
Learning R

Carl James Schwarz

StatMathComp Consulting by Schwarz
cschwarz.stat.sfu.ca @ gmail.com

Final Summary

1 / 28

R Summary

R Summary

2 / 28

R Summary

R is powerful and versatile.
R is free, but not cheap.

R has a steep learning curve.
R is not consistent in usage and syntax.
R creates nice graphics, but poor at textual output (e.g. nicely
formatted tables are tedious to construct)
Packages have NO quality control.
Requires a fair degree of statistical sophistication.

E.g. anova() function gives Type I rather than Type III SS,
F-tests without warning!

3 / 28

R Summary

Work flow using Rstudio.
Launch Rstudio.
Navigate to directory with scripts and data.
SET WORKING DIRECTORY!
Check the console pane to see if done properly.
Open the Script
Highlight and Run.
Create HTML notebook at end to ensure that script works
properly.

4 / 28

R Summary - Data Structures and Objects

R has a rich set of data structures (special case of objects):
vectors - an ordered collection of the same data type (e.g.
numbers, characters, logicals, etc.)
matrix - a two-dimensional collection of the same data type.
array - a 2+ dimensional collection of the same data type.
dataframe - collection of vectors (of same length) but vectors
can be different data types.
list - an arbitrary collection of objects (including lists).

Other objects:
function - contains a list of instructions
expressions - fragments of R code or formulae

5 / 28

R Summary - Object Types

R has several object types
numbers (integer, real, or complex)
characters ("abc")
logical (TRUE or FALSE)
Date, DateTime
factor (CAUTION) of any type - index to a set of values

use stringsAsFactors=FALSE on all read.csv() operations.
use stringsAsFactors=FALSE on all data.frame() operations.
explicitly create factors for all categorical variables using
df$varF = factor(df$var).
distinguish between size=var or size=varF in ggplot().
may need to order factors to sort levels on a graph.

Missing values NA are different from Inf, " ", 0, NaN etc.

The str() function is YOUR FRIEND!

6 / 28

R Summary - Accessing values

R has several ways to access values (see reference card)
vectors

v[k] - selects the kth item
v[-k] - all but the kth item
v[1:4], v[c(1,3,5)], v[-(1:k)] - sets of values
v["name"], v[c("name1","name2")] - select by named
component
v[c(TRUE, FALSE, TRUE)], v[v>3], v[v == 24] - use
LOGICAL vector to select items

data frames
dafr[,k], dafr[k,] - all of kth column/row
dafr$name1, dafr[,"name1"], dafr[,c("name1","name2")] -
select columns by names
dafr[dafr$v>10, c("v2","v3")] - subsets of the data frame

lists
mylist$name - select a named component of the list
mylist[["name"]] - element with certain name
mylist[1] vs. mylist[[1]] - CAREFUL

7 / 28

R Summary - Input

R is a bit clumsy.
read.table(), read.csv(), read.delim(), readxl::read_excel()

header=TRUE - assumes variable names in first row
as.is=TRUE or stringsAsFactors=FALSE - don’t convert
character string to factors - RECOMMENDED
strip.white=TRUE - remove extra white space when ever
possible - CAUTION of leading blanks in character strings

scan() - a more general way to read files with odd
organizations
Several packages for access to database systems - see
reference card.
Define categorical variables as factor by making new variable
(df$varF <- factor(df$var) or replacing variable (df$var <-
factor(df$var)) after creating data frame.

8 / 28

R Summary - Programming

Try and vectorize.
Most of time you can avoid if() and for() control structures.
R will often cycle through shorter arguments

 v <- 15:18
 v + 3 # adds 3 to every value
 v + c(2,3) # cycles through the (2,3) pair

 v[v==10] <- 15 # replaces for/if structure

 Fatal <- c("no","yes")[1+ (Severity==1)]

recode() in car package is useful

9 / 28

R Summary - Output

R is a bit clumsy.
sink("filename", split=TRUE) ... sink() - text output.
write.table(), write.csv(), write.xlsx()- create output files.
ggsave - graphical output. Don’t forget h=, w=, units=, and
dpi= arguments.
Rstudio with the html notebook.
Rmarkdown - combined documents with text, programming,
and output..
Sweave - LATEXand R integrated together to create complete
document that is publication quality.

10 / 28

R Summary - Packages

Many user-written extensions to R ; but no quality control.
Create a personal library for packages on your computer as this
makes it easier to update on a regular basis.
Load library prior to first use using the library() function.
Very difficult to detach a package once it is loaded
Beware of name conflicts, i.e. several packages with the same
name for different objects. Use package::function() to ensure
that correct function is used.

11 / 28

R Summary - Functions

Make a collection of analyses for reuse.
Scripts and source() can serve a similar functionality.

 myfunction <- function(arg1, arg2, arg3=defaultvalue) {
 # Comment describing the arguments and purpose of function
 arg1[3] <- new value # ok see below
 ...
 myresults <-
 return(myresults) # don’t forget
 } # don’t forget

Arguments can be any data structure or type
Return can be any data structure or type (most commonly a
list or a vector)
Arguments are call-by-name, i.e copies passed.
New variables are local only
AVOID SIDE EFFECTS IN A FUNCTION
browser(), trace() - useful for debugging

12 / 28

R Summary - Functions

Scripts and source() can serve a similar functionality.

 source("MyDocuments/MyStuff/myRfunction.r")

 # now you can use the functions you defined
 # in myRfunction.r

13 / 28

R Summary - Useful Builtin Functions - I

Base R has many useful functions; packages provide more

c(...) - combine arguments into a vector

seq(), a:b - generate sequeces

is.na() - tests for missing values – see other is.xx functions

str() - show structure of an object

nrow(), ncol() - number of rows and columns

match(x,y), x %in% y - which values of x are in y

unique() - return unique values of object

xtabs() - cross tabulations - useful for check recodes, etc –
include the NAs

reshape() - interchange between wide and long formats -
documentation sucks

14 / 28

R Summary - Useful Builtin Functions - II

cbind(), rbind() - paste together columns and rows

split(), stack() - split and stack dataframes

Split-apply-combine paradigm - RECOMMEND plyr package
rather than Base R functions, esp. the summarize usage.

 ddply(cereal, "shelf", summarize,
 mean.cal = mean(calories))

 ddply(cereal, "shelf", function(x){
 ncereals <- nrow(x)
 fit <- lm(Calories ~ Fat, data=x)
 mycoef <- coef(fit)
 res <- data.frame(ncereals, mycoef, stringsAsFactors=FALSE)
 return(res)

 })

15 / 28

R Summary - Useful Builtin Functions - III

Usual math functions.
CAUTION between min() and pmin()

Usual statistical functions
NAs propagate, so many functions have na.rm=TRUE
lm() - basic linear models (e.g. simple ANOVA and regression)
glm() - generalized linear models (e.g. logistic regression)
lmer() - linear models with mixed effects (e.g. split-plot
designs)
Use methods (specialized functions) to extract information
from output
See http://www.stat.sfu.ca/~cschwarz/CourseNotes

16 / 28

http://www.stat.sfu.ca/~cschwarz/CourseNotes

R Summary - Useful Builtin Functions - IV

Base R is a bit clumsy with dates and times.

as.Date() to convert to internal format (# of days since origin)

as.POSIXct() to convert to constant date-time (avoid
POSIXlt() unless really needed)
format=’%m/%d/%Y’ to convert from external to internal
and out to external formats

CAUTION - when converting from dates/datetimes, the
"%xx" gives CHARACTERS, not numbers

The lubridate package will make your life much easier.
Other packages useful for duration data (hms) or clock data
(psych)

17 / 28

R Summary - Useful Builtin Functions - V

Dealing with character strings

paste() - combines strings, numbers, etc into a single string

substr() - extracts substrings - CAUTION of syntax

grep() - matching of patterns - CAUTION - complex syntax

stringer package is easier to use in many cases

18 / 28

R Summary - Plotting

R has extensive facilities for plotting
Base R - pen-on-paper paradigm AVOID
Lattice graphics - plot objects - AVOID
ggplot2 package - grammar of graphs - RECOMMENDED
Shiny package - visualization (interactive) plots -
RECOMMENDED

Build a graph using various layers
Adjust final graph when done with axes etc
CAUTION: Don’t forget to print final object created

19 / 28

R Summary - Shiny

A quick way to bring interactivity to your applications.
Start small and build up.
For large datasets/applications, it may be difficult to debug
Lots of addons, e.g. leaflet
Why are you making a Shiny app?

20 / 28

R Summary - Spatial I

Whew!

Use the sf, sp and raster packages.

Are you trying to use R as a GIS? It may be very slow with
large databases and many layers.

Start small and work your way up.

21 / 28

R language elements - Summary - Advanced I

Becoming an Rexpert.
Never assume that the data is in a particular order.

Never use cbind(); use merge()
Never select particular rows. Use a selection vector to select
rows of interest.

Never assume columns are in a particular order.
Never refer to columns by number, i.e. do not use df[, 2:3]
Refer to columns by names or by selection vector

Seldom need to use series of ifelse().
Use car::recode or do table lookups using merge()
Check your recodes using xtabs(Old+new, data=... or a
ggplot

22 / 28

R language elements - Summary - Advanced II

NO FOR LOOPS!
for() implies that results of one iteration depend on results of
previous iterations. This is seldom true except in MCMC
situations.
Use plyr or dplyr packages or equivalents
Use these packages in simulation studies as they parallelize
naturally

Be careful of time zone.
Do you really want the instant (time-stamp) or do you just
want dates+time (use UTC as timezone)

Don’t hard code setwd() in code. Use relative file names.
Rely on person setting the working directlory
Use file.path() to avoid the different file system naming
conventions (slashes vs colons, etc.)

23 / 28

R language elements - Summary - Advanced III

Worry about the impacts of missing values.
Compare df[df$x==7,] vs. df[df$x==7 & !is.na(df$x),]
Do your functions deal nicely with missing values (e.g. use
na.rm=TRUE

All data in data frames or tibbles.
Do not store data in individual vectors unless they are
temporary selection. vectors

Data.frame vs. tibble differences.
xf[, "x", drop=FALSE] vs. xf[,"x"] varies depending if df is a
data frame or a tibble (groan()
If selecting a variable number of columns, what do you want to
happen if you select only one column?

Functions should be self contained and have no side effects.
All data should be passed to functions.
Do not rely on global variables.

24 / 28

R language elements - Summary - Advanced IV

Qualify functions from packages, i.e. package::function()(
Particularly true if using the dply and dplyr packages and
summarize

Do not hard code stuff.
Use functions (e.g. med() rather than hardcoding the actual
value of the median
Create a variable at top of script that is used, e.g.
year.to.analyze <- 2018, alpha<- 0.05

grep(), regexpr() are your friends!
select.rows <- grepl("abcd’, df$name) followed by
df[selec.rowst,]
select.col <- names(df)[grep("abc", names(df))] selects
certain columns followed by x[,select.col]

25 / 28

R language elements - Summary - Advanced V

If using MSWord, build tables to as close as possible and then
cut and paste

 report <- ...
 temp <- report
 temp[, 3:3] <- round(temp[,2:3],2)
 write.csv(temp, file.path=(...))

26 / 28

R Summary - The R Inferno

If you are using R and you
think you’re in hell, this is
a map for you. A book
about trouble spots,
oddities, traps, glitches in
R. Even if it doesn’t help
you with your problem, it
might amuse you (and
hence distract you from
your sorrow).

http:
//www.burns-stat.com/documents/books/the-r-inferno/

27 / 28

http://www.burns-stat.com/documents/books/the-r-inferno/
http://www.burns-stat.com/documents/books/the-r-inferno/

R Summary - The end

To err is human,
but it really takes a computer to screw things up!

R is free, but not cheap.

cschwarz.stat.sfu.ca@gmail.com

28 / 28

	Grand Summary

