Learning R

Carl James Schwarz

StatMathComp Consulting by Schwarz
cschwarz.stat.sfu.ca @ gmail.com

Introduction to Shiny

1/36

Table of Contents |

1. Shiny - interactivity to your analysis
1.1 Introduction
1.2 Selecting variables - dealing with non-standard evaluation

2/36

Shiny - Introduction

Shiny - Interactivity to R applications
Wonderful but design very carefully.

Suggested References:
@ https://https://shiny.rstudio.com/articles/
@ https://shiny.rstudio.com/gallery/

@ https://www.showmeshiny.com/

3/36

https://https://shiny.rstudio.com/articles/
https://shiny.rstudio.com/gallery/
https://www.showmeshiny.com/

Why use Shiny vs. other visualization packages such as ggviz?

@ Able to use standard R packages such as gplot2 without
having to learn new graphing routines

@ Not necessary to know HTML, CSS, or JavaScript
@ Able to prototype very quickly
Why not use Shiny?

@ Need R and Rexperts to develop complicated applications
@ Security is an afterthought.

e May bog down with very large datasets.

4/36

Shiny - How structured

How are Shiny applications structured?
@ Separate directory for each application

@ app.ris the file name containing the Shiny interface

o User interface function (what to display; where to display;
tools to display)

e Server function - create the display items in reaction to
changes to user changes

@ Other functions, data sets, etc. as needed.

5/36

Shiny - Example

Open app.r in 00-Intro in the Rcourse-shiny directory.
Don't forget to set the working directory.
Press the Run app button.

http://127.0.0.1:4610 Open in Browser ‘S Publish ~
Plot of calories vs fat
jitter in x direction (%)

160~ .
0] 10
. .
. .
. . . .
jitter in y direction (%)
0 m 120- o . .
.
a
8
5 . . .
s
. . .
s e .
.
0- »
o 2 3 i 5

fat

Play with the sliders.

6/36

Shiny - How structured |

How are Shiny applications structured?
Look at the code from the above Shiny app;

server <- function(input, output) {
output$scatterplot <- renderPlot ({
ggplot (data=cereal, aes(x=fat, y=calories))+
ggtitle ("Plot of calories vs fat")+
geom_point (position=
position_jitter(
h=input$jy*mean(cereal$calories) /100,
w=input$jx*mean(cereal$fat)/100))

© 00 N O O W N -

1)
10 }

The server() takes the input arguments and creates the output
object (a list).

Notice that this is not a proper R function since results are passed
BACK through the output argument.

The renderPlot is what is supposed to be displayed.

7/36

Shiny - How structured |l

1 ui <- fluidPage(

2 sidebarLayout (

3 sidebarPanel (

4 sliderInput ("jx",

5 "jitter in x direction (%) ",
6 min = O,

7 max = 10,

8 value = 0),

9 sliderInput ("jy",

10 "jitter in y direction (%) ",
11 min = O,

12 max = 10,

13 value = 0)

14), # end of sidebar Panel

15 mainPanel (

16 plotOutput ("scatterplot")

17) # end of mainPanel

18)

8/36

Shiny - How structured Il

19)

This defines the user interface with types of pages (fluidPage(),
types of panels etc.

9/36

Shiny - How structured 1V

1 # Run the application
2 shinyApp(ui = ui, server = server)

This is what meshes the two functions together.

10/36

Shiny - Input Controls |

Basic widgets:

http://127.0.0.1:3771 Open in Browser 4 Publish ~

Basic widgets

Buttons Single checkbox Checkbox group Date input
Action Choice A Choice 1 2014-01-01
Choice 2
m Choice 3
Date range File input Help text Numeric input
Note: help text isn't a true
2170621 to] 2017-0621 Browse... widget, but it provides an easy 1
way to add text to accompany
other widgets.
Radio buttons Select box Sliders Text input
© Choice 1 Choice 1 - - a — Enter text.
Choice 2 ——
Choice 3
0 [25) 100
—
Also see

http://shiny.rstudio.com/gallery/widget-gallery.html

11/36

http://shiny.rstudio.com/gallery/widget-gallery.html

Shiny - Exercise |

Exercise
@ Add a slider for the the size of the points

e Add a radio button (radioButtons) to add a regression line
(Yes/No)

We want:

pppppp

Tveee ..

12/36

Shiny - Exercise |l

Build incrementally,
@ add the slider that does nothing;
@ then react to the slide;
@ then add the buttons that do nothing;

@ then react to the buttons.

13/36

Shiny - Exercise Il

The new user controls:

1 ui <- fluidPage(

2 sidebarLayout (

3

4 sliderInput ("psize",

5 "Point size",

6 min = 0,

7 max = 10,

8 value = 1),

9 radioButtons ("fitline",

10 "Show the regression line?",
11 c("Yes"="Yes",
12 "No" ="No"))
13), # end of sidebar Panel

14 mainPanel (

15 plotOutput ("scatterplot")

16) # end of mainPanel))

14 /36

Shiny - Exercise IV

The new server function:

1 server <- function(input, output) {

2 output$scatterplot <- renderPlot ({

3 plotl <- ggplot(data=cereal, aes(x=fat, y=calories))+
4 ggtitle ("Plot of calories vs fat")+

5 geom_point (position=position_jitter(

6 h=input$jy*mean(cereal$calories) /100,

7 w=input$jx*mean(cereal$fat)/100),

8 size=input$psize)

9 if (input$fitline == "Yes"){

10 plotl <- plotl + geom_smooth(method="1m")}
11 plotl # be sure to return the plot at the end
12 b

13 }

15/36

Shiny - Perils of non-standard evaluation |

We often want to select VARIABLES to plot. Run the following:

1 # Constider the following plot

2 ggplot(data=cereal, aes(y=calories, x=fat))+

3 geom_point ()

4

5 # Suppose we wish to "program" the wvariables using somethin,
6 =xvar <- ’fat’

7 yvar <- ’calories’

8

9 # this fails because of non-standard evaluation
10 ggplot(data=cereal, aes(y=yvar, x=xvar))+

11 geom_point ()

What happens is a problem of non-standard evaluation that occurs
throughout R!
What does y=yvar mean and how is it distinguished from y=cereal?

16 /36

Shiny - Perils of non-standard evaluation Il

ggplot2 includes the aes string to deal with this problem. dplyr
also allows for non-standard evaluation.

1 xvar <- ’fat’
2 yvar <- ’calories’
3 ggplot(data=cereal, aes_string(y=yvar, x=xvar))+
4 geom_point ()
This does what you want.
Similarly
1 # use [] in regular data frames
2 yvar <- ’calories’
3 cereal$yvar # returns null
4 cereal$"yvar" # also returns null
5 cereall[, yvar, drop=FALSE]

17/36

Shiny - Exercise |

Exercise

@ Add a radio drop down list to select among the x variables
from fat, protein, carbo, and sugars.

@ Also print the estimated slope and se under the plot
(tableOutput() etc.)

We want: -

+inx droction (6)

18/36

Shiny - Exercise |l

The new user controls:

1 ui <- fluidPage(

2 sidebarLayout (

3 sidebarPanel(...,

4 selectInput ("xvar",

5 "Select the X-variable for the plot",
6 c("Fat" =>fat’, "Carbohydrates"=’carbo’
7), # end of sidebar Panel

8 mainPanel (

9 plotOutput ("scatterplot"),

10 tableOutput ("slope")

11) # end of mainPanel

12)

13)

Notice how two output panels can be stacked using mainPanel()

19/36

Shiny - Exercise Il

The new server function:

1 server <- function(input, output) {

2 output$scatterplot <- renderPlot ({

3 plotl <- ggplot(data=cereal, aes_string(x=input$xvar, y:
4 ggtitle (paste("Plot of calories vs ", input$xvar, sep:
5 geom_point (position=position_jitter(

6 h=input$jy*mean(cereal$calories) /100,

7 w=input$jx*mean(cereal [, xvar,drop=TRUE])/100),

8 size=input$psize)

9 if (input$fitline == "Yes"){ plotl <- plotl + geom_smoot]
10 plotl # be sure to return plot a end

11 b

12 output$slope <- renderTable ({

13 fit <- 1m(calories ~ cereall, input$xvar], data=cerea!
14 data.frame (summary (fit)$coefficients[2,, drop=FALSE])
15 i)

16 }

20/36

Shiny - Exercise IV

Notice how we dealt with non-standard evaluation.
Notice how we created data.frame to hold results.

21/36

Shiny - Exercise V. Pt. |

Refer to accident data base.
@ Use a slider to select a date between.
o Find all fatal accidents within 30 days of the date

@ Plot them on a map using ggmap as shown previously

We want:
Location of fatal accidents within 30 day of 2010-06-28
Select midpoint of 30 day 4
interval
20100101 2010-12:31
5
foesoss|

Latitude

Longitude

22/36

Shiny - Exercise V. Pt. |l

© 00 N O O &~ W N

L S e S = S~ S SO
g A W N = O

How to select a map using ggmap. Do this once (at top of code)
and do not update.

mean.lat <- mean(accidents$Latitude)
mean.long<- mean(accidents$Longitude)

my.map.dl <- ggmap::get_map(c(left =min(accidents$Longitud
right =max(accidents$Longitude
maptype="watercolor", source=

my.map <- ggmap (my.map.dl)

This code fragment plots the location of fatal accidents
plotl <- my.map +
ggtitle(paste("Location of fatal accidents within .
geom_point (data=myfatal, aes(x=Longitude, y=Latitu
ylab("Latitude")+xlab("Longitude")
plotl # be sure to return plot a end

23/36

Shiny - Exercise V. Pt. Il

© 00 N O O B W N

10
11
12
13

The new user controls:

ui <- fluidPage(
sidebarLayout (
sidebarPanel (
sliderInput ("Date",

"Select midpoint of 30 day interval",
min=as.Date(22010-01-01?), max=as.Date(
round=TRUE)

), # end of sidebar Panel
mainPanel (

plotOutput ("fatalplot")
) # end of mainPanel

)

Unfortunately, it is NOT easy to drop the colored bar in the slider
(7777 seems should be a easy task)?

24 /36

Shiny - Exercise V. Pt. IV

© 00 N O O B W N

I
= O

The new server function:

server <- function(input, output) {
output$fatalplot <- renderPlot ({
myfatal <- fatal[abs(fatal$Date-input$Date)<30,]

plotl <- my.map +
ggtitle(paste("Location of fatal accidents within .
geom_point (data=myfatal, aes(x=Longitude, y=Latitu
ylab("Latitude")+xlab("Longitude")
plotl # be sure to return plot a end
b
1}

Notice how we selected the data based on the date from the input
slider

25 /36

Shiny - Exercise VI - Pt. |

Refer to weather records for 2018 at weather stations across
Canada.
Design a Shiny app to:

@ Use a slider to select range of dates in 2018.

@ Select one of number of variables, e.g. minimum daily
temperature, maximum daily temperature, total precipitation,
etc

@ Select one or more of stations (e.g. from a small selected list.)

26 /36

Shiny - Exercise VI - Pt. |l

We want:

Select range of dates to see STATION_NAME

MIN_TEMPERATURE across selected stations

Select which stations to plot

Vancouver Calgary

Select which variable to plot

Daily Min -

MIN_TEMPERATURE

27/36

Shiny - Exercise VI - Pt. Il

© 00 N O O B W N

e o S S~ S S G ST T
~N O OB~ W NN = O

The new user controls:

ui <- fluidPage(
sidebarLayout (
sidebarPanel (
sliderInput ("Date",
"Select range of dates to see",
min=as.Date(22018-01-012), max=as.Date(
round=TRUE) ,
selectInput ("stations",
"Select which stations to plot",
c("Vancouver"="VANCOUVER INTL A",
"Victoria" ="VICTORIA INTL A",

"Edmonton" = "EDMONTON INTERNATIONAL ¢
"Calgary" = "CALGARY INT’L CS",
"Winnipeg" = "WINNIPEG A CS",
"Toronto" = "TORONTO INTL A"),

multiple=TRUE),
selectInput ("variable",

28 /36

Shiny - Exercise VI - Pt. IV

18
19
20
21
22
23
24
2
26
27

"Select which variable to plot",
c("Daily Min"="MIN_TEMPERATURE",
"Daily Max"="MAX_TEMPERATURE",
"Total Precip"="TOTAL_PRECIPITATION"f
), # end of sidebar Panel
mainPanel (
plotOutput ("climateplot")
) # end of mainPanel

29 /36

Shiny - Exercise VI - Pt. V

The new server function:

1 server <- function(input, output) {

2 output$climateplot <- renderPlot ({

3

4 myclimate <- climate[climate$Date > input$Date[1l] & cl
5 myclimate <- myclimate[myclimate$STATION_NAME %in% inp
6 plotl <- ggplot(data=myclimate, aes_string(x="Date", y=
7 ggtitle (paste (input$variable, " across selected st
8 # geom_point ()+

9 geom_line () +

10 ylab(input$variable)+xlab("Date")+

11 theme (legend.position=c(0,1) ,legend. justification=
12 plotl # be sure to return plot a end

13 b

14 }

30/36

Shiny - Exercise VI - Pt. VI

Notice how we selected the data based on the date from the input
slider
Notice how we dealt with non-standard evaluation in ggplot()

31/36

Shiny - Exercise VII - Pt. |

Refer to weather records for 2018 at weather stations across
Canada.
Design a Shiny app to:
@ Use a slider to select a date in 2018.
@ Select one of number of variables, e.g. minimum daily
temperature, maximum daily temperature

@ Plot the mean of that variable at each station in a suitable
interval (e.g. £5days) from the selected date.

We want:

Select midpoint of +/- 5 day
interval

2018.01-01
R
Mean MIN_TEMPERATURE within +/- 5 days of 2018-10-21
Select which variable to plot
Daily Min v

32/36

Shiny - Exercise VII - Pt. I

© 00 N O O W N -

[o S e S = S S T
S OB W N H O

The controls are similar to previous exercises and so nothing new
here.

ui <- fluidPage(
sidebarLayout (
sidebarPanel (
sliderInput ("Date",
"Select midpoint of +/- 5 day interval
min=as.Date(22018-01-012), max=as.Date(
round=TRUE) ,
selectInput ("variable",
"Select which variable to plot",
c("Daily Min"="MIN_TEMPERATURE",
"Daily Max"="MAX_TEMPERATURE"))
), # end of stidebar Panel
mainPanel (
plotOutput ("climateplot")
) # end of mainPanel

33/36

Shiny - Exercise VII - Pt.

17)

34 /36

Shiny - Exercise VII - Pt. IV

© 00 N O O B W N

e o S S~ S S G ST T
~N O OB~ W NN = O

The new server function:

server <- function(input, output) {
output$climateplot <- renderPlot ({
#browser ()
myclimate <- climate[abs(climate$Date-input$Date)<5,]
myclimate$var.to.analyze <- myclimate[, input$variablel]
get the mean for each station
mean.climate <-
myclimate %>%
group_by (STATION_NAME,x, y) %>%
summarize (
meanval=mean(var.to.analyze, na.rm=TRUE)
)
mean.climate.sf <- st_as_sf(x = mean.climate, coords =
plotl <- ggplot() +
ggtitle(paste("Mean ", input$variable," within +/-
geom_sf (data=s.canada.sf, aes(fill=NULL))+
geom_sf (data=mean.climate.sf, aes(color=meanval),

35/36

Shiny - Exercise VIl - Pt. V

18
19
20
21
22

scale_color_gradient2(midpoint=10, low="darkblue",
plotl # be sure to return plot a end
b
}
}

Notice how we selected the data based on the date from the input
slider

Notice how we dealt with non-standard evaluation in dplyr()
Check the app for introductory code in preparing the map.

36 /36

	Shiny - interactivity to your analysis
	Introduction
	Selecting variables - dealing with non-standard evaluation

