés,

"FAMA: Tooling a Framework for the Automated Analysis

of Feature Models", presented at First International

Workshop on Variability Modelling of Software-intensive

Systems, Limerick, Ireland, 2007.

[37] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K.

Czarnecki. 2011. Reverse engineering feature models. In

Proceedings of the 33rd International Conference on

Software Engineering (ICSE '11). ACM, New York, NY,

USA, 461-470.

[38] R. Schuppenies and S. Steinhauer, (2001). Software Process

Engineering Metamodel, OMG group, November 2002.

