SCHOOL OF INTERACTIVE
TTTTTTTTTTTTTTT

Lecture S
Processing and Arduino topics

IAT267 Introduction to Technological
Systems

SCHOOL OF INTERACTIVE
SF ARTS # TECHNOLOGY

Quiz — Week 9

* Available on webct between Friday November
4 and Wednesday, November 9

* Last quiz of the course

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Assignments

* Marks for the first two assignments are on
webct

* Assignment 3 is on the topic of networking
and will be posted in week 11, due in week 13.

SCHOOL OF INTERACTIVE
SF ARTS # TECHNOLOGY

Course Project

 Milestone 3 —now in progress

* Marks for Milestone 2 will be up on webct by
the end of this week

SCHOOL OF INTERACTIVE
E ' l ARTS ¢+ TECHNOLOGY

Final Exam

* December 16, 2011, Friday

e 8:30am -11:30am

* SUR2600

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

Topics for today

* |nteractivity: Data from Keyboard and Mouse

* Images in Processing:
— Color
— Transparency
— Filters

* Processing and Arduino libraries

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Mouse Examples

* When a program starts, mouseX and mouseY values
are 0.

* |If the cursor moves into the display window, the
values are set to the current position of the cursor.

* The mouse position is most commonly used to
control the location of visual elements on screen.

J/fcircle follows the cursor

vold setup()

{ 2 sketch iy sl b3
size (100,100);
'smoothEl) ;
noStroke();

¥

void draw()

{

background(126) ;
ellipse (mouseX, mouse¥, 33,33);

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Keyboard Input

* Processing registers the most recently pressed
key and whether a key is currently pressed.

— The boolean variable keyPressed is true if a key is
pressed and false if not.

— keyPressed remains true while the key is held
down and becomes false only when the key is
released.

SCHOOL OF INTERACTIVE
ARTS ¢+ TECHNOLOGY

SN

//draw a rectangle while any key 1is pressed

void setup() =101 x|
; : _

size(l00,100);
smooth();
strokelleight(4);

)]
vold draw()

{
background (204) ;
if (keyPressed==true)

{

m

rect(40,40,20,20);

: 30 sketch o [a] B

=
L
0

= D

line(20,20,80,80);

}

10

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

key variable

* The key variable is of the char data type and
stores the most recently pressed key .

* The key variable can store only one value at a
time.

* A key can be displayed on screen by loading a
font and using the text() function.

11

SCHOOL OF INTERACTIVE

PFont font;

vold setup()

{
size(l00,100);
font=loadFont("ArialMT-48.v1lw") ;

textFont(font) ; 0
} @

- |0 x|

vold draw()

{

background(0) ;
ext(key,28, 75);

t
}

12

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Events

* Mouse and keyboard events for detecting
actions and receiving data

* Events alter the normal flow of a program
when an action such as a key press or mouse
movement takes place.

13

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Mouse Events

 mousePressed(): called every time when a mouse button
is pressed

 mouseReleased(): called every time when a mouse
button is released

 mouseMoved(): called every time the mouse moves and
a mouse button is not pressed

 mouseDragged(): called every time the mouse is moved
while a mouse button is pressed

14

OOOOOOOOOOOOOOOOOOO
|| HHHHHHHHHHHHHHH

[=

volid setup() { e —
zize(100, 100): 3P sketch i] b

£111(0,102);

volid draw() {}//empty draw keeps th eprogram running

vold mousePressed() -

{

rect{mouseX, mouse¥, 33,33):;

15

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

* In the previous example rectangles are drawn inside
mousePressed() and they remain on screen because
there is no background() inside draw().

* If background() is used, visual elements drawn within
one of the mouse event functions will appear on
the screen for only a single frame.

* The previous example has nothing at all inside draw
(), but it needs to be there to force Processing to
keep listening for events.

16

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

lmages

* Relevant data type and functions for loading
and displaying images
— PImage, loadlmage(), image()
— tint(), noTint()

 The dimensions of digital images are
measured in units of pixels.

* Every digital image has a color depth.

— The color depth refers to the number of bits used
to store each pixel

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Color Depth

* |f the color depth of an image is 1, each pixel
can be one of two values (e.g. black or white).

* |f the color depth is 4, each pixel can be one of
16 values.

* |f the color depth of an image is 8, each pixel
can be one of 256 values.

18

* Looking at the same image
displayed with different
color depths:

1-bit color (2! = 2 colors)
monochrome

4-bit color (2% = 16 colors) 8-bit color (28 = 256 colors)

19

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Display

* Processing can load images, display them on the
screen, and change their size, position, opacity, and

tint.
* There is a data type for images called PImage.

— The same way that integers are stored in variables of the
int data type and values of true and false are stored in the
boolean data type, images are stored in variables of the

PImage data type.

20

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

loadImage()

* Before displaying an image, it’s necessary to first load
it with the loadlmage() function

* Syntax:
— loadlmage(filename)

— loadlmage(filename, extension)

* No matter which syntax to use, be sure to include the file format
extension as a part of the filename (e.g., “pup.gif”, “cat.jpg’,

“trees.png”’).
* For the image to load, it must be in the data folder of

the current program.

 Add the image by selecting the “Add File” option in
the Sketch menu of the Processing environment.

21

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

* As a shortcut, you can also drag and drop an
image to the Processing window.

* To make sure the image was added, select
“Show Sketch Folder” from the Sketch menu.

The image will be inside the data folder.

22

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

* With the image file in the right place, you can
load and then display it with the image()
function:

* Syntax:

— image(name, x, y)

— image(name, x, y, width, height)

23

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

image() parameters

* The parameters for image() determine the image to
draw and its position and size.

 The name parameter must be a PImage variable.

 The x and y parameters set the position of the upper-
left corner of the image

* By default, the image will display at its actual size (in
units of pixels), but you can change the size by
adding the additional width and height parameters.

PImage img;
// Image must be 1n the sketch's "data™ folder
img = loadImage ("greens.jpg™):

image (img, 0, 0);

PInage img;
// Image must be in the sketch's "data™ folder
img = loadImage("greens.jpg™):;

image (img, 20, 20, 60, 60);

25

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Image Color, Transparency

* |Images are colored with the tint() function.

* This function is used the same way as fill() and
stroke(), but it affects only images:
— tint(gray)
— tint(gray, alpha)
— tint(valuel, value2, value3)
— tint(valuel, value2, value3, alpha)
— tint(color)

26

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Image Color, Transparency

e All images drawn after running tint() will be
tinted by the color specified in the
parameters.

* This has no permanent effect on the images,
and running the noTint() function disables the
coloration for all images drawn after it is run.

27

PImage img;

img = loadImage(“castle.]jpg™):’
tint(102); // Tint gray
image(img, 0, 0);

noTint(); // Disable tint
image (img, S0, 0);

PImage img;
img = loadImage(“castle.jpg”™)’
tint(0, 153, 204); // Tint blue
image (img, 0, 0);

noTint(),; // Disable tint

image (img, 50, 0);

28

SCHOOL OF INTERACTIVE
ARTS ¢+ TECHNOLOGY

test§

color yvellow = colox(220, 214, 41);
color green = color (110, 164, 32);
color tan = colox (180, 177, 132);
PInage ing;

2ize(300,300) ;

ing = loadImage("castle.jpg™):;
tint({yellow);

inage (imng, 0, 0):;

tint(green);

imadge (img, 100, 0);

tint(tan);

image (img, 200, 0);

29

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

Transparent Image

* To make an image transparent without
changing its color, set the tint to white, with
an alpha value < 255

30

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

SFU findifisill

File Edit Sketch Tools Help

&

PInage img;
sgize(300,300);

imng = loadImage ("castle.jpg™):;

background (255) ;

tint(255, 102); // Alpha to 102 without changing the tint
image (img, 0, 0, 300, 300);

tint (255, 204, 0, 153); // Tint to yellow, alpha to 153
image (img, 20, 20, 300, 300);

31

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

filter()

* Filters the display window as defined by one of

several modes:
THRESHOLD - converts the image to black and white pixels

— depending if they are above or below the threshold defined by the level
parameter. The level must be between 0.0 (black) and 1.0(white). If no level is
specified, 0.5 is used.

* GRAY - converts any colors in the image to grayscale equivalents
* INVERT - sets each pixel to its inverse value

 POSTERIZE - limits each channel of the image to the number of colors
specified as the level parameter

* BLUR - executes a Guassian blur with the level parameter specifying the
extent of the blurring. If no level parameter is used, the blur is equivalent

to Guassian blur of radius 1.

32

SCHOOL OF INTERACTIVE
SF | ARTS ¢+ TECHNOLOGY

1=

[ests [R pIalE]
size(400,400) ; o))

PImage b;

b = loadImage("castle.jpg™): o
image(b, 0, 0): e
filter (GRAY)

33

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

size(300,300);
PInage b;

b = loadImage(“castle.jpg™):
image(b, 0, 0):

filter (INVERT) ;

34

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

copy()

e Copies a region of pixels from the display window to
another area of the display window.

e copy(x, y, width, height, dx, dy, dwidth, dheight)

* If the source and destination regions aren't the same
size, it will automatically resize the source pixels to fit
the specified target region.

35

SCHOOL OF INTERACTIVE
SF | ARTS # TECHNOLOGY

P test | Processing 0135 Beta

File Edit Sketch Tools Help

size(400,400) ;
PImage img = loadImage ("castle.]jpd™):;
image (img, 0, 0);

copy(l5, 25, 40, 40, 300, 200, 80, 80);
noFill():

/4 Rectangle shows area being copied
rect(1l5, 25, 10, 1l0);

36

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

get()

* Reads the color of any pixel or grabs a section of an
image. If no parameters are specified, the entire
image is returned.

* Get the value of one pixel by specifying an x, y
coordinate.

* Get a section of the display window by specifying an
additional width and height parameter.

* If the pixel requested is outside of the image window,
black is returned.

37

SCHOOL OF INTERACTIVE
SF | ARTS # TECHNOLOGY

of ke Processing U Beta
File Edit Sketch Tools Help

2ize (400,400);
PInage myImage = loadImage("castle.jpg™):’
image (myImage, 0, 0);

PImage cp = get()’

image (cp, S50, 0):

38

SCHOOL OF INTERACTIVE
ARTS ¢+ TECHNOLOGY

File | Edit Sketch Tools Help

size(400,400);
PImnage myImage = loadImage ("castle.jpg™):;
image (myImage, 0, 0);

color cp = get(30, 20);

fill(cp):

rect (310, 310, 55, 55):

39

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Processing - libraries

 Wide and varied range of libraries

 Many of the Processing libraries are available
for download at the Processing website

— WWW.processing.org

 Examples of libraries:
— 3D
— Bluetooth communication
— Gesture recognition libraries

40

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Minim Library

* By Damian Di Fede

* Uses the JavaSound API to provide an easy-to-use
audio library

* Provides a reasonable amount of flexibility for more
advanced users

* Highly recommended for beginners

Wi

 Clear, well documented (;
|

o

OOOOOOO F INTERACTIVE
E l l ARTS ¢+ TECHNOLOGY

surfacelib library
* By Andreas Koberle and Christian Riekoff

e Offers an easy way to create different 3D
surfaces

* |t contains a library of surfaces and a class to
extend

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Physics Library

* By Jeffrey Traer Bernstein

* |tis a nice and simple particle system physics
engine that helps you get started using
particles, springs, gravity and drag.

HHHHHHHHHHH
‘‘‘‘‘‘‘‘‘‘‘‘‘

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

Bluetooth Desktop library

* By Patrick Meister

* This library lets you send and receive data via
Bluetooth wireless networks

44

SCHOOL OF INTERACTIVE
SFU ARTS ¢+ TECHNOLOG Y

proMidi Library

* By Christian Riekoff

* This library lets Processing send and receive
MIDI information

45

i]D@C]:E sasL s urezeue
oscP5 Library

* By Andreas Schlegel

* This library is an OpenSound Control (OSC)
implementation for Processing.

 OSC is a protocol for communication among

computers, sound synthesizers, and other
multimedia devices.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Audio in Processing

* Processing has a great deal of support for
working with graphics, video and OpenGL built

into the core libraries

* Minim library: one of the best known and
complete library for audio (several other audio
libraries are available as well)

47

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Using Minim library

e Core: a class called Minim

* Every time you use the Minim library, you need to
instantiate a Minim object

* Four tasks with the Minim object:

— Play an audio file that you load into your
application

— Play audio that you create in your program
— Monitor audio and get data about it
— Record audio to disk

48

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Load MP3 file and play it back
import ddf.minim.*;
AudioPlayer song;

Minim minim;

void setup()
{

size (800, 800),

minim = new Minim (this);

song = minim.loadFile(“song.mp3”);

//this loads song.mp3 from the data folder
} //cont’d on next slide

49

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Steps

 Core class instantiated

* New objects are created from the core object
to do specific tasks like playing files, creating
filters, generating tones, etc

* The AudioPlayer class provides mono and
stereo playback — instantiated by the loadFile()
method

* Next slide: draw()

50

SCHOOL OF INTERACTIVE
SF ARTS # TECHNOLOGY

void draw()

{
background(0);

stroke(255);

nofFill();

for (int i=0; i<song.bufferSize() -1, i++)
{

ellipse(i*4, 100+song.left.get(i)*100, 5, 5),
ellipse(i*4, 250+song.right.get(i)*100, 5, 5),

/

51

SCHOOL OF INTERACTIVE
SFU ARTS ¢+ TECHNOLOG Y

boolean isPlaying = false;
void mousePressed()

{

if (isPlaying)

{
song.pause();
isPlaying = false;

jelse{
song.play();
isPlaying = true;

/

codel

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

AudioPlayer class

* left, right: are arrays filled with floating-point
numbers that represent the left and right
channels in the audio file.

* |n the draw() method of our code, we have

used these arrays to draw a line of small
ellipses.

54

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Generating sounds with Minim

 Minim defines methods to generate new
sounds from equations

* Four fundamental kind of waves can generate
sounds:
— Triangle wave
— Square wave
— Sine wave
— Sawtooth wave

55

enak,

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

Triangle Wave Square Wave

Sine Wave Sawtooth Wave

Figure 7-4. Sound wave pattern types

56

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Arduino
* Connecting multiple LEDs to Arduino pins

* LCD displays
* Servomotors

* Play sound with a piezo speaker

— (these could be needed in some of the projects)

57

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Using an LED matrix

* LED:
— Can indicate something to a user
— Can provide recognition of a user action
— Can act as an alert

* Using multiple LEDs with Arduino is limited by
the number of digital out pins that the
Arduino has

58

— —
I:E r'—l 0000000000000000000
TTTTTTTTTTTTTTT

0321098 76543210
x
€5 1111 x x

Digital

uUsB

PWM2
PWM1
PWMO

Arduino :=

‘ http://arduino.berlios.de g

il ' W

- Co)
ICSP

a-—

[E o

i, "W o, POWER Analog in
5V Gnd V01 2345 (

59

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

LED driver chip

* You can control up to an 8x8 matrix of LEDs or
an eight-digit LED display

* This lets you draw simple shapes, characters
and digits to begin creating simple animations

60

61

SCHOOL OF INTERACTIVE

ARTS ¢+ TECHNOLOGY

- 5 4
.

- v
.

s

[S n B S—

62

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Libraries : LED and Arduino

* Matrix: this library enables you to work with a
single LED driver

* LedControl: enables you to work with multiple
LED drivers and newer drivers as well

e Sprite: this library allows you to create image
sprites to use with the Matrix library

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Arduino: Using the Matrix library

* The most common approach to drive an LED
matrix is to use a chip called the Maxim
MAX7221 to drive the LEDs

* This chip can be wired to an 8x8 Led matrix
and an Arduino

64

DIN
DIG 0
DIG 4
GND
DIG 6
DIG 2
DIG 3
DIG 7
GND
DIG 5
DIG 1
LOAD (CS)

MAXIMN

MAX7219
MAX7221

SCHOOL OF INTERACTIVE
TTTTTTTTTTTTTTT

DOUT
SEG D
SEG DP
SEGE
SEGC
V+
ISET
SEG G
SEG B
SEGF
SEG A
CLK

65

+5V +5V

Arduino
Pin 4

66

HIEIRIEIEIEIBIEIEIBIEIB

)

MAX7219
MAX7221

MAXIN

Ll

el lef ==l = 1S L 2

Pin 3

D

Pin 1

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

* The Matrix library allows you to communicate
easily with the MAX7221 chip

* Individual LEDs can be turned on / off, as well
as the brightness or clearing the LED matrix.

* Creating a single LED matrix is easy, the wiring
is the only thing that might get a bit tricky...)

67

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Example: creating a smiley face

mat.write(1, 5, HIGH),

mat.write(2, 2, HIGH);

mat.write(2, 6, HIGH);

mat.write(3, 6, HIGH); -
mat.write(4, 6, HIGH);

mat.write(5, 2, HIGH),

mat.write(5, 6, HIGH), (
mat.write(6, 5, HIGH); ¢

68

SCHOOL OF INTERACTIVE
E ' l ARTS ¢+ TECHNOLOGY

write() method

* This method takes two parameters:
— column of the LED
— row of the LED

69

SCHOOL OF INTERACTIVE
SF l ARTS # TECHNOLOGY

Connecting Arduino to an LCD Display

—

70

CCCCCCCCCCCCCCCCCCC
|| sssssssssssssss

LCD

* Liquid Crystal Display

e Allows return of data that is more complex
than an analog range or a digital value

P o L1 1L L.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

LCD Displays

e LCD displays are most of the times driven using an
industrial standard established by Hitachi.

e According to it there is a group of pins dedicated to
sending data and locations of that data on the screen

* The user can choose to use 4 or 8 pins to send data.

* On top of that three more pins are needed to
synchronize the communication towards the display.

72

SCHOOL OF INTERACTIVE
ARTS # TECHNOLOGY

LCD Arduino Libraries

* LCD - control LCDs (using 8 data lines)
* LCD 4 Bit - control LCDs (using 4 data lines)

* http://www.arduino.cc/en/Reference/Libraries - has
also an Arduino LCD tutorial available (in case you
want to have an LCD for your project)

73

ooooooooooooooooooo
|| TTTTTTTTTTTTTTT

Arduino and Sound

* Play melodies using a piezospeaker: operates on
the principle of the piezoelectric effect

http://www.arduino.cc/en/Tutorial/PlayMelody

74

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Arduino and sound

* Piezospeaker

* Playing melodies makes use of PWM (same principle we used
to control the brightness of an LED connected to one of digital

pins 9, 10 or 11).

* Piezos have polarity, commercial devices usually having a red
and a black wires indicating how to plug it to the board. We
connect the black one to ground and the red one to the
output.

 Sometimes it is possible to acquire Piezo elements without a
plastic housing, then they will just look like a metallic disc.

75

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Connecting multiple sensors to

Arduino
* Walk-through code — see code on webct

* Exercise in the workshop on Friday will deal
with two sensors

76

OOOOOOOOOO TERACTIVE
SF | OOOOOOOOOOOOOOO

Thank youl!

Questions?

77

