
Toward Automated Feature Model Configuration With

Optimizing Non-Functional Requirements

Mohsen Asadia, Samaneh Soltania, Dragan Gasevica,b, Marek Hatalaa, Ebrahim Bagheric

aSimon Fraser University, Canada
bAthabasca University, Canada
cRyerson University, Canada

Abstract

Context: A Software Product Line is a family of software systems that share some
common features but also have significant variabilities. A feature model is a variability
modeling artifact, which represents differences among software products with respect to
the variability relationships among their features. Having a feature model along with a
reference model developed in the domain engineering lifecycle, a concrete product of the
family is derived by binding the variation points in the feature model (called configuration
process) and by instantiating the reference model.

Objective: In this work we address the feature model configuration problem and pro-
pose a framework to automatically select suitable features that satisfy both the functional
and non-functional preferences and constraints of stakeholders. Additionally, interdepen-
dencies between various non-functional properties are taken into account in the framework.

Method: The proposed framework combines Analytical Hierarchy Process (AHP) and
Fuzzy Cognitive Maps (FCM) to compute the non-functional properties weights based
on stakeholders’ preferences and interdependencies between non-functional properties.
Afterwards, Hierarchical Task Network (HTN) planning is applied to find the optimal
feature model configuration.

Result: Our approach improves state-of-art of feature model configuration by con-
sidering positive or negative impacts of the features on non-functional properties, the
stakeholders’ preferences, and non-functional interdependencies. The approach presented
in this paper extends earlier work presented in [1] from several distinct perspectives includ-
ing mechanisms handling interdependencies between non-functional properties, proposing
a novel tooling architecture, and offering visualization and interaction techniques for rep-
resenting functional and non-functional aspects of feature models.

Conclusion: our experiments show the scalability of our configuration approach when
considering both functional and non-functional requirements of stakeholders.

Keywords: Software Product Lines, Feature Model Configuration, Stakeholders’
Preferences, Non-functional Interdependencies

1. Introduction

Software Product Lines Engineering (SPLE) aims at developing a set of software sys-
tems that share common features and satisfy the requirements of a specific domain [2].
SPLE decreases development costs and time to market, and improves software quality

Preprint submitted to Information and Software Technology January 9, 2014

through strategic reuse of assets within a domain of interest. A technique adopted in
SPLE for managing reusability is commonality and variability modeling through which
common assets and their variabilities are formalized.

A software product line lifecycle encompasses a domain engineering process and an
application engineering process. In the domain engineering process, a comprehensive for-
mal representation of the products of the domain is developed. This includes a variability
model and the core assets of the product family. Feature models are among the prevalent
variability modeling techniques in SPLE and represent variability in terms of the differ-
ences between the features of the products that belong to a software family. A feature is
a logical unit of behavior specified by a set of functional and non-functional requirements
[3].

On the other hand, the application engineering process is responsible for capturing the
requirements of the target application, deriving a concrete product from the variability
model through a configuration process, and deploying the product into users’ environment
[4]. Using feature models as variability modeling tools, the configuration process selects
a suitable set of features to satisfy the stakeholders’ requirements.

1.1. Open Problem

The focus of existing research in software product lines has been mostly on modeling
and managing product lines, while there are only a few works which in particular concen-
trate on the effective utilization of product lines (also known as the configuration problem)
during application engineering. In the configuration problem, an application engineer re-
ceives a feature model and the target application requirements and attempts to select a
subset of the features that optimize the requirements. Solving the configuration problem
is challenging for an application engineer due to following reasons:

• There are several types of variability relations and integrity constraints between the
features [2];

• The number of possible configurations has exponential growth. Even in small feature
models the number of possible configurations can be very high. Industrial feature
models may consist of hundreds of features which increases the complexity of feature
model configuration [5].

• Features may have either positive or negative impact on the different business con-
cerns of a product, and hence expose different quality attributes [6]. We refer to
business concerns of a product (e.g., security and customer satisfaction) and qual-
ity attributes of a product (e.g., performance and cost) as non-functional properties
(NFP). For example, a feature may have a negative impact on security, but a pos-
itive impact on customer satisfaction or it could have high performance but low
reliability.

• In addition to functional requirements, stakeholders may have several constraints
and preferences over non-functional properties during the product derivation. For
example, one stakeholder may ask for a product with high security, high customer
satisfaction, and specific cost ; and can mention that customer satisfaction is more
important than security ; which would make the configuration process more difficult
and complex [5, 7].

2

• Finally, there are interdependency relations between non-functional properties such
that an increase or decrease in the value of one non-functional property may lead
to an increase or decrease in the value of another non-functional property. For
example, increase in the value of security may decrease the value of performance for
the stakeholders [8].

There are a number of algorithms for product line configuration [9, 10, 11, 12], which
aim at assisting application engineers in solving the configuration problem. However,
to our knowledge, there has been little coverage for the consideration of non-functional
requirements in the configuration algorithms. Some techniques have addressed the con-
figuration problem by transforming the feature model configuration problem into a Con-
straints Satisfaction Problem (CSP), and have used CSP-solvers to build optimal con-
figurations [5, 13]. The main problem with these techniques is time inefficiency. Other
techniques solve this problem by applying approximation algorithms, but their final con-
figurations are only partially optimal [14, 15]. To our knowledge, almost all these works
except [13] only support limited types of NFPs (i.e., quantitative NFPs such as footprint
and cost) and do not consider qualitative NFPs (e.g., security). Moreover, no work has
considered the preferences of stakeholders in terms of the relative importance between
non-functional properties in the process of feature model configuration; and relative im-
portance varies depending on the stakeholders standpoint and application domain [16].
Relative importance of non-functional properties is especially important for the stake-
holders and software designers who are able to define the relative importance among the
available functional and non-functional options but have difficulty in deterministically
picking their choice from those options [16]. Thus, a product line configuration technique
should not only be able to operate over deterministic functional choices, but should also be
able to operate when the relative importance between both functional and non-functional
properties are given. Finally, to the best of our knowledge, no feature model configuration
approach has taken interdependencies between non-functional properties into account.

1.2. Contribution and Approach Overview

Existing challenges in the configuration problem faced by application developers moti-
vated us to develop an automated method for selecting a set of features that would fulfill
both the stakeholders’ functional and non functional requirements and preferences. To
this end, we adopted and integrated the Analytical Hierarchy Process (AHP) [17], Fuzzy
Cognitive Map (FCM) [18], and Preference-based Planning techniques[19].

AHP is a well-known pairwise comparison method used to calculate the relative rank-
ing of different options based on stakeholders’ judgments [17, 20]. FCM [18] is an ex-
tension of cognitive maps which incorporates fuzzy causal functions to represent fuzzy
relations among objects in a complex system. FCM have been widely used several do-
mains for modeling and decision making [21, 22, 23]. Hierarchical Task Network (HTN)
planning is a popular planning technique, which is suited for domains with hierarchi-
cal task decomposition [24, 19]. The HTN Planning technique generates plans from a
developed hierarchical network of domain tasks and actions [25].

The general overview of the proposed approach is illustrated in Figure 1. As shown in
the figure, our approach captures functional requirements and non-functional requirements
of the stakeholders for a final application. Non-functional requirements are captured in

3

terms of relative importance of non-functional properties along with constraints over the
non-functional properties (Section 3.3). Afterward, we employ an Analytical Hierarchy
Process (AHP)[17] to calculate the local weights of non-functional properties. To incor-
porate the value related interdependencies during the feature selection, we employ Fuzzy
Cognitive Map(FCM) to compute the overall influence between non-function properties
and then calculate the global non-functional properties weights by integrating result of
AHP and FCM (Section 4.1.1). Next, ranks of the features based on the importance of
non-functional properties and their values assigned to the features is obtained via a utility
function defined in section 4.1.2.

We generate the HTN planning domain and problem from the feature model and
stakeholders’ requirements (Section 4.2). First, preprocessing steps are preformed to
handle optional and OR relation for transformation and then we produce domain pred-
icates, operators, and tasks according to the proposed transformation rules. We apply
SHOP2 planner [26], an HTN-based planning system widely used for planning problems,
to identify an optimal plan (i.e., a plan with the best overall cost). To produce the final
configuration, the features chosen by the SHOP2 planner are selected and represented in
the visual view of our tool.

Figure 1: Automatic feature model configuration process in application engineering

The main contributions of this paper are as follows:

• Proposing a complete approach for configuring feature models which includes an
easy-to-understand formalism for capturing the stakeholders’ preferences over non-
functional properties represented in terms of relative importance; utilizing the ana-
lytic hierarchy process and fuzzy cognitive maps to calculate the weightes of NFPs;

4

transforming a feature model and stakeholders’ preferences and constraints into a
planning domain and problem by considering both functional and non-functional
requirements;

• Developing a tool to support the proposed approach for feature model configuration.

• Conducting several experiments to evaluate the performance and usefulness of the
proposed approach and the developed tool.

The proposed approach has been evolved over our previous works [6, 27, 7, 1]. In [6, 27] we
only concentrated on the relative importance over qualitative non-functional properties
and adapted an AHP approach to prioritize features in feature models. In this work, we
cover both qualitative and quantitative non-functional properties and propose a utility
function to compute the ranks of features. In [7, 1] we applied HTN for feature selection
based on business concerns and non-functional properties, respectively. Here, we perform
feature selection based on qualitative and quantitative non-functional properties.

Specifically with respect to our previous approach presented at SPLC2012 [1], we ex-
tend the approach from several perspectives. The main extension was the integration of
interdependencies between non-functional properties and employing fuzzy cognitive maps
for resolving dependencies (Section 4). In this line, we proposed a technique which con-
siders both preferences of stakeholders over non-functional and impacts of non-functional
properties on each other to compute the ranks of features. According to the study per-
formed in [28], handling interdependencies between non-functional properties is a critical
issue in many industrial companies. To best of our knowledge no approach in software
product lines (including our work at SPLC12) has tackled this issue before. Addition-
ally, to improve the usability of the approach, we applied visualization and interaction
techniques to the supporting tool set(Section 5).

The paper is organized as follow: Section 2 introduces the fundamentals and basic
domain concepts including multi-criteria decision making and hierarchical task networks.
Next, the definition of configuration problem is given in section 3. The details of the
proposed approach is explained in section 4. Section 5 introduces the developed tool and
explains its characteristics. After evaluating the proposed approach and developed tool
in terms of scalability and effectiveness in section 6, we highlight the related works and
compare our work with them in section 7. Finally, section 8 concludes the paper and
mentions the open issues and future works.

2. Background

Our configuration approach is based on techniques in multicriteria decision making
and hierarchical planning which are reviewed in this section.

2.1. Hierarchical Task Network (HTN) Planning

Given an initial world description, goal conditions, and actions, a planning problem is
to find a plan leading from an initial start state to the goal. Hierarichal Task Network(i.e.,
HTN) Planning is among several planning techniques proposed in artificial intelligence,
which fits well with domains consisting of low level actions and high level tasks. High
level tasks are hierarchically refined into lower level tasks and finally into actions. HTN

5

planning consists of a planning domain, planning problem, and an output plan [29].
Figure 2 shows a simple example of an HTN domain [24] and initial states; in this example
the goal is traveling between home and park. As shown in the figure, the initial task (i.e.,
travel(me, home, park)) is decomposed into two sub-tasks (i.e., travel-by-foot, and travel-
by-taxi) and finally each sub-task is refined into some actions.

Figure 2: An example of HTN domain [24]

An operator (denoted as o) represents a low level action (e.g., ride(me, home, park) in
Figure 2), which can be executed in the domain and is defined as a quintuple o= (name(o),
pre(o), eff(o), del(o), value(o)). pre(o) defines a pre-condition (e.g., cash(a) > 1.50 +
0.50× distance(x, y) as a precondition for operator pay-driver) for every operator, which
represents required conditions for performing the operator. The effect of performing the
operator (e.g., cash(a)← cash(a)−1.50 + 0.50×distance(x, y) as an effect of performing
operator pay-taxi) can also be represented by using a post condition eff(o). del(o) or
operator’s delete list shows what becomes false after performing the operator. For every
operator, an optional value value(o) can be defined, which shows a required cost for the
execution of that operator. The total value of an output plan is the sum of the values of
the operators in the plan.

The task construct (denoted as t) represents higher level activities in HTN and can
recursively be decomposed into the lower level tasks, and finally operators. In HTN, only
operators can be executed and tasks can only be reduced into sub-tasks and operators
[24]. Refinement of a task into sub-tasks is done using one or more methods (denoted
as mt) corresponding to the task. So, every method defines how a task is decomposed
into lower level tasks or operators. A method is a quadruple M = (name(m), task(m),
pre(m), dec(m)) where task(m) is a parent task, pre(m) is a pre-condition, and dec(m)
is a list of sub tasks into which the parent is decomposed. A precondition pre(m) defines
a required condition for decomposing the parent task. A method is applied only when
its precondition is satisfied [29]. For example, method travel-by-taxi can be defined as
following:

• task : travel(a, x, y)

• precond : cash(a) > 1.50 + 0.50× distance(x, y)

6

• subtasks : call-taxi(a, x) → ride(a, x, y)→ pay-driver(a, x, y)

The planning problem describes characteristics of a required plan - the objective, initial
state, and constraints. As a result of applying a planning technique, a plan containing a
sequence of actions that satisfies the objective and the constraints defined in the planning
problem is produced. The HTN planning formulates the plan by recursively decomposing
the tasks into sub tasks until it reaches the primitive tasks, which can be performed [24].

2.2. Multi-Criteria Decision Making

There are several multi-criteria decision making algorithms including: 1) the weighted
sum model (WSM) which is the earliest method [30]; 2) the weighted product model
(WPM) [31] which is a modification of the WSM; 3) and analytic hierarchy process (AHP)
which is a later development and widely used in several applications [32]. AHP enables
ranking objects based on the defined relative importance between them; the study by
Karlsson et al. [33] for comparing six prioritization techniques revealed that AHP was the
most promising technique as it provides the most trust worthy results; and the study in
[6] shows that AHP is easy to use and does not need too much effort from stakeholders.

In AHP, stakeholders defines their preferences over each pair of decision objects. The
preferences are expressed in terms of relative importance between the objects. Accord-
ing to stakeholders relative importance on decision objects, a square matrix RI|N |×|N |=
{RI[i, j] = α | 1 ≤ i, j ≤ |N |, α is relative importance of object i to object j, and |N |
shows the number of objects on which the stakeholder defines the relative importance }
is created. The value of α (i.e., degree of importance) in each cell may be 1, 3, 5, 7,
or 9 corresponding to equality, slight value, strong value, very strong or extreme value,
respectively [34]. According to the AHP algorithm, the elements of the matrix RI are
normalized by dividing the elements of each column by the sum of the elements of that
column. In order to estimate the principal eigenvector, the averages of normalized column
are calculated. The principal eigenvector for each matrix, when normalized, becomes the
vector of priorities for that matrix [17].

Fuzzy Cognitive Maps (FCM), proposed by Kosk [18], is an extension to cognitive maps
which incorporates fuzzy causal functions to represent fuzzy relations among objects in
a complex system. FCM handles dependency relations between options considering the
weight on the dependency relations. FCM have been widely applied for several decision
making areas [21, 22, 23] with dependencies and feedback over decision options. A FCM is
a graph which consists of nodes representing the objects in the system and wighted edges
illustrating cause-effect relations between system objects. The values in FCM are fuzzy;
hence objects (nodes in graph) receive the values in [0, 1] and weights of the relations take
a range of [-1, 1]. Figure 3 shows a sample of fuzzy cognitive map where oi shows object i
in the system and eij illustrates the weight of cause-effect relations between object i and
object j. We define fuzzy cognitive map as the following [21, 18]:

Definition 2.1. (Fuzzy Cognitive Map). A fuzzy cognitive map is a quadruple FCM
= (N, E, f, V) where 1) N is a set of objects in the system; 2) E is a matrix representing
weights between objects in the system; 3) f is hyperbolic-tangent threshold function defined
as f(x) = (1− e−x)/(1 + e−x); 3) V = {V t} is a set of state matrices where V 0 is matrix
showing initial values of the objects and V t+1 is computed as V t+1 = f(V t + V t × E)

7

Figure 3: A simple fuzzy cognitive map.

3. Detail Definition of Configuration Problem

Given a product line is developed for an entire domain, different products could poten-
tially satisfy diverse functional and non-functional requirements. An important challenge
in product lines is how to efficiently reuse the assets developed in the domain engineering
lifecycle to derive a product which satisfies both functional and non-functional require-
ments. This challenge is referred to as the configuration problem. More precisely, in the
context of feature oriented software product line engineering, the configuration problem
is defined as:

Definition 3.1. (Configuration Problem).Given a feature model and a set of tar-
get application requirements, what set of eligible features should be selected in order to
optimally satisfy the requirements of the target application?

According to the definition, feature models and requirements form the input of the con-
figuration problem. The solution to the configuration problem should not violate the
constraints imposed by the feature model and at the same time should conform, as much
as possible, to the functional and non-functional requirements. This section provides an
understanding of the main components of the configuration problem and the way that
these components are presented in this paper. With respect to the requirements, we
concentrate on non-functional requirements. We first develop a model of non-functional
properties based on the existing literature. We then discuss how the non-functional model
can be integrated into feature models and used for defining stakeholders’ requirements.
We should point out that we do not claim that the given definition of the configuration
problem is complete, but it is the basis for the proposed configuration approach described
in Section 4.

3.1. Non-Functional Properties and Interdependencies

Diversity of non-functional properties and their values in different products have been
less center of attention in existing software product line approaches. Recently, a number
of studies [5, 13, 6] investigated the notion of non-functional properties in the context of
feature-oriented software product lines. Also, non-functional properties were investigated

8

Figure 4: Non Functional Property Model

in the context of other variability modeling languages such as the Orthogonal Variability
Model (OVM) [35]. Based on the existing knowledge, we have developed a non-functional
property model (see Figure 4) which is used in this paper. In the developed model, based
on the nature of non-functional properties, we categorize them into two main categories:
Quantitative and Qualitative.

A quantitative property is countable, measurable, or comparable and can be shown as
a numeric value [36]. Cost, Performance, and Memory usage are examples of quantitative
properties. Metric based values are defined for quantitative non-functional properties
and can be measured for a product. For example, performance can be measured for and
assigned to a specific feature.

After measuring a non-functional property value for features, the NFP value of a
product is computed by aggregating the NFP value of features involved in the product.
Based on the nature of non-functional properties, different aggregation functions can be
applied [35, 37, 38]. An aggregation function is a mathematical function such as: mean,
max, min, summation, multiplication, to name a few. For example, to compute the
non-functional values of a product, for some non-functional properties such as cost and
response time, the values are summed; while for others like availability and reliability
values need to be multiplied. Table 1 adapted from [35] shows a set of quantitative
non-functional properties and their corresponding aggregation functions.

Table 1: Quantitative properties and corresponding aggregation functions

NFP Unit Aggregation function
Response Time (qrt) msec

∑n
i=1 qrt(fi)

Cost (qc) $
∑n

i=1 qc(fi)
Availability (qav) percent

∏n
i=1 qav(fi)

Accuracy (qac) percent
∏n

i=1 qac(fi)

Qualitative properties are the second category of non-functional properties which can-
not be exactly measured [6]. The qualitative non-functional properties such as customer
satisfaction or user friendliness can be described using an ordinal scale consisting of a

9

set of predefined qualitative values which we refer to as qualifier tags. For example, High
negative, Medium negative, Low negative, Low positive, Medium positive, and High positive
can be possible qualifier tags defined for customer satisfaction. A qualifier tag represents
a possible impact of functionality on a qualitative non-functional property.

Non-functional properties are not independent and they affect each other in a complex
way [8]. Unlike functional interdependencies, non-functional interdependencies influence
a large part of the functionality or other non-functional properties [28]; hence, it is cru-
cial to take into consideration the non-functional interdependencies. Furthermore, non-
functional interdependencies increase the complexity of selecting and deselecting features
in the software product line engineering.

An interview study by Brentsson et al. [28] showed that one of the most common inter-
dependencies between non-functional properties in a business to consumer domain is value
related dependencies. A value related dependency means that satisfying a non-functional
property affects the value of another non-functional property for the customer [8]. Value
related dependencies are further refined into positive and negative values. For example,
satisfying international sale non-functional property improves customer satisfaction while
satisfying security has negative impact on the performance. Figure 6 shows dependency
relations in the non-functional model which is defined between a source non-functional
property and a target non-functional property.

3.2. Extended Feature Model

Having defined the non-functional model in the previous section, we now define one
of the components of configuration problem, i.e. the extended feature model.

The core notion in feature models is the feature. Bosch et al. [3] defined a feature
as “a logical unit of behavior specified by a set of functional and non-functional require-
ments.” We consider this definition as we intend to configure the feature model based on
both functional and non-functional requirements. A feature model provides a formal and
graphical representation of features as well as the variability relations, constraints, and
dependencies defined over the product lines’ features. It has a tree-like structure [39] in
which features are typically classified as:

• Mandatory feature: if a parent feature is selected, its mandatory child feature
must be also selected in the configuration process.

• Optional feature: if a parent feature is selected, its optional child feature may or
may not be selected in the configuration process.

• OR feature group: one or more features in the OR feature group must be selected
in the final configuration of the feature model.

• XOR feature group: one and only one of the features in the XOR feature group
must be selected in the final configuration of the feature model.

In addition to the relations between a parent feature and its child features, a number
of relations are defined to represent mutual inter-dependencies (also referred to as in-
tegrity constraints) between features. The two most widely used integrity constraints are
[39]: requires-the presence of a given (set of) feature(s) requires the inclusion of another

10

Figure 5: Integration of Feature Model with Non-Functional Property Model

(set of) feature(s); and excludes-the presence of a given (set of) feature(s) requires the
exclusion of another (set of) feature(s). Batory [40] argued the need for more complex
integrity constraints and generalized the constraints into propositional formulas defined
over features. In our work we adopt Batory’s view over integrity constraints. In feature
model tree, features without any children called atomic (or leaf) features and features
which are decomposed into sub-feature(s) called non-atomic (or intermediate) features.

In feature oriented software product line, feature models are mainly used for represent-
ing functional variability between different products. Some researchers have extended the
feature model notation with non-functional properties to represent the non-functionality
aspect [5, 13]. Similarly, we extended the feature model with the notion of non-functional
properties which can be either qualitative or quantitative. In this model each feature can
be annotated with several non-functional properties and corresponding values of those
properties. We should note that our extension is similar to existing works [5, 13] and can
be easily rewritten by such notation [5, 13]. Figure 5 shows the extended feature model
representing non-functional properties as well as functional properties (i.e. features) and
their relationships.

Figure 6 shows non-functional properties employed in the on-line shopping product
line. Response time, cost, availability, and reliability are quantitative non-functional prop-
erties and customer satisfaction, international sale, and security are the qualitative non-
functional properties. In our approach, we assume that atomic features (i.e., leaf features)
in a feature model have concrete implementations. Non-atomic (i.e., non-leaf) features
are used for variability and composition relationships of the atomic features. Hence, non-
functional properties are defined for the leaf features. If an intermediate feature contains
implementations and non-functional properties, we create a mandatory child feature for
the intermediate feature and assign the non-functional properties to the child feature. Af-
ter identifying domain features, developing a feature model and implementing its atomic
features, we can then analyze the impact of features on non-functional properties and
annotate them with proper qualifier tags.

For qualitative non-functional properties such as security, international sale, based on
existing domain knowledge, the impact of each feature on non-functional properties can
be identified and proper qualifier tags can be assigned to each feature’s non-functional
properties. On the other hand, quantitative non-functional properties for the features

11

Figure 6: Integrated Feature Model with Non-Functional Properties

can be measured using a suitable metric and assigned to the features. We assume that
some techniques, like those proposed in [41], can be employed to measure non-functional
properties for each feature.

For example, as shown in Figure 6, feature Credit Card is annotated with low negative
security, high positive international sale, and medium positive customer satisfaction and
its estimated cost, response time, and availability are $600, 50ms, and 90%, respectively.

3.3. Stakeholders’ Requirements (Preferences and Constraints)

In this section we explain the other component of the configuration problem, i.e.
stakeholders’ requirements. More specifically, we provide more detailed explanation of the
non-functional requirements. We divide the non-functional requirements into preferences
(i.e. stakeholders’ priorities with respect to non-functional properties) and constraints
over non-functional properties.

Various stakeholders may have different priorities over non-functional properties. For
some stakeholders, a subset of non-functional properties may be more important and rel-
evant than the other non-functional properties. Moreover, in some situations, a conflict
may arise between requirements defined over non-functional properties that have an op-
posite behavior, in case of which the stakeholder needs to choose between the competing
options. One approach for specifying the priority between non-functional properties is
through formalizing their relative importance relations. Relative importance is defined as
follow [27].

Definition 3.2. (Relative Importance). Relative importance between non-functional
properties a and b is: a �α b if non-functional property a is more important than non-
functional property b with coefficient α.

12

Usually, the degree of importance of options (non-functional properties) is represented
using values 1, 3, 5, 7, and 9 corresponding to equality, slight value, strong value, very
strong and extreme value, respectively [34]. For example, relation Security �3 Perfor-
mance represents that security is slightly more important than performance. We refer to
the relative importance between non-functional properties as stakeholders’ preferences.
Prioritizing the stakeholders’ preferences, formalized in terms of relative importance of
non-functional properties, can have a dramatic impact on the design of the system.

Stakeholders may also define constraints over non-functional properties of a system.
For example, a stakeholder may define a constraint that an on-line shopping system has
to be at least medium secure and cost less than $1000. Thus, the final system should
not have any functionality (i.e., feature) that provides positive impact on security less
than the medium level. We assume that a product has some level of qualitative non-
functional property (e.g., medium security), if all of its features have at least that level of
non-functionality (i.e., all the features must have at least medium security).

4. Automated Feature Model Configuration

In this section, we explain the details of our proposed configuration approach which
helps application engineers select features based on their requirements. Our basic idea
is to employ planning techniques for solving the configuration problem. To this end,
we transform feature models into hierarchical task network formalisms and use a HTN
planner to automatically select proper features based on stakeholders’ requirements. We
also describe how non-functional properties can be optimized during the configuration
process, according to the needs of the stakeholders.

4.1. Computing Features Ranks Based on Stakeholders’ Preferences

Configuring a feature model based on the stakeholders’ requirements and preferences
usually means selecting features such that a feature model configuration satisfies the
stakeholders’ functional requirements and constraints and optimizes their preferences.
To optimize the configuration with respect to the preferences, feature ranks must be
computed based on their impact on the non-functional properties which may be of different
importance for the target stakeholders. Additionally, not only stakeholders’ preferences,
but also interdependency between non-functional requirements must be considered in
the computation of feature ranks. The proposed approach for computing features ranks
consists of two main stages: computing non-functional weights considering stakeholders’
preferences and interdependencis between non-functional requirements ; and computing the
ranks of features based on the assigned non-functional properties to features.

4.1.1. Computing Weights of Non-Functional Properties

To calculate the ranks of features based on relative importance of non-functional prop-
erties assigned to the features, we propose a technique which combines Analytical Hetwork
Process (AHP) proposed by Saaty [34] and Fuzzy Cognitive Map [18, 42]. The technique
consists of:

1. Calculating local weights of non-functional properties by employing AHP over stake-
holders preferences;

13

Figure 7: Non-functional properties prioritization

2. Computing the impact of non-functional properties by employing fuzzy cognitive
maps on interdependency relations between non-functional properties;

3. Computing the global weights of non-functional properties by integrating the local
weights and impacts of non-functional properties.

Computing Local weight of Non-functional Properties. As mentioned in Section 3.3, the
stakeholders’ preferences are in the form of relative importance over non-functional prop-
erties. After the stakeholders specify their preferences, RI matrix and RI matrix with
normalized values are created using AHP algorithm. Next, the weight of non-functional
properties is calculated based on eigenvalues.

As an example, suppose that a stakeholder defines the relative importance as shown in
Figure 7; then, RI matrix and RI matrix with normalized values are created (see Table 2
and Table 3). The final local weights of NFPs are shown in the last column of Table 3.

Table 2: Relative importance of non-functional properties.

Cost Security Performance Reliability Ease of use
Cost 1.00 0.33 0.20 0.33 3.00
Security 3.00 1.00 5.00 7.00 9.00
Performance 5.00 0.20 1.00 1.00 3.00
Reliability 3.00 0.14 1.00 1.00 5.00
Ease of use 0.33 0.11 0.33 0.20 1.00

Table 3: Normalized values of relative importance of non-functional properties.

Cost Security Performance Reliability Ease of use Sum importance(Z)
Cost 0.08 0.19 0.03 0.03 0.14 0.47 0.12
Security 0.24 0.56 0.66 0.73 0.43 2.63 0.66
Performance 0.41 0.11 0.13 0.10 0.14 0.90 0.22
Reliability 0.24 0.08 0.13 0.10 0.24 0.80 0.20
Ease of use 0.03 0.06 0.05 0.02 0.05 0.20 0.05

Computing the impacts of non-functional properties interdependencies. As we mentioned
in section 3.1, value related interdependencies are the most common dependency types

14

Figure 8: Non-functional properties value related interdependencies. (a)Graph Represen-
tation (b) Matrix Representation

between non-functional properties. According to this kind of dependency, an increase
or decrease in the value of a non-functional property may lead to increase or decrease
of another non-functional property. For example, increasing the value of security in the
system causes increase in the value of cost and decrease in the value of performance of
a system. Figure 8 shows the interdependency graph whose nodes are non-functional
properties and weighted edges are the influences between non-functional properties. The
weights are assigned by domain engineers in collaboration with domain experts.

Since non-functional requirements depend on each other and affect the other non-
functional requirements, the preferences on non-functional requirements cannot be the
only basis for selecting features [20]. Hence, interdependencies between non-functional
requirements must be considered in the configuration process. Similar to [21], we formulate
dependency graph as a a fuzzy cognitive map and apply proposed techniques in the fuzzy
cognitive map [18] to compute the overall influence of the non-functional properties on
the other non-functional properties.

In order to compute the overall influence of objects on each other, first the formula1

given in the definition 2.1 is applied until the state matrix coverage to a fixed point
situation (when state vector values do not change for successive iteration) or a limit state
cycle (the sequence of the state vector keeps repeating indefinitely) [21]. The final matrix
is called steady state matrix. Afterward, according to [21], the steady state matrix (V t+1)
is multiplied to a vector which shows the local weights of objects to compute the overall
influence of objects on the other objects in the system.

To compute the influence of non-functional properties on each other, we consider
that N is a set of non-functional properties and E shows the weights of non-functional
properties on each other in which:

• eij > 0 indicates that increase (decrease) in the value of non-functional property ni
leads to an increase (decrease) in the value of non-functional property nj.

• eij < 0 indicates that increase (decrease) in the value of non-functional property ni

1The formula is a basic formula in the fuzzy cognitive map to compute the state steady matrix. The
proofs and details of this formula can be found in [18].

15

leads to an decrease(increase) in the value of non-functional property nj.

• eij = 0 indicates no relationship between non-functional property ni and non-
functional property nj.

V 0 is the initial state of non-functional properties. Since we aim at computing the
impact of interdependencies, the initial state matrix is set to identity matrix(i.e. V 0 =
In×n). After calculating steady matrix V ∗, the matrix is normalized by dividing each
element in the matrix to the largest row sum of V ∗ [21].

Table 4: Normalized values of the non-functional properties dependency graph.

tanh(x) Security Performance Reliability cost Ease of use
Security -0.4391 0.0362 -0.2915 0.2332 0.0
Performance 0.2181 -0.2332 0.0362 -0.0291 0.0
Reliability -0.1295 0.0574 -0.4592 0.0072 0.0
cost 0.0 0.0 0.0 0.0 0.0
Ease of use 0.0 0.0 0.0 0.0 0.0

Now for computing the overall influence of non-functional properties(T), similar to [21],
we multiply the steady matrix (V t+1) to local the weights of non-functional properties
(Z).

T = V t × Z =

Security − 0.1558
Performance − 0.0318
Reliability − 0.0320
Cost 0.0463
Ease of use 0.0000

Computing global weight of NFPs. After computing the weight of non-functional prop-
erties (Z) using AHP and computing the influence of each non-functional property (E)
using fuzzy cognitive maps, we can compute the overall weights of non-functional prop-
erties based on the following formula [21].

W = Z + T

where W is final weights of non-functional properties; Z is normalized local weights com-
puted by AHP; and T is the overall influence of non-functional properties. The final local
weights of NFPs for the given example are as following:

W = Z + T =

Security 0.5042

Performance 0.1882
Reliability 0.0880
Cost 0.1663
Ease of use 0.0500

16

4.1.2. Utility Function for Calculating Features’ Rank

To calculate the rank of features, both qualitative and quantitative properties should
be taken into account. To consider qualitative non-functional properties in feature ranks,
they should be mapped to the real values. The first way is that, the stakeholders or
application engineers provide a mapping function from qualifier tags onto real values. For
example, for customer satisfaction, one can define the following mapping function.

McustomerSat.(QT) =

−1 High negative
−0.5 Medium negative
−0.25 Low negative
0.25 Low positive

0.50 Medium positive
1 High positive

The other way for calculating the corresponding real-numbers for the qualifier tags

of a qualitative non-functional property is to again use the AHP algorithm. In this way,
the stakeholders specify the relative importance between the qualifier tags of each non-
functional property and AHP calculates the rank of each qualifier tag. The detail of
calculating weight of options using AHP is explained in the Section 4.1.1. For example,
the stakeholder specifies that for the international sale property, High positive �3 Medium
positive, which means a feature with high positive impact on international sale is slightly
more important than the feature with medium positive on international sale. In both the
methods (i.e., both the mapping function and AHP), we assume the values are normalized
in the [−1,+1] range.

After defining the ranks of non-functional properties and the mapping function for
the qualitative non-functional properties, we describe the following utility function to
calculate the ranks of each feature based on an extension to [43]. The proposed utility
function calculates the rank of features based on their impact on non-functional properties
by considering the preferences of stakeholders formulated in terms of the weight of non-
functional properties.

Definition 4.1. (Utility function). Let us assume there are α quantitative NFPs to
be maximized, β quantitative non-functional properties to be minimized, and θ qualitative
non-functional properties whose impact needs to be maximized. The utility function for
feature f is defined as:

R(f) =
∑α

i=1wi ×
qi(f)−µi

σi
+

∑β
j=1wj × (1− qj(f)−µj

σj
)+∑θ

k=1wk ×Mk(QT (f))

where w is the weight of each non-functional property calculated by S-AHP such that 0 ≤
wi, wj, wk ≤ 1 and

∑α
i=1wi +

∑β
j=1wj +

∑θ
k=1wk = 1 and Mk(QT (f)) returns the real

number corresponding to quality tags of k-th non-functional property. µ and σ are the
average values and the standard deviation of the quantitative non-functional properties
for all atomic features in the feature model.

The overall rank of a product is calculated by aggregating the ranks of selected fea-
tures for the product. The aggregation function used for calculating the product rank

17

depends on the aggregation functions which exist over non-functional properties of a fea-
ture. As discussed in Section 3.1, some quantitative non-functional properties such as
response time are additive and the quality of a composition of features is computed by
adding up the quality of features [44][37][38]. The second type of aggregation functions
defined on quantitative non-functional properties is multiplication where the quality of
composition is calculated by multiplying the quality of features involved in the composi-
tion. The multiplication type can be converted into an additive type by computing the
logarithm values of non-functional values. For qualitative non-functional properties, a
qualifier tag assigned to a feature represents a qualitative impact of the feature on the
non-functional property. Considering the mapping function that maps the qualifier tags
into real numbers, we can calculate the overall impact of a composition of features by
adding the impacts of the features involved in the composition. Hence, the aggregation
function over the utility functions of features is an additive function and the overall rank
of a product is computed as R =

∑
fi∈P R(fi). In order to derive an optimal configuration

(product) P , we need to select the features, which maximize R(P).

4.2. Automated Feature Model Configuration Based on HTN planning

Having annotated a feature model with NFPs, the process for deriving a new prod-
uct starts by selecting and deselecting features based on the stakeholders’ requirements
reflected through desired features and preferences expressed in terms of relative impor-
tance between NFPs. The configuration problem is concerned with selecting features that
satisfy the functional requirements (i.e., the requested functionality) and constraints and
optimize the preferences.

To automate the configuration process, we define transformation rules to convert a
configuration problem to a planning problem. To do so, we develop transformation rules
to represent extended feature models in the HTN formalism. The transformation is done
in two steps: 1) generating an HTN domain model from a feature model, and 2) generating
a planning problem from a configuration problem.

During transformation we need to convert the maximization problem into a mini-
mization problem, because the SHOP2 planner, used in our implementation, works on
minimization only (Negating the ranks of features can do this).

4.2.1. Transforming Feature Model into HTN

Considering the analogy between tasks in HTN and features in a feature model, there
is a need to define task decompositions to reflect feature relations. The HTN method
element is used to define decomposition of tasks into sub-tasks or operators. A method
contains the parent task, a list of children, and a precondition. Here, we have two options
for decomposing a task into sub-tasks:

1. we can define different methods with a common parent task. In this case, an HTN
planner (i.e., SHOP2) for decomposing a task into sub-tasks selects just one method
for each plan. Hence, this option is suitable for mapping the XOR relation to HTN;

2. we can also define one method for a decomposition in which all children can be
considered a list of sub-tasks in the method. In this case, the HTN planner performs
the method if and only if the preconditions of all sub-tasks or operators are satisfied.
We can then use this option for defining AND-decomposition with mandatory child
features.

18

According to abovementioned, in HTN, a method does not support OR-decomposition
(i.e., selecting one or more tasks from sub-task list). Moreover, in HTN the concept
of optional tasks or operators is not defined; that is, in the sub-task list of a method,
we can have just mandatory features. In other words, OR group and optional features
cannot directly be transformed into HTN formalism. Hence, before transforming a feature
model into an HTN domain, a preprocessing step should be done to replace optional and
OR features. To this end, similar to [19] for optional goals, every optional feature fo is
replaced with a new feature fp which is decomposed into two alternative features fo and fd

where fd stands for a “dummy” feature (i.e., an operator without any effect) (Figure 9a).
Regarding OR-decomposition, every OR group in the feature model is converted into a
set of optional features and a mandatory feature (for) with AND relations between them
(Figure 9b). Feature for is added to ensure that at least one of the features in the OR
group is selected (more details are explained in the “Generating Tasks and Methods”
subsection). Consequently, an OR group can be easily transformed into HTN using a
method with sub-tasks containing “dummy” features.

Figure 9: The preprocessing step for transforming feature models into HTN domains: (a)
optional features (b) OR feature groups

After performing the above changes in the feature model, we transform the feature
model into an HTN domain using the following three types of transformation rules:

• domain predicate transformation;

• operator transformation;

• method and task transformation.

Generating Domain Predicates. In the HTN planning domain, methods and tasks
involve logical expressions which are the combination of logical atoms and logical con-
nectives. Logical atoms involve a predicate symbol plus a list of terms. These logical
expressions can be used as either precondition formulae or effect formulae. Based on
possible preconditions for selecting and decomposing features, we can identify possible
domain predicates.

In the feature model, we have two groups of preconditions including: 1) precondition
for checking integrity constraints (i.e., requires and excludes); and 2) preconditions for
checking the stakeholder’s constraints with respect to non-functional properties. To gen-
erate these preconditions, we need domain predicates for each quantitative NFPs, qualifier
tags of the qualitative NFPs, and atomic features in the feature model.

For example, the vsecnh and vsecph predicates are created for high negative and high
positive qualifier tags of the security non-functional property, respectively; and vcost pred-
icates is created for cost NFP. These predicates can be involved in the logical expressions

19

Q
u

a
lita

tiv
e

N
F

P

Domain Predicates for Qualifier Tags:

v\NFPQT1, vNFPQT2, …, vNFPQTm

F
e
a
tu

re
 M

o
d

e
l E

le
m

e
n
ts

Domain Predicates for Atomic Features:

vf1, vf2, …, vfn

Attainment Formula for Alternative Feature

Group:

ϕf = vf1 ⊕ vf2 ⊕ … ⊕ vfn

Attainment Formula for OR Feature Group:

ϕf = vf1 ∨ vf2 ∨ … ∨ vfn

Attainment Formula for AND Feature Group:

ϕf = vf1 ∧ vf2 ∧ … ∧ vfn

NFP

QT1

QTm

(b)

f1 f2

f

fn
. . .

. . .

f1 f2

f

fn
. . .

f1 f2

f

fn
. . .

f1 f2

f

fn
. . .

Domain Predicates:

vcc , vgo,vfn ,vms, ,vqs, ,vcp, ,vfe, ,vdhl

Attainment Formulas:

ϕcg = vcp ⊕ vfe ⊕ vdhl

ϕso = vcc ∧ ϕcg

(a)
Shipping Options Feature

Figure 10: Generating Domain Predicates.(a) transformation rules, (b) generated domain
predicates for Shipping Options feature.

to generate preconditions of methods and operator; using these preconditions we can check
whether a feature covers a required NFPs or not. Moreover, for features Credit Card and
Debit Card, we generate domain predicates vcc and vdc, respectively. For each non-atomic
feature, a propositional formula (called attainment formula [19]) is created according to
the features that exist in its sub-tree (Figure 10). For instance, in the on-line shopping
feature model, which is shown in Figure 6, the attainment formula for feature Courier
Gateway is ϕcg = vcp

⊕
vfe

⊕
vdhl, which shows alternative relation between Canada

Post, Fedex and DHL features. These formulae are later used as preconditions of the other
features in the feature model in order to investigate the integrity constraints (requires and
excludes relations among features).

Generating Operators. HTN operators represent the lowest level activities in the
domain. Hence, in process of feature model transformation, HTN operators can be gen-
erated from atomic (i.e., leaf) features in the feature model tree. Each atomic feature f
is transformed into an operator of and the rank of the feature calculated by the utility
function is transformed into value(of). A precondition is defined for each operator based
on the non-functional properties and integrity constraints defined over its corresponding

20

f1 f2

f

fn
. . . fi

. . .

NFP1(QTi), . . ., NFPk(QTj): 1..k qualitative

NFPk+1(v) . . ., NFPn(v) : k+1 … n quantitative

NFP annotation and rank for fi

Operators for atomic features:

of 1, of 2, . . ., of i , …, of n

Details of operator of i corresponding to feature fi

pre(of i) = vNFP1(QTi)∧ … ∧ vNFPk(QTj) ∧

(MaxNFPk+1 - NFPk+1(v) >0) ∧ . . . ∧ (MaxNFPn - NFPn(v) >0)

Eff(of i) = vf i, MaxNFPk+1 = MaxNFPk+1 - NFPk+1(v) , . . . ,

MaxNFPn = MaxNFPn - NFPn(v)

Value(of 2) = t

Rank(fi) = t

Global Constraints on quantitative NFPs

NFPk+1(v) = MaxNFPk+1 ,. . .,

NFPn = MaxNFPn

MaxCost = 3000$,

MaxResponse Time = 10s

operator ofd corresponding to fraud detection (fd) feature

pre(ofd) = vsecurityHighp ∧ vinternationalsaleLowP ∧

(MaxCost - $600 >0) ∧ (MaxResponseTime - 0.040 >0)

Eff(of i) = vfd, MaxCost = MaxCost - 600 ,

MaxResponseTime = MaxResponseTime - 0.040

Value(of 2) = 0.5

(b)

(a)

Figure 11: Translating Atomic features into Operators. (a) transformation rules (b) an
example of generated domain predicates for fraud detection.

feature. The preconditions are defined as logical AND expressions of:

1. domain predicates corresponding to qualifier tags of qualitative non-functional prop-
erties with which the feature is annotated;

2. an evaluation expression to check whether the feature is allowable to be selected or
not based on quantitative non-functional properties constraints;

3. a propositional formula which defines the selection constraints (i.e. integrity con-
straints) of the feature (see Figure 15).

Next, the domain predicate, which corresponds to feature fi (i.e., vf i) is added as an
effect of the operator ofi (i.e., eff(of i) = vf i). Whenever operator ofi is performed, its
corresponding domain predicate becomes true (i.e., vf i = true).

For handling quantitative non-functional property constraints, a logical expression
is created showing the maximum available value of each corresponding non-functional
property during the planning process. At the first, this value is set by the requested value
of stakeholders and added to the initial state of the planning problem. For example, if a
stakeholder has a limitation on cost (e.g. maximum $3000), we add a logical expression
“(MaxCost 3000)” to the initial state of the planning problem. Then, in the effect of each
operator, this value is updated based on the assigned non-functional property value to the
feature. For example, in Figure 11b feature fraud detection has cost NFP with value $600;
hence, after selecting this feature the maximum available cost should be reduced by 600.

21

Task: tf

One method mf for feature f

with

Tsk-mf = tf

Dec-mf = {of1, tf2,. . ., ofn }
(a)

f1 f2

f

fn
. . .

.

.

.

Payment

Option(po)
Order (oc)

Confirmation

Check out (co)

fpso

fd Shipping

Options

...
...

.

.

.

Task: tco

Method: mco

Tsk-mco = tco

Dec-mco = {tpo, toc, tpso }

(b)

Figure 12: Generating tasks and methods from And Decomposition. (a) transformation
rule, (b) example

Moreover, before selecting feature fraud detection we should check whether we have enough
available cost or not. To this end, we add logical expression like “(MaxCost − 600 > 0)”
to the precondition formula of feature fraud detection. The value of the maximum available
cost is updated by adding “(MaxCost = MaxCost − 98)” to the effect formula of
feature fraud detection.

Generating Tasks and Methods. Tasks in the HTN planning domain represent
high level activities which need to be decomposed into smaller tasks using a method.
A feature model also has a hierarchy structure in which features are decomposed into
sub-features. Therefore, every non-atomic feature f can be mapped into a task tf ; and
method(s) (mf) can be defined for different types of decomposition in feature model (i.e.,
AND, OR, and XOR). To create tasks corresponding to features, we use the pre-processed
feature model from which OR feature groups and optional features have been removed (c.f.
Figure 9). Based on the type of a feature group(i.e., XOR group or AND-decomposition),
we may define one or more methods. If a feature f is AND-decomposed into features
f1 to fn, we define one method mf which connects corresponding task tf to tasks or
operators corresponding to f1 to fn (Figure 12a). As shown in Figure 12a, Dec −mf is
generated which includes the list of tasks and operators corresponding to sub-features of
f . Figure 12b illustrates generated HTN formalisms for check out feature. tco denotes the
task corresponding to check out feature and Dec − mco denotes the task list of method
mco which contains tasks tpo, toc, and tpso which are corresponding HTN representations
for features payment option, order confirmation and shipping option, respectively.

For alternative feature groups with n sub-features (i.e., f = XOR(f1, f2, .., fn)), n
methods are defined with a common parent task tf corresponding to feature f . Each
method connects task tf to one operator ofi or task tfi corresponding to the sub-feature
fi of the parent feature f (see Figure 13a). For example, as shown in Figure 13b, for the
shipping gateway feature, a task tsg and three methods m1

sg, m
2
sg, and m3

sg corresponding

22

Task: tf

n Methods for task tf

Methods m1
f , m2

f , . . ., mi
f , . . ., mn

f

Details of method mi
f

Tsk- mi
f = tf

Dec- mi
f = {ofi}

(a)

Task: tsg

3 Methods for task tsg

Methods m1
sg , m2

sg, m
3
sg

Method m1
sg

Tsk- m1
sg = tsg Dec- m1

sg = {ocp }
Method m2

sg

Tsk- m2
sg = tsg Dec- m2

sg = {ofe}
Method m3

sg

Tsk- m3
sg = tsg Dec- mi

sg = {odhl }

(b)

f1 f2

f

fn
. . . fi

. . .

Shipping

Gateway(sg)

DHL
Canada

Post(cp)
Fedex(fe)

Figure 13: Generating tasks and methods from Alternative Decomposition. (a) transfor-
mation rule, (b) example

Task: tf

One method mf for feature f with

Tsk-mf = tf

Dec-mf = {tf1_o ,..., tfi_o , ..., tfn_o, of_or}

f1

f

fn
. . . fi

. . .

f1_o

f

fn_o
. . . fi_o

. . .

f1 fd fi fd fn fd

for

For i=1 to n transfer feature fi_o to task tfi_o

using alternative transformation rules

Generate operator of or corresponding to feature for

pre(of or) = vf1 ∨ ... ∨ vfi ∨ ... ∨ vfn

Eff(of i) = vf or

Value(of i) = 0

Pre-processing

Payment

Type(pt)

Credit

Card(cc)

Debit

Card(dc)
Cash(ca)

ca_o

pt

dc_occ_o

ca fd cc fd dc fd

pt_or

Task: tpt

One method mpt for feature payment type (pt)

Tsk-mpt = tpt

Dec-mf = {tca_o , tcc_o , tdc_o, tpt_or}

Transfer ca_o, cc_o, dc_o into corresponding

tasks using alternative rule

operator opt_or corresponding to feature pt_or

pre(opt_or) = vca ∨ vcc ∨ vdc

Eff(opt_or) = vpt_or

Value(opt_or) = 0

(a)

(b)

Figure 14: Generating tasks and methods from OR Decomposition. (a) transformation
rule, (b) example

23

In
te

rm
e
d

ia
te

F
e
a
tu

re
A

to
m

ic
 F

e
a
tu

re

(b)

Credit Card (cc) requires Fraud

Detection (fd) and Link Point(LP)

cc requires (fd ∧∧∧∧ lp)

pre(occ) = vsecuritylowN ∧ vinternationalsaleHighP ∧

(MaxCost - $600 >0) ∧

(MaxResponseTime - 0.050 >0)

∧ vfd ∧∧∧∧ vlp

fi requires Φi(f1, . . ., fn)

fi excludes Φi(f1, . . ., fn)

fi requires Φi(f1, . . ., fn)

fi excludes Φi(f1, . . ., fn)

pre-mfi = Pre-mfi ∧ Φi(vf1, . . ., vfn)

pre-mfi = Pre-mfi ∧ ¬Φi(vf1, . . ., vfn)

pre(ofi) = pre(ofi) ∧ Φi(vf1, . . ., vfn)

pre(ofi) = pre(ofi) ∧ ¬Φi(vf1, . . ., vfn)

Φ : boolean formula based on features

(a)

Figure 15: transformation for integrity constraints. (a) transformation rule, (b) example

to canada post, fedex, and DHL features are generated. Next, tasks lists Dec−m1
sg = ocp,

Dec−m2
sg = ofe, Dec−m3

sg = oDHL are produced which contain tasks corresponding to
Canada Post, Fedex and DHL sub-features.

Regarding OR feature groups, in the feature model configuration at least one of fea-
tures in the group must be selected if a parent feature is selected. For example, in
Figure 14a if feature f is selected, at least one of its sub-features (i.e., f1 to fn) must
be selected. To this end, we add a precondition for operator (ofor) which is a logical OR
expression of attainment formula of the features in the OR feature group (see Figure 14a).
Figure 14b depicts the generated HTN formalisms for the payment type feature.

Generating Preconditions from Integrity Constraints. methods and opera-
tors preconditions are the means to represent integrity constraints in the feature model.
If atomic feature f requires a set of features f1 to fn, expressed via boolean formula
φ(f1, ..., fn), precondition of operator of is extended with AND conjunction of φ(vf 1, ..., vfn).
If atomic feature f excludes a set of features f1 to fn, expressed via boolean formula
φ(f1, ..., fn), precondition of operator of is extended with conjunction of ¬φ(vf 1, ..., vfn).
Figure 15b shows change in the precondition of operator occ due to constraints: credit
card require fraud detection and link point. For intermediate features the precondition of
corresponding methods are updated.

4.2.2. Planning Process

After defining the planning domain, the feature model configuration problem is trans-
formed into the HTN planning problem. The transformation is done by considering the
constraints over the NFPs and setting their corresponding domain predicates as true to
form initial state. For example, if a stakeholder asks for at least medium security, and a
specific cost (e.g., $1000), the domain predicates vsecph = true and vsecpm = true and the
rest of qualifier tags are set to false; the logical atom “(cost1000)” is also added as an
initial state. Next, the set of required atomic features (F

′
A) and the root of the feature

24

Extended Feature
Modeling

Component

Stakeholders’
Preference Managing

Component

Configuration
Generator

Component

Configuration
Visualizer

Component

Figure 16: High level architecture of the Vis-fmp

model are translated into initial tasks of the planning problem.
The SHOP2 planner starts with the first task in the initial tasks, if the task is a

non-primitive task, the planner chooses an appropriate method and instantiates it to
decompose the task into sub-tasks; if the task is a primitive task, the planner chooses
an applicable operator and instantiates it to perform an action. A solution plan is found
if all constraints are satisfied, otherwise the planner backtracks and chooses the other
methods. Consequently, the planner tries all possible paths in the feature model tree and
returns the best features (defined as operators in the planning domain) in the feature
model. Then, based on the selected atomic features in the produced plan, intermediate
features are selected using a propagation algorithm in which all intermediate features are
selected if they have a selected sub-feature(s).

5. Tooling Support

Tools play an important role in both domain and application engineering phases.
Having an effective tooling support facilitates software developer tasks in those phases.
Although, researchers have already contributed in developing tooling support for defining,
managing, and configuring feature models [45][46], there is still the need for product
configuration tooling support [47]. Moreover, one common capability lacking in each of
these tools is the use of interaction and visualization techniques with respect to the feature
model configuration based on the non-functional properties. Hence, in our work we aimed
at developing a tool which:

1. provides a facility to integrate the feature model and non-functional properties;

2. facilitates and enhances the feature model configuration process by :

(a) automating the feature model configuration process based on non-functional
requirements;

(b) employing visualization and interaction techniques, which provides software
developers with clear and understandable view of the generated configuration.

For providing tooling support, we extended a well-known feature model plug-in (fmp) [46].
The fmp tool is an eclipse plug-in which supports editing and configuring feature models.

25

Figure 17: NFP model definition view

It provides very basic visualization and (i.e. it used indented list to show feature model)
interaction techniques, however, it provides a good facilities to define a feature model and
manage the variabilities. Moreover, the tool is accessible for academic researchers. Hence,
we consider fmp as a basis and extend it to support more functionalities such as integrating
feature model with non-functional properties and automating the configuration process.

Figure 16 illustrates the architecture of the tool and its components. In the following
sections we discuss different components of the tool in more detail including: 1) Ex-
tended feature modeling component, 2) stakeholders’ preferences managing component,
3) configuration generator component, and 4) configuration visualizer component.

5.1. Extended Feature Modeling Component

In order to generate the feature model configuration based on non-functional require-
ments and provide information about the non-functional properties of the final product,
the effect of each feature on the NFPs should be specified. Accordingly, the total value
of NFPs for the final product can be calculated based on the effect of selected features
on the NFPs. For example, if the cost of each feature in a feature model is specified, the
total cost of the product is calculated by summation of the selected features’ cost. To
this end, we extend the feature model in such a way that software developers can define
non-functional properties as well as functionalities in the feature model. In the developed
tool, as shown in Figure 17 a user can define the non-functional property model(i.e., all
possible non-functional properties in the domain and their characteristics such as type,
unit, aggregation function, default values, and so on). After defining the NFP model,

26

Figure 18: A snapshot of the view for managing stakeholders and their preferences

features can be annotated with corresponding NFPs and the value of each properties is
specified based on the features’ implementation.

5.2. Stakeholders’ Preferences Managing Component

In the configuration process, the application engineer captures the stakeholders’ func-
tional requirements including the required feature set, the preferences (i.e., the relative
importance of non-functional properties), and the constraints over NFPs. By applying
AHP, fuzzy cognitive map, and the utility function, which are implemented in the de-
veloped tool, the ranks of NFPs and features are computed, respectively. The developed
tool has facilities to define stakeholders and managing their preferences (See Figure 18).

5.3. Configuration Generator Component

This component transfers a feature model and requirements into planning domain and
problem. Next, in order to generate an optimal configuration, an efficient planner (i.e.
SHOP2) is employed, which uses a search-control strategy called ordered task decompo-
sition to perform reasoning on the HTN planning domain [24].

The SHOP2 planner – a domain independent HTN planner – is automatically executed
with its required inputs (i.e., HTN planning domain and HTN planning problem). The
output of the planner is a set of plans (i.e., sequences of operators for the given tasks),
which satisfy the initial conditions and have optimal value. The optimal configuration is
achieved by selecting the features corresponding to the operators in the optimal plan.

5.4. Configuration Visualizer Component

After generating the configurations using the SHOP2 planner, in addition to having
an ability to export the results, the results are shown to the stakeholders in a visual view
that highlights the selected features and shows the corresponding NFPs along with fea-
tures. Using the visual view, the stakeholders can navigate the configuration and perform
changes in the configuration. Figure 19 shows a snapshot of a generated configuration
in the visual view. The view not only assists software developers to comprehend the

27

Figure 19: The result of planner in the visual view

generated configurations better, but it lets users to manipulate the configuration and
create necessary changes. In the remainder of this section we discuss more about the
visualization and interaction techniques used in the tool.

To implement the tool, we used prefuse [48], a Java graphic library with different tree
and graph views. We used 2D tree-views as an initial representation and extended it for
our purposes (i.e., visualizing feature model models, NFPs, and configurations). In the
used tree, as a layout of this visualization, nodes represent the features of the feature
model and links show the composition and variability relations between features.

In information visualization, color is used to group the items and show more infor-
mation. The literature reviews showed that proper use of color can enhance and clarify
a presentation [49][50]. We used color to show the NFPs related to each feature along
with the feature. To this end, we assigned predefined colors to each NFPs. However,
software developers can interact with the tool and determine desired colors for the NFPs.
Having indicated colors corresponding to the NFPs (by the tool or software developers),
we apply the coloring on the features of the feature model for showing the NFPs with
which they were annotated. Moreover, when software developers select a NFP, Vis-fmp
unfolds the features and expands the tree to show all features having the selected NFP.
The visual view makes it easy for software developers to see which NFPs are covered with
the specific features; which features contain specific NFPs; or how the coverage of NFPs
is in the feature model.

In addition to the representation of feature models and their associated NFPs, other
visualization and interaction tasks are provided in the visual view including:

1. Overview : This technique includes zoomed out views of each data type to see the
entire collection along with an attached detail view [51]. In our case, user can see the

28

zoomed out view of a configured feature model with the detail of that configuration.
The detail view contains the total value of NFPs which are calculated based on the
selected features in a configured product.

2. Zooming : User can zoom in or out on the feature model in order to focus on the
specific part of it or view the entire feature model. Moreover, auto-zooming is used
to fit the tree to the screen after expanding.

3. Filtering : Vis-fmp provides two facilities for applying filtering on feature model
configuration tree. 1) Filter-level – by setting a filter-level in the feature model
tree, the tool unfolds all the features between the tree root and the indicated level;
and 2) Fisheye Tree Filter – using this option, software developers can explore the
feature model by unfolding sub-features of the features they are interested in. When
software developers select a feature for further exploration, Vis-fmp closes other
nodes in the same level in order to create more space to show the opened nodes. To
assist software developers for identifying features require further unfolding, the tool
shows the number of children of each feature along with their name.

4. Highlight : This technique is employed to highlight the features based on their states
(i.e., selected, deselected, or undecided features).

5. Detail on demand : In addition to configuration detail , detail of each feature is
shown including the general information about the feature and annotated NFPs
and their values.

6. Interactive Configuration: Software developer can interact with this view by clicking
on the features and changing their states (selected, deselected, or undecided). By
each change the system updates the detail view of a configuration.

6. Evaluation

To assess our technique and the corresponding tool Vis-fmp, we formulated the fol-
lowing research questions:

• RQ1 (Scalability): Can the approach configure feature models, in a reasonable
time, based on functional and non-functional requirements and preferences?

• RQ2 (Effectiveness): How effective is the approach in producing a feature model
configuration? RQ2-1: Does the approach generate reliable results for application
engineers? RQ2-2: What is the automation degree of the approach?

Our proposed approach mainly consists of two parts: computing feature ranks and the
feature model configuration using the HTN planning technique. The former consists of
analytical hierarchy process, fuzzy cognitive map, and utility functions whose execution
time is polynomial. Therefore, we only concentrate on exploring the execution time of
the planning technique for finding an optimal plan.

6.1. RQ1 (Scalability)

The purpose of this research question is to evaluate whether a feature model config-
uration can be performed in a reasonable amount of time. Hence, we conducted several
experiments to investigate this research question.

29

6.1.1. Objects of Study

To evaluate the configuration approach, we adapted Betty FM Generator2 which en-
ables the random generation of highly-customized feature models [52], to generate feature
models with different characteristics (e.g., number of features, probability of mandatory
and optional features, probability of OR and XOR groups, and percentage of integrity
constraints). We set the characteristics of generated feature models as: 50%, 25%, and
25% for the probability of being features in AND, OR, and XOR groups, respectively.
Moreover, 50% of features in AND groups are optional features. The branching factor is
also set to 10. These characteristics are backed up by most of surveyed feature models
[14][53] to reflect the characteristics of real feature models.

According to the results of an investigation on non-functional properties done by Ma-
iriza et al. [54], the number of relevant non-functional properties for different application
domains is at most 11. Moreover, Sommerville and Sawyer [55] highlighted that the effec-
tive number of non-functional properties is around six. Considering these two studies, we
defined 10 non-functional properties; six quantitative; and four qualitative non-functional
properties. Five qualifier tags were defined for each non-functional property.

6.1.2. Experimental Setup

For each feature model, we applied our tool to configure the feature model based
on randomly generated preferences and constraints. The evaluation was performed on a
computer with an Intel Core DUO 2.2 GHZ CPU, 4GB of RAM, Windows Vista, Java
Runtime Environment v5.0, SHOP2 v2.8, and SBCL (Steel Bank Common Lisp) v1.0.55.

To configure the feature models, we considered three independent variables includ-
ing number of features, number of constraints, and integrity constraints ; and time as a
dependent variable. For each feature model in the study, features were annotated with
quantitative non-functional properties and their values were produced by a random func-
tion with normal distribution. From a practical point of view, only some of the features
may have an impact on a qualitative NFP like security. Hence, to reflect this point,
features were randomly annotated with 0 to 4 qualitative non-functional properties with
normal distributions, that is, most of the features had one or two non-functional prop-
erties. Based on our analysis on SPLOT repository 3, which shows an average of 18%
of integrity constraints for real feature models [56], we considered two distributions of
integrity constraints: 10% and 20%. Finally, for the constraints over NFPs, four cases
were considered: no constraint and constraints over 2, 4, and 6 NFPs to reflect the effect
of various constraints over NFPs at run time.

6.1.3. Experimental Results

Figure 20 illustrates the average time for configuring feature models with different
numbers of features and percentages of integrity constraints. Our experiments reveal that,
for feature models with less than 200 features, the planner returns results in a feasible
time (around 16 second). The number of possible configurations exponentially grows by
increasing the number of features. That is, the search space for finding an optimal plan
by SHOP2 is boosted by increasing the size of feature models.

2Betty Feature Model Generator Version 1.1, http://www.isa.us.es/betty
3SPLOT - Software Product Line On-line Tools, http://www.splot-research.org

30

Generating optimal configurations based on stakeholders’ preferences and constraints
is NP-hard [5, 13, 11]. Hence, HTN planners similar to CSP solvers have problems
in finding an optimal solution for large-scale problems. Although the SHOP2 planner
applies some heuristics for improving the search time for finding an optimal plan (See ref.
[26]), due to explicit representations of states in the memory, SHOP2 runs into memory
problems for large domains. However, our experiments showed that for feature models
with less than 200 features, SHOP2 returns an optimal plan in a feasible time.

We also investigated the effect of constraints over NFPs on the running time of the
configuration technique proposed in Section 4. To this end, we run the tool with feature
models containing 100 features and 20% integrity constraints. The results are shown in
Figure 21. In all of these situations, the process of generating optimal configurations was
successful.

According to the experiment results, all three independent variables (i.e., number of
features, number of constraints, and integrity constraints) have an impact on running time.
As shown in Figure 20, for the fixed number of integrity constraints, increasing the number
of features raises the time for finding an optimal configuration, as increasing the number
of features expands the search space for finding an optimal plan. Also, with the same
number of features, increasing integrity constraints from 10% to 20% causes an increase
in the time for finding a plan, as the planner needs to check more pair combinations of
tasks and operators for optimizing a final plan.

Figure 20: Running time of the configuration technique for feature models with different
numbers of features and integrity constraints.

Finally, as illustrated in Figure 21, the number of constraints over NFPs has an impact
on increasing the time for configuration, even if the number of features and integrity
constraints is fixed. According to the results of the experiment, the impact of constraints
over NFPs is higher than the impact of integrity constraints.

Since generating an optimal feature model configuration based on stakeholders’ pref-
erences and constraints is NP-hard, it may need a long time to produce a configuration
for large feature models. Moreover, the manual configuration process is very hard and
time-consuming task for application engineers. Consequently, the reported time in the
Figure 20 and 21 can be considered as an acceptable time from the perspective of user.

31

Figure 21: Running time of configuration technique based on different number of con-
straints over NFPs.

6.2. RQ2 (Effectiveness)

This research question aims to investigate if application engineers can trust the results
returned by the planner and if the approach is beneficial for stakeholders to facilitate their
tasks.

6.2.1. RQ2-1 (Reliability of Results)

Regarding the reliability of the results, our approach is based on transforming feature
models into the HTN formalisms and applying SHOP2 to find an optimal configuration.
According to the framework proposed in [57], we can investigate if this representation can
be considered as a good surrogate for representing feature models and preferences. As
shown, we can represent feature model relations and constraints using existing constructs
in HTN such as method, tasks, and operator. Additionally, operators provide properties
to define a feature rank. The constraints over non-functional properties and integrity
constraints can be defined as preconditions of the operators and methods. Hence, we
can consider HTN to be a surrogate for feature models. With respect to the ontological
commitment, HTN views the world as a set of actions, tasks, constraints between them;
this makes it suitable for representing both feature models and constraints. With respect
to the planner, SHOP2 has been extensively applied in many projects [24] in government
laboratories (e.g., evacuation planning), industry (e.g., evaluating of enemy threats), and
academia (e.g., automated composition of Web services and goal model reasoning [19]),
which is an indication of the usefulness of the returned plans and their corresponding
configurations.

6.2.2. RQ2-2(Automation and Improvement)

With respect to facilitating the stakeholders tasks during the feature model configu-
ration, we emphasize on the effectiveness of our approach for automating configuration

32

process, improving the process of handling preferences and value related requirements
dependencies, and enhancing the interaction with generated configuration models.

Regarding the automation level, our approach requires only very few manual inter-
ventions. The main tasks of the application engineers are: 1) specifying the relative
importance of non-functional properties; 2) creating the mapping function for qualita-
tive non-functional properties; 3) indicating the interdependencies between non-functional
properties; and 4) specifying the atomic features that must be included based on the func-
tional requirements. Computing ranks of non-functional properties based on preferences
and requirements dependencies and finding optimal solution are fully automated in our
approach.

Additionally, application engineers have a large number of features to choose from
during the configuration process. The existing approaches [10, 11, 13] only select fea-
tures based on stakeholders’ priorities over requirements. However, due to the fact that
non-functional requirements depend on each other and affect the other non-functional
requirements, this can not be the only basis for selecting features [20]. Hence, interde-
pendencies between non-functional requirements must be considered in the configuration
process. On the other hand, value related dependencies increase the complexity of the
feature selection. We facilitate the selection of features based on priorities and depen-
dencies by formulating the knowledge about the dependencies in terms of fuzzy cognitive
maps. Also, combination of AHP, fuzzy cognitive map, utility theory provides a system-
atic approach for computing features ranks based on stakeholders requirements.

Finally, by applying visualization and interaction techniques for representing configu-
ration results(i.e. the configuration model and the total values of non-functional proper-
ties), we improve the comprehension and changeability of the feature model configuration.
In order to investigate the tool, we performed the controlled experiments, and visualiza-
tion was found to be beneficial for configuration understandability and changeability tasks.
The details of the experiment are reported in the technical report[7].

6.3. Threats to Validity

The validity of results of an experimental evaluation is always subject to different
threats including internal and external threats. In this section, we explore the major
threats to validity of our results.

The major concern in the internal validity is the confounding variables (i.e., variables
which are not considered as independent variables and might have impact on the depen-
dent variable). We prevented these kinds of threats by controlling confounding variables.
When we were investigating the impact of independent variables related to feature models
(e.g., size of feature models, and integrity constraints) on the running time, we controlled
impacts of the non-functional constraints(see figure 20). Similarly, we controlled the
feature models characteristics (see figure 21) when we investigating the impact of con-
straints over non-functional properties. Additionally, we considered a fixed distribution
of the variability relations in feature models as we only explored the size of feature models
and integrity constraints.

External validity investigates if the results of the experiments are generalizable. We
identify two main factors influencing the external validity of our experiments: the char-
acteristics of feature models and the number of non-functional properties. With respect
to the size of feature models, our investigation over SPLOT repository confirmed that

33

the sizes of generated models are aligned with the size of existing models in the SPLOT.
However, the limitation on the model size is due to planner (i.e. SHOP2) which we used.
In this regard, we aim at using another HTN planner (called HTNPLAN-P [25]) which
applies new heuristics and can support larger planning space problems. The distributions
of integrity constraints and variability relations in the feature models backed up by our
analysis over SPLOT repository and existing studies [14][53] on the characteristics of real
feature models. Finally, regarding the number of non-functional properties, the existing
studies by Mairiza et al. [54] and Sommerville and Sawyer [55] showed that the number
of relevant non-functional properties for different application domains is at most 11 and
the effective number of non-functional properties is around six.

7. Related Work on Feature Model Configuration

The configuration process has been a center of interest in software product line research
community for a long time. Many research papers have been proposed to guide application
engineers for configuring feature models as well as automate parts of the configuration
process and optimize non-functional properties in the product derivation. In this section,
first we mention the existing feature configuration approaches and then compare our
approach with them according to a set of criteria. Additionally, we listed a set of similar
techniques in requirements engineering domain where decision making algorithms were
used.

7.1. Feature Model Configuration Approaches

The first attempt, important for our research, has been done by Czarnecki et al. [9]
who introduced a stage configuration process. In that work, a number of specialization
steps are introduced to remove variability from feature models. In each specialization
step, some parts of the feature model variability are resolved. These steps include: refining
feature cardinality, refining group cardinality, removing a sub-feature from a feature group,
selecting a feature from a feature group, assigning an attribute value, and cloning a solitary
sub-feature. In order to help application engineers to derive a valid configuration using
this approach, tooling support and validation approaches are provided by Czanrecki et al.
[9]

Second group of related works focuses on automating configuration process and consid-
ers functional and non-functional requirements of the target application when configuring
the feature model. Benavides et al. [5] developed an automated reasoning technique over
extended feature models (i.e., feature models with extra-functional features). Using their
extension, they were able to assign extra-functionalities such as price range or time range
to features. The purpose of their technique is to find a product of a model based on
given constraints. Their technique is based on mapping feature models to Constraint
Satisfaction Problems (CSP)s and use of CSP solvers [5][10].

Batory et al. [40] integrated feature models with grammars and propositional formulas.
Moreover, they used Logic Truth Maintenance Systems (LTMS) and satisfiability solver
(SAT), in feature models. The SAT techniques are used for checking the violation of the
feature model constraints during the configuration process. Therefore, the SAT techniques
can be used as peripheral means during configuration process.

34

Siegmund et al. [13] have developed a technique called SPL conqueror which extends
feature models with non-functional properties and applies CSP to find an optimal con-
figuration based on user defined objective functions. In their technique, a number of
preprocessing steps are taken to reduce the search space for optimal configuration. Their
approach differs from Benavidas’ approach on types of non-functional properties they
manage. Siegmund et al. considered both qualitative and quantitative non-functional
properties while Benavidas et al. concentrate on quantitative non-functional properties.

White et al. [11] used a Filtered Cartesian Flattening (FCF) method to select optimal
feature sets according to the resource constraints. In their method, they map the feature
selection problem to a multi-dimensional multi-choice knapsack problem (MMKP) [11].
By applying the existing MMKP approximation algorithms, they provide partially opti-
mal feature configurations in polynomial time. Filtered Cartesian Flattening consists of
different steps including: 1) producing a number of independent MMKP sets (i.e. cutting
the FM diagram); 2) converting feature model parts to XOR relations because MMKP
just supports XOR relation; 3) flattening with Filtered Cartesian Products; 4) handling
Cross-tree Constraints; 5) MMKP Approximation. Although their approach is successful
for large feature models, they have a limitation on the number of resources and the amount
of resources consumed by features. Moreover, for performing their approach, multi-core
processors and parallel computing are required.

White et al. [15] also formalize the stage configuration and introduce a Multi-step Soft-
ware Configuration probLEm solver (MUSCLE) in which they provide a formal model for
multi-step configuration and map it to CSPs. Hence, CSP solvers were used to deter-
mine the path from the start of the configuration to the desired final configuration. They
consider non-functional properties such as cost constraints between two configurations
and formalize them as CSP constraints. Their approach is only applicable for multi-stage
configuration and focuses on creating new configurations from an already derived product
configuration.

Mendonca et al. [58] proposed a translation of basic feature models into proposi-
tional logics and used Binary Decision Diagrams (BDD) as the reasoning system. Their
approach concentrates on validating feature models and does not offer a facility for au-
tomated configuration. It can be used in a multi-stage configuration process to validate
the results of every specialization of a feature model (called interactive configuration).
An interactive configuration only checks the structural constraints of feature models and
does not consider preferences and non-functional requirements of stakeholders. A tool is
implemented to support software developers in validation.

Guo et al. also addressed the challenge of optimizing feature model configuration in
their work [14]. They proposed an approach in which Genetic Algorithms are employed
to optimize Feature Selection (GAFES). In the GAFES algorithm the first population is
created by randomly generating a string with n binary digits (which represents a chromo-
some so that a value of 1 and 0 for a digit indicates the selected and deselected feature,
respectively). Next, the arbitrary feature selection is transformed into a valid feature
selection by applying FesTransform (Feature selection Transform) algorithm which is a
key component of their approach. The results of their empirical study show that their
proposed algorithm can achieve an average of 86− 90% optimality for feature selection.

Zhang et al. [59] proposed an AHP based method for quality aware configuration of

35

feature models. They considered quality attributes as features in feature models and
defined interdependency relation between functional features and non-functional features.
Having formed the groups of functional features (also called contributors) for each quality
attribute based on interdependency relations, they employed Analytical Hierarchy Process
(AHP) to calculate the relative importance of contributors of each quality attribute.
The overall impact of a quality attribute is achieved by forming distinct subsets of the
feature (contributor) set based on feature model relations and aggregating the values of
valid selections from these subsets. Later the values of quality attributes are utilized for
modifying the configuration and filtering out features in the feature model.

7.2. Comparing the Approaches

To systematically compare the proposed approach with other existing approaches, we
devise a number of criteria that need to be supported by configuration techniques in
order to be effective for application engineering. To define the criteria for systematic
comparisons, similar to [60], we applied bottom-up and top-down approaches. Follow-
ing the bottom-up approach, we identified various important aspects of feature model
configuration in the description of existing related works and added them to the criteria
set. Following the top-down approach, we used an existing survey on configuration of
software product lines. We do not claim that this criteria set is complete, but it provides
appropriate aspects to compare our work with related works. These criteria include: 1)
Managing functional and non-functional requirements; 2) Modeling stakeholders’ pref-
erences; 3) Optimization; 4) Considering stakeholder constraints; 5) Providing tooling
support; 6) Automating configuration process; 7) Ensuring the feature model constraints;
8) Effective representation of results to stakeholders; 9) Time efficiency. In the following
subsections, we review existing configuration techniques and compare them with respect
to the above criteria. Table 5 summarizes the results of the comparison of the approaches
based on the criteria identified earlier.

Managing functional and non-functional properties. Stage configuration [9]
and the work in [58] provide no guideline for configuration based on non-functional prop-
erties. FCF [11], MUSCLE [15], and the technique from [5] support selection of features
only based on quantitative non-functional requirements. Our approach and SPL con-
queror [13] guarantee the selection of features based on functional and non-functional
properties. Zhang et al. [59] configure feature models based on functional and qualitative
non-functional requirements. Furthermore, only SPL conqueror [13] and our approach
consider both qualitative and quantitative non-functional properties. Finally, our ap-
proach is the only technique which handles the interdependencies between non-functional
properties.

Modeling stakeholders’ preferences. CSP based approaches [13][15], FCF [11],
and GAFES [14] model stakeholders’ preferences in terms of user defined objective func-
tions. Considering the diversity of non-functional properties, it is not easy for stakeholders
to define an objective function, which reflects their preferences. However, our approach
provides a systematic and easy technique to capture stakeholders’ preference in terms
of relative importance and defines the objective function using these inputs. To capture
stakeholders’ preferences we utilize the AHP algorithm which is used in many applications;
and it is simple enough, so that stakeholders can use it without any formal training [61].
Similar to our work, Zhang et al. [59] capture preferences in terms of relative importance

36

and apply AHP algorithm to compute overall impact on quality attributes. However,
the number of pairwise comparison in their approach depends on the number of features
while in our approach it depends on the number of non-functional properties. Stage
configuration does not provide any support for stakeholders’ preferences.

Considering stakeholders’ constraints. Stakeholders may define constraints based
on the resources that are available to them and level of non-functionality. These con-
straints need to be considered and only a configuration which satisfies the stakeholders’
constraints and optimizes the preferences must be produced. FCF [11], GAFES [14], CSP
based approaches [5][13][15], and Zhang et al. [59] support constraints on the stakeholders’
resources. On the other hand, our approach handles constraints over both qualitative and
quantitative non-functional properties.

Optimization and time efficiency. Generating optimal configurations based on the
stakeholders’ preferences and constraints is NP-hard. All CSP approaches [5][13][15] and
our approach ensure optimality of the solution, but they require high computation time.
To compare the running time of our approach with CSP approaches, the running time of
CSP based and planning based approaches depends on the solvers which are available in
the domains and heuristics that these solvers use for finding solution. According to the
size of feature models solved by these techniques, shown in table 5, the HTN based planner
performs better than the CSP solver used in FAMA [5]. Additionally, using the planning
based approach, we are able of handling qualitative constraints which is not possible in
the CSP based approaches. The FCF [11] and GAFES [14] provide partially optimal
solutions in a polynomial time. Zhang et al. [59] modify existing configurations to satisfy
the quality requirements of stakeholders, but do not produce an optimal configuration.
Stage configuration and the work in [58] do not support optimization of the stakeholders’
requirements.

Tooling support and automation. All the approaches, except FCF, provide tooling
support. Stage configuration provides tooling support, but little automation for feature
model configuration is provided. With respect to the usability, our approach and SPL
conqueror [13] apply visualization techniques to present the configuration results to the
stakeholders. Our tool shows the quality level of selected features along with them in the
same view (Figure 19). Other tools provide basics views for representing configurations
to the stakeholders.

Feature model integrity constraints. All approaches, except [5] ensure the satis-
faction of integrity constraints (i.e., requires and excludes relations) during configuration.

In conclusion, our approach covers all criteria and the only limitation of the approach
in comparison with other approaches is the completion time. Due to the NP-hard nature of
the feature model configuration problem, among the existing feature model configuration
approaches, some have limited scale for generating optimal feature model configurations
(e.g., the approach in [5] and our approach) and some require special hardware (e.g., FCF
by White et al. [11]) or return partial optimal configurations (e.g., GAFES by Guo et
al. [14]). For very large feature models finding an optimal configuration is not feasible
because the number of possible configurations has exponential growth. For example, for
feature models with 1, 000 number of variation points, 21,000 configurations must be eval-
uated. Although the AI approaches like planning techniques apply heuristics to improve
completion time for large problem sizes, we still have restrictions over the size of feature

37

models.

Table 5: Comparative analysis of related works ((+) criterion met, (-) criterion not met,
(+/-) criterion partially met).

XXXXXXXXXXXXApproach
Criteria

F
R

/N
F

R

P
re

fe
re

n
ce

O
p
ti

m
iz

at
io

n

C
on

st
ra

in
ts

A
u
to

m
at

io
n

In
te

gr
it

y
co

n
st

ra
in

ts

T
o
ol

in
g

su
p
p

or
t

T
im

e
effi

ci
en

cy

Stage Configuration
Czarnecki et al. [9]

+/- - - - - + + - (no result was re-
ported)

CSP - Benavides et al.
[5][10]

+/- - + + + - + - (up to 52 features,
optimal results)

FCF White et al. [11] +/- +/- +/- + + + - + (up to 10,000 fea-
tures, results with
90% optimality)

SPL Conqueror Sieg-
mund et al. [13]

+ +/- + + + + + +/- (not exactly men-
tioned the number of
feature)

MUSCLE White et al.
[15]

+/- +/- + + + + - +/- (up to 500 fea-
tures)

Mendonca et al. [58] +/- - - - + + + + (up to 2,000 fea-
tures)

GAFES Guo et al. [14] +/- +/- +/- + + + + + (up to 10,000 fea-
tures, results with 86-
90% optimality)

Zhang et al. [59] + + +/- + +/- + + - (no result was re-
ported)

Our approach + + + + + + + +/- (up to 200 fea-
tures, optimal results)

7.3. Prioritization in Requirements Engineering

In the requirements engineering several techniques including the AHP [62, 63], bubble
sort, Hierarchical Cumulative Voting(HCV) [64], and Satisfiability Modulo Theory [65]
have been proposed to handle requirements prioritization. Among these prioritization
techniques AHP is widely referenced and the result of an evaluation of six techniques
by Karlsson et al. [33] revealed that AHP is the most promising technique in terms of
providing trustworthy results. Liaskos et al. [62] and Vinay et al. [66] applied AHP
to quantitatively assess contribution relationships in goal models based on stakeholder
inputs. By the increase of requirements, the number of required pairwise comparisons
is dramatically grown in AHP based approaches. To tackle this problem, Harker [63]

38

proposed a method incomplete AHP (IAHP) which minimizes the number of selected
pairs and maintains a good trade-off between the precision of the final solution and the
effort of the stakeholders.

Similar to AHP, Bubble sort and binary search approaches perform pairwise com-
parison to decide the rank of a requirement based on its relative position to the other
requirements in the set. Bubble sort and binary search also suffer from high number of
comparisons.

HCV [64] uses an absolute measure, represented in terms of votes, instead of relative
measure to represent the preferences and requirements with top votes are prioritized higher
by the approach. HCV computes the total priorities of a requirements set by adding up
the ranks of all the requirements.

SMT based approach [65] applies pairwise comparison to capture relative importance
of the requirements, then formulates the prioritization as a Max-SAT problem and uses
a SMT solver to prioritize the requirements.

8. Conclusion & FutureWork

We target an open research question in software product lines: how to select a suitable
set of features from a feature model based on both the stakeholders’ functional and non-
functional requirements and preferences? We investigated the notion of non-functional
properties in software product lines and developed a non-functional model in which two
main categories of non-functional properties are considered (i.e., quantitative and qual-
itative NFPs). Feature models were extended with the notion of NFPs. We mapped
features and relations among features in the feature model into the components of the
HTN planning domain (i.e., operator, task, and method). This transformation covers all
relations in the feature model including: AND, OR, and XOR decompositions as well
as require and exclude relations among features. We also formalized the configuration
problem as an HTN planning problem and employed an existing HTN planner (SHOP2)
to generate an optimal configuration based on the stakeholder preferences and constraints
over non-functional properties.

The proposed feature model configuration approach has the following improvements
in comparison with other existing approaches:

1) In addition to functional requirements, constraints over both qualitative and quan-
titative non-functional properties are taken into account; 2) we capture the preferences
of stakeholders in terms of relative importance between non-functional properties which
is an easy way for stakeholders to specify; 3) we calculate the weight of NFPs by utiliz-
ing AHP and FCM; 4) we introduce the concept of artificial intelligence planning in the
context of feature model configuration and provide the transformation rules to convert
feature models into Hierarchical Task Network; 5) we developed a tool which automates
feature model configuration process and provides several visualization and interaction
techniques to facilitate the configuration process; 6) the experimental results revealed
that our approach can be useful because: i) it provides an optimal configuration based
on stakeholders preferences and constraints over non-functional properties; and ii) it has
a good performance on feature models with less than 200 features.

Finally, the proposed approach improves our earlier work in [1] by considering more
complex relations in the non-functional model (i.e. dependencies between non-functional

39

properties), and providing complete tooling support with a new sets of interaction and
visualization techniques such as zooming, filtering, and interactive configuration.

This work can be extended in several directions:

• For larger feature models, the approach is computational demanding, similar to
CSP-based approaches [5, 13]. Another HTN planner (called HTNPLAN-P [25])
applies new heuristics and can support larger planning space problems, so that
the practical performance time can be much improved as shown in [25]. Since
HTNPLAN-P is not yet publicly available, we could not test our work on larger
feature models. In the future work, HTNPLAN-P can be employed for finding
optimal plans which will improve scalability of our approach.

• Other planning techniques such as PDDL [67](i.e., Planning Domain Definition Lan-
guage) based approach can be employed. A wide range of planning engines support
PDDL; if the feature model can be successfully transformed into PDDL, we can
utilize more powerful planning engines. Moreover, PDDL supports optimization so
that the specific metrics (i.e., NFPs in our context) can be minimized or maximized
during plan generation.

• According to our initial study, effective visualization techniques improve the con-
figuration process and ease the task for application engineers. Therefore, more
interaction and visualization techniques can be applied on the tool and an exper-
imental study can be done in an industrial environment to examine the effects of
the applied techniques. In the current approach, we assume that the importance of
non-functional properties is the same for all of the features of a given feature model,
which may not be the case in some scenarios. Therefore, a possible work can include
the handling of local importance of non-functional properties for different parts of
feature models.

References

[1] S. Soltani, M. Asadi, D. Gasevic, M. Hatala, E. Bagheri, Automated planning for
feature model configuration based on functional and non-functional requirements, in:
SPLC (1), 2012, pp. 56–65.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-oriented
domain analysis (foda) feasibility study, Tech. rep., Carnegie-Mellon University Soft-
ware Engineering Institute (November 1990).

[3] J. Bosch, Design and use of software architectures - adopting and evolving a product-
line approach., Addison-Wesley, 2000.

[4] F. J. v. d. Linden, K. Schmid, E. Rommes, Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering, Springer-Verlag New York,
Inc., 2007.

[5] D. Benavides, P. T. Martn-Arroyo, A. R. Corts, Automated reasoning on feature
models., in: O. Pastor, J. F. e Cunha (Eds.), CAiSE, Vol. 3520 of Lecture Notes in
Computer Science, Springer, 2005, pp. 491–503.

40

[6] E. Bagheri, M. Asadi, D. Gasevic, S. Soltani, Stratified analytic hierarchy process:
Prioritization and selection of software features., in: J. Bosch, J. Lee (Eds.), SPLC,
Vol. 6287 of Lecture Notes in Computer Science, Springer, 2010, pp. 300–315.

[7] S. Soltani, M. Asadi, D. Gasevic, M. Hatala, The effects of visualization and in-
teraction techniques on feature model configuration, Tech. rep., School of Intractive
Art and Technology, SFU, https://files.semtech.athabascau.ca/public/TRs

(2011).

[8] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, J. N. Dag, An industrial survey of
requirements interdependencies in software product release plannin, in: Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering, RE ’01,
IEEE Computer Society, Washington, DC, USA, 2001, pp. 84–.

[9] K. Czarnecki, S. Helsen, U. W. Eisenecker, Staged configuration through specializa-
tion and multilevel configuration of feature models., Software Process: Improvement
and Practice 10 (2) (2005) 143–169.

[10] D. Benavides, S. Segura, P. T. Martn-Arroyo, A. R. Corts, Using java csp solvers
in the automated analyses of feature models., in: R. Lmmel, J. Saraiva, J. Visser
(Eds.), GTTSE, Vol. 4143 of Lecture Notes in Computer Science, Springer, 2006, pp.
399–408.

[11] J. White, B. Dougherty, D. C. Schmidt, Selecting highly optimal architectural feature
sets with filtered cartesian flattening, Journal of Systems and Software 82 (8) (2009)
1268–1284. doi:10.1016/j.jss.2009.02.011.

[12] E. Bagheri, T. D. Noia, D. Gasevic, A. Ragone, Formalizing interactive staged feature
model configuration, Journal of Software: Evolution and Process 24 (4) (2012) 375–
400. doi:10.1002/smr.534.
URL http://dx.doi.org/10.1002/smr.534

[13] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, G. Saake, SPL
Conqueror: Toward optimization of non-functional properties in software product
lines, Software Quality Journal (2011) 1–31doi:10.1007/s11219-011-9152-9.

[14] J. Guo, J. White, G. Wang, J. Li, Y. Wang, A genetic algorithm for optimized feature
selection with resource constraints in software product lines, Journal of Systems and
Software 84 (12) (2011) 2208–2221. doi:10.1016/j.jss.2011.06.026.

[15] J. White, B. Dougherty, D. C. Schmidt, D. Benavides, Automated reasoning for
multi-step feature model configuration problems, in: Proceedings of the 13th Inter-
national Software Product Line Conference, SPLC ’09, IEEE, 2009, pp. 11–20.

[16] L. Olsina, G. Lafuente, G. Rossi, Specifying quality characteristics and attributes for
websites, in: Web Engineering, Software Engineering and Web Application Develop-
ment, Springer-Verlag, London, UK, UK, 2001, pp. 266–278.

[17] T. Saaty, The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allo-
cation, McGraw-Hill, 1980.

41

[18] B. Kosko, Fuzzy cognitive maps, International Journal of Man-Machine Studies 24 (1)
(1986) 65 – 75. doi:10.1016/S0020-7373(86)80040-2.

[19] S. Liaskos, S. A. McIlraith, S. Sohrabi, J. Mylopoulos, Integrating preferences into
goal models for requirements engineering, in: Proceedings of the 2010 18th IEEE In-
ternational Requirements Engineering Conference, RE ’10, IEEE Computer Society,
2010, pp. 135–144. doi:10.1109/RE.2010.26.

[20] J. Karlsson, S. Olsson, K. Ryan, Improved practical support for large-
scale requirements prioritising, Requirements Engineering 2 (1997) 51–60.
doi:10.1007/BF02802897.

[21] R. Yu, G.-H. Tzeng, A soft computing method for multi-criteria decision making with
dependence and feedback, Applied Mathematics and Computation 180 (1) (2006) 63
– 75. doi:10.1016/j.amc.2005.11.163.

[22] R. Taber, Knowledge processing with fuzzy cognitive maps, Expert Systems with
Applications 2 (1) (1991) 83 – 87. doi:10.1016/0957-4174(91)90136-3.

[23] M. León, C. Rodriguez, M. M. Garćıa, R. Bello, K. Vanhoof, Fuzzy cognitive maps
for modeling complex systems, in: Proceedings of the 9th Mexican international
conference on Advances in artificial intelligence: Part I, MICAI’10, Springer-Verlag,
Berlin, Heidelberg, 2010, pp. 166–174.

[24] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Munoz-Avila, J. W. Murdock, D. Wu,
F. Yaman, Applications of shop and shop2, IEEE Intelligent Systems 20 (2) (2005)
34–41. doi:10.1109/MIS.2005.20.

[25] S. Sohrabi, J. A. Baier, S. A. McIlraith, Htn planning with preferences, in: Pro-
ceedings of the 21st international jont conference on Artifical intelligence, IJCAI’09,
Morgan Kaufmann Publishers Inc., 2009, pp. 1790–1797.

[26] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, F. Yaman, Shop2: An htn
planning system, Journal of Artificial Intelligence Research 20 (2003) 379–404.

[27] I. Ognjanovic, D. Gašević, E. Bagheri, M. Asadi, Conditional preferences in software
stakeholders’ judgments, in: Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, ACM, 2011, pp. 683–690. doi:10.1145/1982185.1982335.

[28] R. Berntsson Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni,
R. Feldt, Quality requirements in industrial practice—an extended inter-
view study at eleven companies, IEEE Trans. Softw. Eng. 38 (4) (2012) 923–935.
doi:10.1109/TSE.2011.47.

[29] S. Sohrabi, J. A. Baier, S. A. McIlraith, Htn planning with preferences, in: Pro-
ceedings of the 21st international jont conference on Artifical intelligence, IJCAI’09,
Morgan Kaufmann Publishers Inc., 2009, pp. 1790–1797.

[30] P. C. Fishburn, Additive utilities with incomplete product set: Applications to pri-
orities and assignments, Operations Research 15 (1967) 537–542.

42

[31] D. W. Miller, M. K. Starr, Executive decisions and operations research [by] David
W. Miller and Martin K. Starr, 2nd Edition, Prentice-Hall Englewood Cliffs, N.J.,,
1969.

[32] E. Triantaphyllou, B. Shu, S. Nieto Sanchez, T. Ray, Multi-Criteria Decision Making:
An Operations Research Approach, Vol. 15, 1999, pp. 175–186.

[33] J. Karlsson, C. Wohlin, B. Regnell, An evaluation of methods for prioritizing software
requirements, Information and Software Technology 39 (1415) (1998) 939 – 947.
doi:http://dx.doi.org/10.1016/S0950-5849(97)00053-0.

[34] T. L. Saaty, How to make a decision: The analytic hierarchy process, European
Journal of Operational Research 48 (1) (1990) 9–26.

[35] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, K. Lauenroth, Quality-
aware analysis in product line engineering with the orthogonal variability model,
Software Quality Control 20 (3-4) (2012) 519–565.

[36] H. Espinoza, H. Dubois, S. Gérard, J. Medina, D. C. Petriu, M. Woodside, Anno-
tating uml models with non-functional properties for quantitative analysis, in: Pro-
ceedings of the 2005 international conference on Satellite Events at the MoDELS,
MoDELS’05, Springer-Verlag, 2006, pp. 79–90. doi:10.1007/116634309.

[37] T. Yu, K.-J. Lin, Service selection algorithms for web services with end-to-end qos con-
straints, in: Proceedings of the IEEE International Conference on E-Commerce Technol-
ogy, CEC ’04, IEEE Computer Society, 2004, pp. 129–136.

[38] B. Mohabbati, D. Gasevic, M. Hatala, M. Asadi, E. Bagheri, M. Boskovic, A quality
aggregation model for service-oriented software product lines based on variability and
composition patterns, in: The 9th International Conference on Service Oriented Comput-
ing (ICSOC 2011), Springer, 2011, pp. 436–451.

[39] K. Czarnecki, E. Ulrich, Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[40] D. Batory, Feature models, grammars, and propositional formulas., in: J. H. Obbink,
K. Pohl (Eds.), SPLC, Vol. 3714 of Lecture Notes in Computer Science, Springer, 2005,
pp. 7–20.

[41] N. Siegmund, M. Rosenmuller, C. Kastner, P. G. Giarrusso, S. Apel, S. S. Kolesnikov,
Scalable prediction of non-functional properties in software product lines, in: Proceed-
ings of the 2011 15th International Software Product Line Conference, SPLC ’11, IEEE
Computer Society, 2011, pp. 160–169. doi:10.1109/SPLC.2011.20.

[42] B. Kosko, Hidden patterns in combined and adaptive knowledge networks, Int. J. Approx.
Reasoning 2 (4) (1988) 377–393. doi:10.1016/0888-613X(88)90111-9.

[43] T. Yu, K.-J. Lin, Service selection algorithms for composing complex services
with multiple qos constraints, in: Proceedings of the Third international confer-
ence on Service-Oriented Computing, ICSOC’05, Springer-Verlag, 2005, pp. 130–143.
doi:10.1007/1159614111.

43

[44] F. Rosenberg, P. Celikovic, A. Michlmayr, P. Leitner, S. Dustdar, An end-to-end ap-
proach for qos-aware service composition, in: Proceedings of the 13th IEEE International
Conference on Enterprise Distributed Object Computing, EDOC’09, IEEE Press, 2009,
pp. 128–137.

[45] Variant management with pure:: variants., Tech. rep., Pure-systems GmbH (2003).
URL http://www.pure-systems.com

[46] K. Czarnecki, P. Kim, Cardinality-Based Feature Modeling and Constraints: A Progress
Report, in: Proceedings of the International Workshop on Software Factories at OOPSLA
2005, ACM, 2005.

[47] R. Rabiser, P. Grünbacher, D. Dhungana, Requirements for product derivation support:
Results from a systematic literature review and an expert survey, Information and Soft-
ware Technology 52 (3) (2010) 324–346. doi:10.1016/j.infsof.2009.11.001.

[48] J. Heer, S. K. Card, J. A. Landay, prefuse: a toolkit for interactive information visualiza-
tion, in: Proceedings of the SIGCHI Conference on Human factors in computing systems,
CHI ’05, ACM, 2005, pp. 421–430. doi:10.1145/1054972.1055031.

[49] B. C., Color use guidelines for data representation, in: Proceedings of the Section on
Statistical Graphics, American Statistical Association, 1999, pp. 55–60.

[50] M. Stone, Choosing colors for data visualization (2006).

[51] B. Shneiderman, The eyes have it: a task by data type taxonomy for information vi-
sualizations, Proceedings 1996 IEEE Symposium on Visual Languages 0 (UMCP-CSD
CS-TR-3665) (1996) 336–343.

[52] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, A. Ruiz-Cortés, Betty: benchmarking
and testing on the automated analysis of feature models, in: Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems, VaMoS
’12, ACM, 2012, pp. 63–71. doi:10.1145/2110147.2110155.

[53] T. Thum, D. Batory, C. Kastner, Reasoning about edits to feature models, in: Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, IEEE Computer
Society, 2009, pp. 254–264. doi:10.1109/ICSE.2009.5070526.

[54] D. Mairiza, D. Zowghi, N. Nurmuliani, An investigation into the notion of non-functional
requirements, in: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, ACM, 2010, pp. 311–317. doi:http://doi.acm.org/10.1145/1774088.1774153.

[55] I. Sommerville, I. Sommerville, P. Sawyer, P. Sawyer, Viewpoints: principles, problems
and a practical approach to requirements engineering, Annals of Software Engineering 3
(1997) 101–130.

[56] E. Bagheri, D. Gasevic, Assessing the maintainability of software product line feature
models using structural metrics, Software Quality Journal 19 (3) (2011) 579–612.

44

[57] H. S. R. Davis, P. Szolovits, What is knowledge representation?, AI Magazine 14 (1)
(1993) 17–33.

[58] M. Mendonca, A. Wasowski, K. Czarnecki, D. Cowan, Efficient compilation techniques
for large scale feature models, in: Proceedings of the 7th international conference on
Generative programming and component engineering, GPCE ’08, ACM, 2008, pp. 13–22.
doi:10.1145/1449913.1449918.

[59] G. Zhang, H. Ye, Y. Lin, Quality attribute modeling and quality aware product configura-
tion in software product lines, Software Quality Journal (2013) 1–37doi:10.1007/s11219-
013-9197-z.
URL http://dx.doi.org/10.1007/s11219-013-9197-z

[60] K. Schmid, R. Rabiser, P. Grünbacher, A comparison of decision modeling approaches in
product lines, in: Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’11, ACM, 2011, pp. 119–126. doi:10.1145/1944892.1944907.

[61] E. H. Forman, S. I. Gass, The Analytic Hierarchy Process: An Exposition, Operations
Research 49 (4) (2001) 469–486. doi:10.2307/3088581.

[62] S. Liaskos, On eliciting contribution measures in goal models, in: Proceedings of the 2012
IEEE 20th International Requirements Engineering Conference (RE), RE ’12, IEEE Com-
puter Society, Washington, DC, USA, 2012, pp. 221–230. doi:10.1109/RE.2012.6345808.

[63] P. Harker, Incomplete pairwise comparisons in the analytic hierarchy process, Mathemati-
cal Modelling 9 (11) (1987) 837 – 848. doi:http://dx.doi.org/10.1016/0270-0255(87)90503-
3.

[64] P. Berander, P. Jnsson, Hierarchical cumulative voting (hcv) - prioritization of require-
ments in hierarchies., International Journal of Software Engineering and Knowledge En-
gineering 16 (6) (2006) 819–850.

[65] F. Palma, A. Susi, P. Tonella, Using an smt solver for interactive requirements prioriti-
zation, in: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, ESEC/FSE ’11, ACM, New York, NY,
USA, 2011, pp. 48–58. doi:10.1145/2025113.2025124.

[66] S. Vinay, S. Aithal, G. Sudhakara, A quantitative approach using goal-oriented require-
ments engineering methodology and analytic hierarchy process in selecting the best alter-
native (2012). doi:10.1007/978-81-322-0740-554.

[67] M. Ghallab, C. K. Isi, S. Penberthy, D. E. Smith, Y. Sun, D. Weld, PDDL - The Planning
Domain Definition Language, Tech. rep., CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control (1998).

45

