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1 Unconstrained optimization

In this section we address the problem of maximizing (minimizing) a function in the case when
there are no constraints on its arguments. This is not a very interesting case for economics,
which typically deals with problems where resources are constrained, but represents a natural
starting point to solving the more economically relevant constrained optimization problems.

1.1 Univariate case

Let f : U � R! R be C2. We are interested in �nding maxima (or minima) of this function.
We need to start with de�ning what do we mean by these concepts.

� De�nition (local maximum) { done before.

A point x0 2 U is a local maximum for the function f if 9" > 0, such that f(x0) �
f(x); 8x 2 U \N"(x0); where N"(x0) denotes an "-ball around x0: If f(x0) > f(x);
8x 2 U \N"(x0) with x 6= x0 we say that the local maximum is strict.

Clearly a function can have many or no local maxima in its domain.

� De�nition (global maximum)

A point x0 2 U is a global maximum for the function f if f(x0) � f(x); 8x 2 U:

So how do we go about �nding local (global) maxima? Most of the time we use di�erentiation
and set the �rst derivative to zero but, in general, a zero �rst derivative is neither necessary
(e.g., corner maximum; kink maximum), nor su�cient (minimum, in
ection point) condition
for maximum. Thus, some care is needed to ensure that what one �nds by setting f 0 =
0 is indeed what one is looking for. Let us call both local maximum and local minimum
local extremum. The following theorem is the basic result used for univariate unconstrained
optimization problems.

� Theorem 19 (su�cient conditions for local extrema)

Let f 0(x0) = 0. If:

(i) f 00(x0) < 0 then x0 is a local maximum of f:

(ii) f 00(x0) > 0 then x0 is a local minimum of f:

(iii) f 00(x0) = 0 then we cannot conclude whether x0 is a local extremum of f .
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The following result is about existence of a maximum for a continuous function on a compact
set:

� Theorem 20 (Existence of global extrema)

A continuous function f with domain the closed interval [a; b] 2 R attains a global
maximum and global minimum in the interval.

1.2 The multivariate case

Now consider more general functions of the type f : U � Rn ! R (multivariate).

� Theorem 21 (First-order necessary conditions for local extremum)

Let f : U � Rn ! R be a C1 function (continuously di�erentiable). If x0 is a local
extremum of f in the interior of U then:

@f(x0)

@xi
= 0; i = 1; ::n

The above theorem states that at an interior local extremum of a C1 function all �rst
partial derivatives must be equal to zero, i.e. we can solve the system of n equations
de�ned by the condition above and look for interior extrema only among its solutions. Note
also that the above can be written equivalently as

rf(x0) = 0n�1

i.e., at interior local extremum the gradient of f is zero. Remembering that the gradient
was a vector pointing in the direction in which the function changes fastest, we see that the
above condition implies that at the extremum there's no such best direction, i.e. if we go in
any direction we will reach a lower functional value (if we are talking about a maximum).

The �rst-order condition rf(x0) = 0n�1 is only necessary. Also, the theorem does not
apply for kink maxima or corners (think why!).To obtain su�cient conditions, as in the uni-
variate case (Thm 19) we need to know something about the second derivatives of f: In order
to be able to do so, we need some useful concepts from linear algebra.

� De�nition (Principal minor)

Let A be an n � n matrix. A principal minor of A of order k is the determinant
of the matrix formed by deleting some n � k rows and their corresponding n � k
columns of A where k = 0; :::; n� 1.

� De�nition (Leading principal minor)
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The k-th order leading principal minor (LPM) of A is the determinant of the matrix
formed by deleting the last n� k columns and rows of A.

For a symmetric n� n matrix A de�ne the following concepts.

� De�nition (positive/negative de�nite symmetric matrix) (Note: we saw alterna-
tive de�nitions earlier, using quadratic forms)

(a) The matrix A is positive de�nite (p.d.) i� all its n LPMs are positive.

(b) The matrix A is negative de�nite (n.d.) i� all its LPMs are not zero and
alternate in sign, that is det(A1) < 0; det(A2) > 0, etc.

� De�nition (positive/negative semide�nite symmetric matrix)

(a) The matrix A is positive semi-de�nite (p.s.d.) i� all its principal minors
are non-negative.

(b) The matrix A is negative semi-de�nite (n.s.d.) i� all its odd-order principal
minors are non-positive and all its even-order principal minors are non-negative.

Note: the above must be true for all principal minors, not just the leading ones.
Finally we are ready to state the su�cient conditions for local extrema.

� Theorem 22 (Second-order (su�cient) conditions for local extrema)

Let f : U � Rn ! R be a C2 function. Let also x0 2 U satisfy rf(x0) = 0n�1 and
H(x0) be the Hessian of f at x0. Then:

(i) If H(x0) is negative de�nite, then x0 is a strict local maximum of f:

(ii) If H(x0) is positive de�nite, then x0 is a strict local minimum of f:

If the Hessian is only p.s.d. (n.s.d.) the extrema may be not strict.

� Theorem 23 (Second-order necessary conditions)

Let f : U � Rn ! R be a C2 function. Let also x0 2 intU (the interior of U; i.e. not
a boundary point). If x0 is a local maximum (minimum) of f then rf(x0) = 0n�1
and H(x0) is n.s.d. (p.s.d.).

The following examples illustrate how the theory from above is applied.

� Example 1 (Multi-product �rm)
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Suppose we have a �rm producing two goods in quantities q1 and q2 and with prices p1 and
p2: Let the cost of producing q1 units of good 1 and q2 units of good 2 is given by C(q1; q2) =
2q21 + q1q2 + 2q

2
2: The �rm maximizes pro�ts, i.e., it solves:

max
q1;q2

� = p1q1 + p2q2 � (2q21 + q1q2 + 2q22) = pT q � qTAq

where p = (p1; p2)
T ; q = (q1; q2)

T and A =

�
2 :5
:5 2

�
:

How to solve for the optimal quantities the �rm will choose? Take �rst the partial derivatives

of � with respect to q1 and q2 and set them to zero, to �nd q�i =
4pi � pj
15

; i; j = 1; 2: We also

need to verify that this is a maximum indeed. The Hessian of the objective is H =

�
�4 �1
�1 �4

�
:

Let's check if the leading principal minors alternate in sign, we have H1 = det[�4] = �4 < 0
and H2 = det(H) = 15 > 0; i.e., the candidate solution is a maximum indeed.

� Example 2 (OLS)
Think of some variable y which depends on x1; x2; ::xk and assume we have a dataset of n

observations (i.e. n vectors Xi = (x1i; x2i; ::xki); i = 1::n): Assume that x1 is a vector of ones.
We are looking for the \best �t" between a linear function of the observations, X� and our
dependent variable y: (Note that X is n� k and � is k� 1 vector of coe�cients). Thus we can
write:

yi = �1x1i + :::�kxki + "i; i = 1::n

where "i are the `residuals' (errors) between the �tted line X� and y: The above can be written
more compactly in matrix form as:

y = X� + "

Remember, we want to �nd the best �t, i.e. the coe�cients � which minimize the "0s in some
sense. One possible criterion (used by the OLS method) is to choose � to minimize

Pn
i=1 "

2
i ;

i.e. we want to solve the problem:

min
�
S(�) =

X
i

(yi � �1x1i � :::�kxki)2 = (y �X�)T (y �X�) =

= yTy � �TXTy � yTX� + �TXTX�

The �rst order condition for the above minimization problem is (using the matrix di�erentiation
rules { di�erentiate wrt each �i and stack):

@S(�)

@�
= �2XTy + 2XTX� =

�!
0

from which we �nd �� = (XTX)�1XTy { a candidate minimum. So is �� indeed a minimum of

S(�)? We need to check if the Hessian is positive semi-de�nite, i.e., whetherH(��) =
@2S(��)

@�2
=

2XTX, a k-by-k matrix is p.s.d. (Exercise: prove that the Hessian is p.s.d. using one of the
given de�nitions).
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1.3 Constrained optimization

1.3.1 Introduction

In this section we look at problems of the following general form:

max
x2Rn

f(x) (NLP)

s:t: g(x) � b
h(x) = c

We call the above problem, a Non-Linear Optimization Problem (NLP). In it, f(x) is called
the objective function, g(x) � b are inequality constraints, and h(x) = c are equality constraints.
Note that any optimization problem can be written in the above canonical form. For example
if we want to minimize a function h(x), we can do this by maximizing �h(x).
It turns out that it is easier not to solve (NLP) directly, but instead solve another, related

problem (Lagrange's or Kuhn-Tucker's) for x� and then verify that x� solves the original NLP
as well. We will also be interested in whether we are obtaining all solutions to the NLP in this
way, i.e., whether it is true that if x� solves the NLP it solves the related problem as well. Thus
we would like to see when the Lagrange's or Kuhn-Tucker's methods are both necessary and
su�cient for obtaining solutions to the original NLP.

1.3.2 Equality constraints

Start simple, assuming that the problem we deal with has only equality constraints, i.e.,

max
x2Rn

f(x)

s:t: h(x) = c; c 2 Rm

The equality constraints restrict the domain over which we maximize. Notice that if the number
of the constraints is equal to the number of variables (m = n) and if we assume that the
constraints are linearly independent, potentially we can solve for x from the constraints and
there will be nothing to be optimized. Thus a well-de�ned problem will typically have m < n
(less constraints than choice variables).

(a) The Lagrange multipliers method
The method for solving problems of the above type is called the Lagrange Multipliers Method

(LMM). What it does is convert the NLP into a related problem (call it the LMM problem)
with a new objective function and no constraints, so that we can then use the usual
unconstrained optimization techniques.
What is the price we have to pay for this simpli�cation? During the conversion to LMM

we end up with m more variables to optimize over. We next verify what is the connection
between the solutions to the LMM and the original NLP and most importantly, what conditions
are needed for the solutions to the LMM to be solutions to our NLP with equality constraints.
Let us describe the Lagrange method works. First we form the new objective function,

called the Lagrangean:
�(x; �) � f(x) + �T (c� h(x))
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Notice that we added m new variables, �j, j = 1; :::;m { one for each constraint. These are
called Lagrange multipliers. Note that they multiply zeros, so in fact the functional value of
the objective does not change.
The LMM problem is:

max
x;�

�(x; �) (LMM)

Suppose we have set all partial derivatives to zero and arrived at a candidate-solution
(x�; ��): We need to check if it is indeed a maximum, i.e. a second-order condition must be
veri�ed as well.
Let's now go through the above steps in more detail. First, write down the �rst-order

(necessary) conditions for local extremum in the LMM problem:

@�

@xi
= ��1

@h1
@x1

� :::� �m
@hm
@xm

+
@f

@xi
= 0; i = 1::n

@�

@�j
= cj � hj(x) = 0; j = 1::m

Note we have m+ n equations in the same number of unknowns.

(b) Second-order conditions of LMM and the bordered Hessian
Suppose the above system of �rst-order conditions has a solution (x�; ��):We need to check

if it is a maximizer indeed. The standard way in unconstrained problems was to see if the
Hessian is n.s.d. Here, we form so-called bordered Hessian, de�ned as:

Ĥ(m+n)�(m+n)(x
�; ��) �

266666666666664

0 ::: 0 �@h1
@x1

::: �@h1
@xn

::: ::: ::: ::: ::: :::

0 ::: 0 �@hm
@x1

::: �@hm
@xn

�@h1
@x1

::: �@hm
@x1

@2�

@x21
:::

@2�

@x1@xn
::: ::: ::: ::: ::: :::

�@h1
@xn

::: �@hm
@xn

@2�

@xn@x1
:::

@2�

@x2n

377777777777775
where all derivatives are evaluated at (x�; ��): This is nothing but our usual Hessian for the
Lagrangean (from the unconstrained optimization method) but notice that we have ordered the
matrix of second partials in a particular way { �rst taking all second partials with respect to
the �0s and then with respect to the x0s: The bordered Hessian, Ĥ can be written in a more
compact way as:

Ĥ =

�
0m�m �Jhm�n

�(Jh)Tn�m H(�(x))n�n

�
where Jh is the Jacobian of h(x) and H(�(x)) is the \Hessian" of �(X) (the matrix of second
partials of � taken only with respect to the xi).
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Because of all the zeros, turns out we need only the last n � m leading principal minors
of Ĥ to determine if it is n.s.d. Let det(Ĥm+1) be the LPM of the matrix with bottom-right

element
@2�

@x21
, det(Ĥm+2) be the LPM of the matrix with bottom-right element

@2�

@x22
, etc. Then

we have the following result:

� Theorem:

If sign(det(Ĥm+l)) = (�1)l, l = 1; ::n�m, then the bordered Hessian is n.s.d. and
the candidate solution is a maximum of the LMM.

� Example: A Consumer's problem

A consumer has income y and wants to choose the quantities of n goods q1; ::qn to buy to
maximize his strictly concave utility U(q1; ::qn); taking as given the prices of the goods p1; ::pn:
Her problem can be written as (using vector notation):

max
q
U(q)

s:t: pT q = y

Set up the Lagrangean:
�(q; �) = U(q) + �(y � pT q)

The FOCs are:

y � pT q = 0
@U

@qi
� �pi = 0

which can be solved for (q�; ��): Check that the SOC (the fact that the bordered Hessian is
n.s.d.) is satis�ed as an exercise (Hint: use the concavity of U).

(c) The constraint quali�cation
Notice that the above proposition does not say anything about whether x� obtained as the

solution to LMM will solve the original NLP problem. In general, this is not true since the FOCs
of the Lagrangean may be neither necessary, nor su�cient for a maximum and thus additional
conditions are needed. One possible necessary condition so that the solutions of the LMM be
solutions of the NLP as well is the so-called constraint quali�cation (CQ):

J(h(x�)) =

26664
@h1(x

�)

@x1
:::

@h1(x
�)

@xn
::: ::: :::

@hm(x
�)

@x1
:::

@hm(x
�)

@xn

37775 is rank m

If there is only one constraint the CQ is equivalent to the gradient of h being not a vector
of zeros at x�. The CQ is only a necessary condition, so if the Jacobian is singular at some x̂
we should treat it as candidate maximum and we would need to check (separately) whether it
solves the NLP.
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� Theorem 26 (Equality constraints)

Consider the problem:

max
x2Rn

f(x)

s:t: h(x) = c 2 Rm

Let C = fx 2 Rn : h1(x) = c1; :::hm(x) = cmg; i.e., the set of feasible points.
Let x� be local maximum in C and suppose it satis�es the constraint quali�cation.
rank(J(h(x�)) = m: Then 9�� 2 Rm such that (x�; ��) is a critical point of the
Lagrangean �(x; �) = f(x) + �T (c� h(x)):

The above theorem implies that if the constraint quali�cation holds, we can use the FOCs
of the LMM to �nd candidate maxima and then verify which of them is solves the original NLP
problem.

� Example: solve maxx1;x2 x21x2 subject to 2x21 + x22 = 3:

Solution: First check for any points which may violate the CQ. We have Jh = [4x1 2x2]
i.e. we do not want both x1 and x2 to be zero. But it is obvious (it violates the constraint) that
(0; 0) is not a solution to our problem, so we can safely ignore this point as canidate maximum.
The Lagrangean is L(x1; x2; �) = x

2
1x2��(2x21+x22�3); the FOCs are @L

@x1
= 2x1(x2�2�) = 0

and @L
@x2

= x21� 2�x2 = 0 and 2x21+x22 = 3: The �rst equation yields x1 = 0 or x2 = 2�: Case 1:
if x1 = 0 then x2 = �

p
3 from the 3rd FOC and � = 0 from the 2nd. Two candidate maxima.

Case 2: If x2 = 2� we get x
2
1 = x

2
2 from the 2nd FOC. Plug into the 3rd to get x1 = �1:

So, we also have x2 = �1 and then � = 0:5 if x2 = 1 and � = �0:5 when x2 = �1: Four
more candidate maxima. Since the CQ holds at any point 6= (0; 0), we know that the FOCs are
necessary for maximum (see Theorem 26), so just check which of the six candidates delivers it.
Answer { there are 2 solutions to the original problem: (1; 1) and (�1; 1):

1.3.3 Inequality constraints

(a) The Lagrange multipliers method again
The Lagrange method can be also used to solve problems involving inequality constraints

in addition to the equality ones. Consider the following problem:

max
x2Rn

f(x)

s:t: g(x) � b; b 2 Rk

Note that the inequality constraints can be either binding, i.e. they hold as equality at the
solution x� or non-binding if they hold as strict inequality. Again the Lagrange method
calls for setting up the Lagrangean:
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�(x; �) = f(x) + �(b� g(x))

It is very tempting to use the previously described method, take derivatives with respect to
the xi and set them equal to zero. The problem with that approach is what we are going to do
if we have a non-binding constraint? It clearly enters the FOCs and so may potentially change
the value of the objective { if we proceed in this way, we will end up maximizing a di�erent
function.
What to do? If a constraint binds, we can proceed as before, but if it does not, we must

set �j = 0. This is intuitively clear { if a constraint is not binding at the solution it need not
be included in the maximization. Thus, together with the FOCs, we need to impose the
additional conditions that:

�j[bj � gj(x)] = 0; j = 1::k
It can be demonstrated (but I will not do it here) that the Lagrange multipliers in the case of
inequality constraints cannot be negative. Intuitively, this is true since rf(:) = �rg(x) and
the fact that the gradients of f and g must point in the same direction (towards outside the
constraint set, i.e., where the function increases).
Note: if you have also equality constraints in the problem, there is no need to impose the

�j[bj � gj(x)] = 0 condition for them (why?). But there is no harm if you do { it will be
automatically satis�ed (think why)

� First-order conditions

In total the �rst-order conditions for the LMM in this case are:

@�(x; �)

@xi
= 0

�j(bj � gj(x)) = 0

gj(x) � bj

�j � 0 (FOC)

� Second-order conditions

Suppose that, by solving the above FOCs we have found a candidate solution (x�; ��) and
wish to check if it solves the NLP as well. Again, we need to set up the bordered Hessian, but
we must include only the elements of �� that are non-zero (i.e., include only the binding
constraints, g1; ::gk0). For example, let us assume that the �rst k0 constraints are binding.
Then the bordered Hessian is given by:
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Ĥ(n+k0)�(n+k0)(x
�; ��) =

266666666666664

0 ::: 0 �@g1
@x1

::: � @g1
@xn

::: ::: ::: ::: ::: :::

0 ::: 0 �@gk0
@x1

::: �@gk0
@xn

�@g1
@x1

::: � @g1
@xn

@2�

@x21
:::

@2�

@x1@xn
::: ::: ::: ::: ::: :::

�@gk0
@x1

::: �@gk0
@xn

@2�

@xn@x1
:::

@2�

@x2n

377777777777775
where all derivatives are evaluated at (x�; ��): If Ĥ is n.s.d. we indeed have a maximum in the
LMM problem.
Once again a possible constraint quali�cation (to ensure the solution to LMM solves

NLP) is that the Jacobian matrix of the k0 binding constraints be rank k0.

� Theorem 27 (Inequality constraints)

Consider the problem:

max
x2Rn

f(x)

s:t: g(x) � b 2 Rk

Let C = fx 2 Rn : g(x) � bg; i.e. the set of feasible points. Let x� be local maximum in C that
satis�es the constraint quali�cation (CQ) for the k0 binding constraints rank(J

g(x�)) = k0:
Then 9�� 2 Rk0 such that (x�; ��) is a critical point of the Lagrangean �(x; �) = f(x) +
k0P
j=1

�j(bj � gj(x)):

Again, what this meas is that if the CQ holds, we can use the Lagrange method to obtain
the solution to the NLP.

Sometimes it is hard to check if the constraint quali�cation holds. So what to do instead?
We can impose some conditions on the shapes of the objective function and the constraints.
For example an alternative to the above full-rank-of-the-Jacobian condition is given by the
following:

� Theorem 24 (Slater's constraint quali�cation)

Consider the problem maxx f(x) s.t. g(x) � 0 (NLP). Let f(:) and g(:) be concave
functions on Rn. Then:

(i) If the FOCs of the Lagrangean are satis�ed at x� then x� solves the NLP
exhibited above.

(ii) (the Slater condition) A candidate maximum satis�es the FOCs of the
Lagrangean if 9�x; such that gj(�x) > 0; j = 1::m:
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� Example: Solve using the Lagrange method the problem maxx;y x� y2 s.t. x2+ y2 = 4;
x � 0; y � 0:

Solution: Verify that the CQ �rst considering all cases (note that the �rst constraint is
binding). Form the Lagrangean L = x� y2 � �(x2 + y2 � 4) + �1x+ �2y: The nine �rst-order
conditions for maximum are:

@L

@x
= 1� 2�x+ �1 = 0 (1)

@L

@y
= �2y � 2�y + �2 = 0 (2)

@L

@�
= x2 + y2 � 4 = 0 (3)

�1x = 0 (4) and �2y = 0 (5)

�1 � 0 (6) and �2 � 0 (7)
x � 0 (8) and y � 0 (9)

From (1) we have 1 + �1 = 2�x: Since �1 � 0; then 1 + �1 > 0 and so it must be x > 0 and
� > 0 (think why!). But then from (4) we have �1 = 0: From (2) we have 2y(1+�) = �2: Since
1 + � > 0 either both y and �2 are zero or both are > 0. But by (5) both cannot be positive.
So, �2 = y = 0: Now x = 2 from (3), �1 = 0 by (4) and � = 1=4 by (1) . This leads to the
candidate solution (x; y; �; �1; �2) = (2; 0; 1; 1=4; 0; 0):Verify that it is a maximum.

(b) The Kuhn-Tucker method
An alternative to the Lagrangean method is the so-called Kuhn-Tucker method. Consider

the following canonical non-linear optimization problem:

max
x2Rn

f(x)

s:t: g(x) � b; b 2 Rk

xi � 0; i = 1; ::n (KT)

� Remarks

(1) the above problem features so-called non-negativity constraints on the choice variables.
Because most of the objects (prices, quantities, etc.) that economics deals with are non-negative,
the above method is highly applicable in economic settings.
(2) note that the formulation above is without loss of generality and does allow for equality

constraints { if we have an equality constraint h(x) = c we write it as the two inequality
constraints: h(x) � c and �h(x) � �c.

Let �(:) denotes the Lagrangean of the above problem, excluding the non-negativity
constraints, i.e.

�(x; �) = f(x) + �T (b� g(x))
and �̂(:) denote the Lagrangean, including them, i.e.,
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�̂(x; �) = f(x) + �T (b� g(x)) + �Tx

Notice that if we have xi = 0 at the solution, then
@�

@xi
=
@�̂

@xi
� �i � 0 as

@�̂

@xi
= 0 at the

solution. If, instead, xi > 0 then the non-negativity constraint is non-binding and can be

excluded, thus it must be that
@�

@xi
= 0 at the solution. Combining these two observations, the

following conditions must hold:

xi
@�

@xi
= 0; xi � 0;

@�

@xi
� 0

Thus, the �rst-order conditions for the KT method are:

xi
@�

@xi
= 0

xi � 0
@�

@xi
� 0 (KT FOCs)

�j(bj � gj(x)) = 0

gj(x) � bj

�j � 0

� Remarks

1. The second order conditions involve the bordered Hessian of the binding constraints as
before.
2. A possible constraint quali�cation is that the Jacobian of the partial derivatives of the

binding constraints with respect to the non-zero x0is to have maximum possible rank when
evaluated at (x�; ��):
Advantages over the Lagrange method: less equations and less unknowns to solve for.

� Theorem 28 (Necessity of the Kuhn-Tucker conditions)

Consider the problem of optimization with inequality and non-negativity constraints:

max
x2Rn

f(x)

s:t: g(x) � b 2 Rk

x � 0

Let C be the feasible set; x� be a local maximum in C and suppose x� satis�es the CQ formed
of the k0 binding constraints with partials taken with respect to the j0 non-zero xj: Then 9�� � 0
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such that (x�; ��) satis�es the system of KT �rst-order conditions:

xi
@�(:)

@xi
= 0; xi � 0;

@�

@xi
� 0; i = 1::n

�j[bj � gj(x)] = 0; �j � 0; gj(x) � bj; j = 1::k

where �(x; �) = f(x) + �T (b� g(x)):
The interpretation is that if x� solves the NLP and the (modi�ed) CQ holds, then x� solves

the KT equations, i.e., the latter are necessary for x� to be maximum if the CQ holds.

� Theorem 29 (Kuhn-Tucker { su�cient conditions for maximum)

Consider the problem from the previous theorem. If the following conditions are
satis�ed:

(i) f(x) is di�erentiable and concave on Rn+.
(ii) gj(x) are di�erentiable and convex on Rn+ for all j = 1; ::k.
(iii) x� satis�es the KT �rst-order conditions (KT FOCs).

Then x� is the global maximum of f(x) subject to the constraints g(x) � b:

Thus, with concavity of the objective function and convexity of the constraints the KT
method is su�cient to �nd a maximum. Many economic problems satisfy these criteria, which
makes the KT method the economists' \weapon of choice".

� Example: Solve using the KT method the problem maxx;y x� y2 subject to x2 + y2 � 4;
x � 0; y � 0:

Solution: Verify the CQ as before. Form the KT Lagrangean L = x� y2� �(x2+ y2� 4).
The KT �rst-order conditions for maximum are:

@L

@x
= 1� 2�x � 0 (1)

@L

@y
= �2y � 2�y � 0 (2)

x2 + y2 � 4 � 0 (3)
(1� 2�x)x = 0 (4) and (�2y � 2�y)y = 0 (5)

�(x2 + y2 � 4) = 0 (6)

x; y; � � 0 (7)

Brute force method: check all eight cases about whether x; y; � are 0 or > 0 or be smart and
eliminate some cases upfront.
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1.3.4 The Envelope theorem

This section considers the e�ect of changes in some parameters on which the objective function
and/or the constraints depend on the outcome of an optimization problem.

� Envelope theorem 1 (unconstrained problem)

Suppose we have the problem:
max
x

f(x; a)

where x 2 Rn (vector of unknowns) and a 2 R (a parameter). Suppose f is C1 and suppose
x�(a) solves the above problem. Then:

d

da
f(x�(a); a) =

@f

@a
f(x�(a); a)

Note that we have the total derivative on the l.h.s. and the partial on the r.h.s.
Proof: Use the chain rule

d

da
f(x�(a); a) =

nX
i=1

@f(x�(a); a)

@xi

@x�i (a)

@a
+
@f(x�(a); a)

@a
=

=
@f(x�(a); a)

@a

since @f(x�(a);a)
@xi

= 0 for i = 1; :: n by the �rst-order conditions for maximum.

� Interpretation: if we are interested in the (total) change of the maximized functional
value with respect to the parameter a we can simply take the partial derivative of f with
respect to a and evaluate at x�(a) { no need to worry that a a�ects f both directly and
indirectly through x�: This saves you a lot of work when doing comparative statics.

The constrained case
Suppose we have the problem:

max
x2Rn

f(x; �)

s.t. g(x; �) � b 2 Rk

Let �j be the multipliers on the inequality constraints and suppose � 2 Rm are parameters
(below I just use � for one of them). Suppose the solution x�(�) to the above problem exists
and is such that all k constraints are binding at x�(a). Suppose also that the FOCs are
necessary and su�cient for a maximum. At x�; �� the Lagrangean is

�(x�(�); �; ��(�)) = f(x�(�); �) + ��(�)T (b� g(x�(�); �))

and (x�; ��) satisfy the LMM FOCs:
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@�

@xi
=
@f(x�(�); �)

@xi
�

kX
j=1

��j(�)
@gj(x

�(�); �)

@xi
= 0 i = 1; ::n

bj � gj(x�(�); �) = 0; j = 1::k (all constraints bind, as assumed)

Notice that if we plug in x�(�) and ��(�) into � it becomes just a function of �. Let us
write this more explicitly. De�ne V (�) � f(x�(�); �) called the value function, i.e., this is the
objective function evaluated at the solution x�(�): De�ne also 	(�) � �(x�(�); �; ��(�)); i.e.,
the value function of the Lagrangean at the solution.
Consider now a small change in �. We have, for the �rst derivative of 	 (re
ecting the total

change of the Lagrangean maximized value with respect to �):

d	(�)

d�
=

nX
i=1

@�

@xi

dx�i
d�

+
kX
j=1

@�

@�j

@��j(�)

@�
+
@�

@�
=

=
nX
i=1

@�

@xi

dx�i
d�

+
kX
j=1

[bj � gj(x�(�); �)]
@��j(�)

@�
+
@�

@�

All above derivatives are evaluated at x�(a); ��(a). At (x�; ��) the FOCs hold, i.e.
@�

@xi
=

0, and also we assumed that all constraints bind, so bj = gj(x
�(a); a) for all j = 1; :::k: Thus,

the �rst two terms in
d	(�)

d�
above equal zero, and therefore,

d	(�)

d�
=
@�(x�(�); ��(�); �)

@�

Now do this for V (�) { the total change in the maximized value of f :

dV (a)

d�
=

nX
i=1

@f

@xi

dx�i (�)

d�
+
@f

@�

Again, all derivatives are evaluated at x�(�); arguments are omitted to save on notation. Using
the Lagrangean FOCs again, we have

@f(x�(�); �)

@xi
=

kX
j=1

��j(�)
@gj(x

�(�); �)

@xi

Using also that gj(x
�(�); �) = bj in a neighborhood of �; i.e., di�erentiating both sides,

nX
i=1

@gj
@xi

dx�i
d�

+
@gj
@�

= 0
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, we obtain (changing the order of summation with respect to i and j):

dV (�)

d�
=

kX
j=1

��j

nX
i=1

@gj(x
�(�); �)

@xi

dx�i (�)

d�
+
@f

@�

= �
kX
j=1

��j
@gj
@�

+
@f

@�
=
@�

@�

The last line follows from the de�nition of the Lagrangean { take a partial derivative with
respect to the � argument alone. Finally combining (1) and (2) we have that:

d	(�)

d�
=
@�(x�(�); �; ��(�))

@�
=
dV (�)

d�

� What is the use of this theorem?

Suppose you are maximizing a function f and you have found x� that maximizes it. Suppose
also you would like to do comparative statics, i.e., see how x� and f(x�) change as you vary
some parameter �i: From the above theorem, the e�ect of changing �i on the value function
can be calculated without solving the whole problem again, but simply by taking the
partial derivative of the Lagrangean with respect to �i alone (i.e., keeping the other x and
the other �'s constant while di�erentiating).

16


