Lecture 12
Network Programming

AT 267 Intro to Technological Systems

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Organizational Items

* Assighment 3 posted

e Marks on webct

— Please check your marks and let us know by next
week (December 1%) if there are any errors,
Inaccuracies

* Project presentations next week
— During workshop time

SCHOOL OF INTERACTIVE
E ' l ARTS ¢+ TECHNOLOGY

Topics for today

* TCP and UDP
* UDP programming

* TCP programming

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

TCP and UDP

e UDP = User Datagram Protocol
e TCP = Transmission Control Protocol

 When a developer creates a new application for the
Internet, one of the first decisions that the developer
must make is whether to use UDP or TCP

* Each of these protocols offers a different service model
to the applications.

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

UDP Services

* Lightweight transport protocol with a minimalist service
model

* Connectionless, no handshaking before the two processes
start to communicate

 UDP provides an unreliable data transfer service. When a
process sends a message into a UDP socket, UDP provides no
guarantee that the message will ever reach the receiving
socket

* Messages that do arrive to the receiving socket may arrive out
of order. :

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

UDP Services

 UDP does not include a flow control or congestion control
mechanism, so a sending process can pump data into a UDP
socket at any rate it pleases. Although all the data may not
make it to the receiving socket, a large fraction of data may
arrive.

 Because UDP does not use acknowledgments or
retransmissions that can slow down the delivery of useful
real-time data, developers of real-time applications often
choose to run their applications over UDP.

* UDP provides no guarantee on delay.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP Services

 The TCP service model includes a connection-oriented
service and a reliable data transfer service. When an
application invokes TCP for its transport protocol, the
application receives both of these services from TCP.

* Connection-oriented service: TCP has the client and
server exchange control information with each other
before the application-level messages begin to flow.
This so-called handshaking procedure (part of the TCP
protocol) alerts the client and server, allowing them to
prepare for a transfer of packets.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP Services

* After the handshaking phase, a TCP connection is said
to exist between the sockets of the two processes. The
connection is a full-duplex connection, in that the two
processes can send messages to each other over the
connection at the same time.

* When the application is finished sending messages, it
must tear down the connection. The service is referred
to as “connection-oriented” (or a “virtual circuit”
service), because the two processes are connected
end-to-end in a very loose manner without any
support from the intermediate nodes.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP services

* Reliable transport service: The communicating processes
can rely on TCP to deliver all the messages sent without
error and in the proper order. When one side of the
application passes a stream of bytes into a socket, it can
count on TCP to deliver the same stream of data to the
receiving socket, with no missing or duplicate bytes.

e TCP includes an end-to-end flow control mechanism, which
regulates sender transmission based on the availability of
receiving buffer.

 TCP also includes a congestion control mechanism.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Network programming

* An application can open a UDP socket or a TCP
socket.

* The TCP socket gives transport-level connection-
oriented reliable byte-stream service to the
application.

* On the other hand, the UDP socket provides
transport-level connectionless unreliable
datagram service to the application.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Addressing

* Whenever we need to deliver something to one
specific destination among many, we need an
address.

* We need a port number, to choose among
multiple addresses running on the destination
host.

* The destination port number is needed for
delivery; the source port number is needed for
the reply.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Port Numbers

* |nthe Internet model, the port numbers are 16-bit integers
between 0 and 65,535.

* The client program defines itself with a port number
chosen randomly by the transport layer software running
on the client host (ephemeral port number).

 The server must also define itself with a port number. The
port number on the server cannot be chosen randomly.

 The Internet uses universal port numbers for servers: these
are called well-known port numbers.

12

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Socket Address

Process-to-process delivery needs two identifiers:
— |P address
— Port number

* These are needed at each end to make a connection

* The combination of an IP address and a port number is
called a socket address.

* The client socket address defines the client process
uniquely, just as the server socket address defines the
server process uniquely.

* |P address + port number = socket address

13

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Socket API

* The Socket API (network application programming
interface) is the interface that the OS provides for its
networking subsystem

* The Socket APl is the place to start when implementing
a computer network application

 The API defines operations for:
— Creating a socket
— Attaching the socket to the network

— Sending and receiving messages through the socket
— Closing the socket

14

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

UDP

 Connectionless, unreliable

* Will not guarantee the successful or orderly
delivery of messages from one end to the other

* To avoid overrunning the receive buffer, the

sending application might need to pace and
regulate its transmission

 UDP packets (datagrams) have a fixed-sized
header of 8 bytes.

15

SCHOOL O F INTERACTIVE
SF ARTS #+ TECHNOLOGY

UDP Datagram

e The fields of the header are as follows:

— Source port number: the port number used by the process
running on the source host (16 bits)

— Destination port number: port number used by the
process running on the destination host (16 bits)

— Length: a 16-bit field that defines the total length of the
datagram (header + data)

— Checksum: field used to detect errors over the entire
datagram. The calculation of the checksum and its
inclusion in the datagram are optional.

16

SCHOOL OF INTERACTIVE
E ' l ARTS ¢+ TECHNOLOGY

Port Numbers - UDP

* Some well-known port numbers used by UDP:

Port Protocol Description
7 | Echo Echoes a received datagram back to the sender
9 | Discard Discards any datagram that 1s received
11 | Users Active users
13 | Daytime Returns the date and time
17 | Quote Returns a quote of the day
19 | Chargen Returns a string of characters
53 | Nameserver | Domain Name Service

17

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

UDP — example of uses

 UDP is suitable for a process that requires
simple request — response communication
with little concern for flow and error control

 UDP is suitable control for multicasting.
Multicasting capabilities are embedded in the
UDP software, but not in the TCP software.

* Also used by multimedia applications.

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

UDP Programming (1)

e Java’s implementation of UDP is split into two
classes:

— DatagramPacket
— DatagramSocket

 The DatagramPacket class: puts bytes of data
into UDP packets (datagrams)

 DatagramSocket: sends and receives UDP
datagrams

19

UDP Programming (2)

 To send data, the developer puts the data in a
DatagramPacket and send the packet using a
DatagramSocket.

* To receive data, you receive a DatagramPacket
object and the read the contents of the packet.

* |n UDP, everything about a datagram, including

t
t
t

ne address to which it is directed, is included in
ne packet itself; the socket needs to know only

ne local port on which to listen or send.

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side UDP Programming (1)

e 1. Create a UDP Socket

— Create an object of the DatagramSocket class
* DatagramSocket clientSocket = new DatagramSocket();

— Find the IP address of the server by creating objet
of the InetAddress class:

* InetAddress IPAddress = InetAddress.getByName
(“localhost”);

21

SCHOOL O F INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side UDP Programming (2)

e 2. Format your message

— Create an array of byte objects large enough to hold
your message
* byte[] sendData = new byte [1024];

— Use the methods from the String class to correctly
format your message

— Use the getBytes() method from the String class to put
your message into a byte[]
* sendData = someString.getBytes();

22

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side UDP Programming (3)

3. Create a datagram packet to send

— Create a new DatagramPacket object that holds
the message and IP address and port of the server

* DatagramPacket sendPacket = new DatagramPacket
(sendData, sendData.length, IPAddress, port);

e 4. Send the packet to the server

— Use the send method from your DatagramSocket
object to send a message to the server

 clientSocket.send(sendPacket);

SCHOOL O F INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side UDP Programming (4)

5. Read the server’s response

— Create an array of byte objects large enough to hold
your message
* byte[] receivedData = new byte [1024];

— Use the receive method from your DatagramSocket
object to read from the server

 clientSocket.receive(receivePacket);

— Note: you will not be able to receive more bytes than
allocated in your byte array

24

SCHOOL OF INTERACTIVE
ARTS + TECHNOLOGY

Client-Side UDP Programming (5)

6. Close the socket

— Use the close() method from your Socket object to
end the UDP connection.
* clientSocket.close();

25

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-Side UDP Programming (1)

e 1. Create a UDP Socket bound to a listening port

— Create an object of the DatagramSocket class
* DatagramSocket serverSocket = new DatagramSocket (port);

e 2. Read the client’s request

— Create an array of byte objects large enough to hold
your message
* byte [] receiveData = new byte [1024];

— Use the receive method from your DatagramSocket
object to read from the server

» serverSocket.receive (receivePacket);

SCHOOL OF INTERACTIVE
ARTS #+ TECHNOLOGY

Sever-Side UDP Programming (2)

3. Perform some processing
— This will depend on the function of the server

* 4, Format your message

— Create an array of byte objects large enough to hold your
message

» byte [] sendData = new byte [1024];

— Use the methods from the String class to correctly format your
message

— Use the getBytes() method from the String class to put your
message into a byte/[]
» sendData = someString.getBytes();

27

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-Side UDP Programming (3)

5. Create a datagram packet to send

— Find the IP address and port of the client

* InetAddresss IPAddress = receivePacket.getAddress();
* Int clientPort = receivePacket.getPort();

— Create a new DatagramPacket object that holds
the message and IP address and port of the server

* DatagramPacket sendPacket = new DatagramPacket
(sendData, sendData.length, IPAddress, clientPort);

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-Side UDP Programming (4)

6. Send the packet to the client

— Use the send method from your DatagramSocket
object to send a message to the server
» serverSocket.send(sendPacket);

e 7. Wait for another client

— Your code should be in a loop that allows multiple
clients to contact your server

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP (1)

e Reliable and connection-oriented

* Stream oriented protocol: allows the sending
process to deliver data as a stream of bytes and
the receiving process to obtain data as a stream
of bytes

e TCP creates an environment in which the two

processes seem to be connected by an imaginary
tube that carries their data across the internet

30

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP (2)

* Because the sending and the receiving processes may
not produce and consume data at the same speed, TCP
needs buffers for storage. There are two buffers, the
sending buffer and the receiving buffer.

 TCP is a connection-oriented protocol. It establishes a
virtual path between the source and destination.

 The transmission requires two procedures:
— Connection establishment
— Connection termination

31

SCHOOL O F INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP (3)

* To keep track of all the different events happening
during connection establishment, connection
termination, and data transfer, the TCP software is
implemented as a finite state machine.

 Possible states of TCP:
— CLOSED: there is no connection

— LISTEN: the server is waiting for calls from the client

— SYN-SENT: a connection request is sent; waiting for
acknowledgement

— SYN-RCVD: a connection request is received

32

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

TCP (4)

e ESTABLISHED: connection is established

* FIN-WAIT-1: the application has requested the closing
of the connection

* FIN-WAIT-2: the other side has accepted the closing of
connection

 TIME-WAIT: waiting for retransmitted segments to die

 CLOSE-WAIT: the server is waiting for the application to
close

* LAST-ACK: the server is waiting for the last
acknowledgement

33

SCHOOL O F INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side TCP Programming (1)

e 1. Open a TCP socket to the server

— Create an object of the Socket class
* Socket clientSocket = new Socket (“localhost”,6789);

* You now have a way to communicate with the server. In this
example, the server is ‘localhost’ listening on port 6789.

— Open a communication stream for writing to the socket by
creating an object of the DataOutputStream class.

* DataOutputStream outToServer = new DataQOutputStream
(clientSocket.getOutputStream());

* You can now use the writeBytes() method to send data to the
other side of the socket.

34

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client- Side TCP Programming (2)

* - Open a communication stream for reading
from the socket by creating an object of the
BufferedReader class

— BufferedReader inFromServer = new
BufferedReader(new InputStreamReader
(clientSocket.getinputStream()));

— You can now use the readlLine() method to read
data one line at a time from the server.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-Side TCP Programming (3)

* 2. Format your message

— Use the methods from the String class to correctly
format your message

* 3. Send a message to the server

— Use the writeBytes() method from your
DataOutputStream object to send a message to
the server

» outToServer.writeBytes(sentence);

36

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Client-side TCP Programming (4)

 Read the server’s response

— Use the readLine() method from your
BufferedReader object to read one line from the
server

» String modifiedSentence = inFromServer.readLine();

 Close the socket

— Use the close() method from your Socket object to
end the TCP connection

* clientSocket.close();

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-Side TCP Programming (1)

e 1.0pen a TCP listening socket

— Create an object of the ServerSocket class.
» ServerSocket welcomeSocket = new ServerSocket (6789);
* You now have a way to communicate for a client to contact your
server. In this example, the server is listening on port 6789.
e 2. Wait for a client to connect and create a new socket
for communication

— Use the accept() method from the ServerSocket class.
* Socket connectionSocket = welcomeSocket.accept (),

— The accept() method will wait (or, block) until the server is
contacted by a client on the appropriate port. Once the
connection (TCP handshake) has been made, a new socket
will be created for communication with the client.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-side TCP Programming (2)

e Open a communication stream for writing to the socket by
creating an object of the DataOutputStream class.

— DataOutputStream outToClient = new DataOutputStream
(connectionSocket.getOutputStream();

— You can now use the writeBytes() method to send data to the
other side of the socket

* Open a communication stream for reading from the socket
by creating an object of the BufferedReader class.

— BufferedReader inFromClient = new BufferedReader (new
InputStreamReader (connectionSocket. getinputStream())) ;

— You can now use the readLine() method to read data one line at
a time from the client.

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-side TCP Programming (3)

e 3.Read the client’s request

— Use the readLine() method from your BufferedReader
object to read one line from the client

e String clientSentence = inFromClient. readLine();
* 4, Perform some processing
— This will depend on the function of the server

e 5.Send a message to the client

— Use the writeBytes() method from the
DataOutputStream object to send a message to the
client

» outToClient.writeBytes (capitalizedSentence);

SCHOOL OF INTERACTIVE
SF ARTS #+ TECHNOLOGY

Server-Side TCP Programming (4)

6. Close the socket

— Use the close() method from your Socket object to
end the TCP connection
* connectionSocket.close();

e 7. Wait for another client

— Your code should be in a loop that allows multiple
clients to contact your server.

41

SCHOOL OF INTERACTIVE
TTTTTTTTTTTTTTT

Thank you

Questions?

42

