
Learning by Doing vs. Learning from Others in a Principal-Agent

Model∗

Jasmina Arifovic† Alexander Karaivanov‡

October, 2009

Abstract

We introduce learning in a principal-agent model of stochastic output sharing under moral haz-
ard. Without knowing the agents’ preferences and the production technology, the principal tries
to learn the optimal agency contract. We implement two learning paradigms — social (learning
from others) and individual (learning by doing). We use a social evolutionary learning algorithm
(SEL) to represent social learning. Within the individual learning paradigm, we investigate the
performance of reinforcement learning (RL), experience-weighted attraction learning (EWA), and
individual evolutionary learning (IEL). Our results show that learning in the principal-agent model
is very difficult due to three main reasons: (1) the stochastic environment, (2) the discontinuity in
the payoff space at the optimal contract caused by the binding participation constraint and (3) the
incorrect evaluation of foregone payoffs in our sequential game principal-agent setting. The first
two factors apply to all learning algorithms we study while the third is the main reason for EWA’s
and IEL’s failures to adapt. We find that social learning, especially with a selective replication
operator, is much more successful in adapting to the optimal contract than the canonical versions
of individual learning from the literature. A modified version of the IEL algorithm using realized
payoffs evaluation performs better than the other individual learning models; however, it still falls
short of the social learning’s performance.
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1 Introduction

The optimal contracts in principal-agent models often take complicated forms, for example, due to the
intricate trade-off between provision of insurance and incentives. Depending on the exact setting, the
optimal contract depends crucially on both the principal’s and agent’s preferences, the properties of
the production technology, and the stochastic properties of the income process. As an example, take
a standard problem of optimal contracting under moral hazard (e.g. Hart and Holmstrom, 1987)1.
The existing literature typically assumes that actions undertaken by the agent are unobservable or
non-verifiable by the principal. However, at the same time, the principal is assumed to have perfect
knowledge of objects that seem much harder or at least as hard to know or observe such as the agent’s
preferences, the agent’s decision making process, or the functional form of the output technology.

In this paper, we address these issues by explicitly modeling the principal’s learning process based
only on observables such as output realizations. Our primary objective is to investigate whether this
learning process leads to knowledge acquisition sufficient for convergence to the theoretically optimal
principal-agent contract. To this end we analyze two alternative paradigms, social and individual
learning, to describe the principal’s learning process. The social learning paradigm represents a way
of explicit, micro-level modeling of what is referred to in the literature as “learning spillovers”, or
“learning from others”. At the same time, the individual learning paradigm can be viewed as an
explicit, micro-level modeling of “learning by doing” (e.g. Arrow, 1962; Stokey, 1988).

Numerous empirical studies in widely diverse research areas suggest that individuals and firms
utilize in practice social and individual learning methods resembling those we analyze. For example, in
industrial organization, Thornton and Thompson (2001) use a dataset on shipbuilding during WWII
to analyze learning across and within shipyards. They find that learning spillovers are significant and
may have contributed more to increases in productivity than conventional learning by doing effects.
Cunningham (2004) uses data from semiconductor plants and finds that firms which are installing
significantly new technologies appear to be influenced by social learning. Singh, Youn and Tan (2006)
find similar effects in the open source software industry. In the development literature, Foster and
Rosenzweig (1996) use household panel data from India on the adoption and profitability of high-
yield crop varieties to test the implications of learning by doing and learning from others. They find
evidence that both households’ own and their neighbors’ experience increase profitability. Conley and
Udry (2005) investigate the role of social learning in the diffusion of a new agricultural technology in
Ghana2. They test whether farmers adjust their inputs to align with those of their neighbors who
were successful in previous periods and present evidence that farmers do tend to adopt such successful
practices. However, when they apply the same model to a crop with a known technology they find
no such effect3. Last but not least, at the macro level, the seminal works of Romer (1986) and Lucas
(1988) have emphasized the role of learning spillovers as an engine of economic growth.

Specifically, we adopt a repeated one-period contracting framework in an output-sharing model
which can be thought of as optimal wage, sharecropping, or equity financing arrangement. An asset
owner (the principal) contracts with an agent to produce jointly. The principal supplies the asset
(e.g. a machine, land, know-how, etc.) while the agent supplies unobservable labor effort. Output is

1Applications that fit under this heading abound in the finance literature (credit under moral hazard), public finance
(optimal taxation with hidden labor effort), development (sharecropping), macroeconomics (optimal social insurance),
labor (optimal wage schedules), etc.

2See also Zhang et al. (2002) who present evidence for learning from others in technology adoption in India.
3Further evidence exists in the business / management literature. For instance, Boyd and Bresser (2004) study the

occurrence and performance impact of different models of organizational learning in the U.S. retail industry and point
out the importance of inter-organizational learning, while Ryu, Rao, Kim and Chaudhury (2005) document learning by
doing and learning from others in the Internet data management sector.
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stochastic and the probability of a given output realization depends on the agent’s effort. The principal
wants to design and implement an optimal compensation scheme for the agent which maximizes the
principal’s profits and satisfies participation and incentive compatibility constraints.

We first describe the optimal contract that arises if both contracting parties are fully rational and
know all the ingredients of the contracting problem and environment. Then, we model and analyze the
situation in which a principal (or, principals) with no prior knowledge of the environment has to learn
what the optimal contract is.

We implement the social learning paradigm (learning from others) via a model of social evolutionary
learning, SEL, in which players update their strategies based on imitating strategies of those players
who have performed better in the past, and, occasionally, experimenting with new strategies. The
population of players thus learns jointly through their experience that they share over time4. To
implement the individual learning paradigm (learning by doing), we evaluate three algorithms that
have been widely used in various game theoretic and applied settings: reinforcement learning, RL
(Roth and Erev, 1995, 1998), experience-weighted attraction learning, EWA (Camerer and Ho, 1999)5,
and individual evolutionary learning, IEL (Arifovic and Ledyard, 2004, 2007). In contrast to social
learning, individual learning is based on updating the entire collection of strategies that belong to an
individual player, based on her own experience only.

Two features shared by all the algorithms are the increase in frequency of representation of well-
performing strategies over time and the probabilistic choice of a particular strategy to be used in a
given period. In terms of payoff evaluation, the difference between RL on one hand, and IEL and
EWA, on the other, is that RL updates the payoff only of the strategy that was played in a given
time period, and leaves the payoffs of the rest of the strategies unchanged. In contrast, EWA and IEL
constantly update the payoffs of all strategies based on their ‘foregone’ payoffs. In terms of strategy
representation, what distinguishes RL and EWA from IEL is that the implementation of RL and EWA
requires representation of all possible strategies set in the algorithms’ strategy collections, while IEL
starts out with a collection (i.e. a subset) of strategies that are randomly drawn from the full set.
Finally, in terms of payoff updating, RL and EWA use a procedure that is standard for a number of
individual learning algorithms, i.e. the probabilities that strategies will be selected are updated based
on their accumulated payoffs while IEL’s updating is instead based on the evolutionary paradigm, i.e.,
consists of increases in frequency of the strategies that performed well in the past (based on evaluation
of their foregone payoffs) and occasional experimentation with new strategies6

Our results show that social evolutionary learning almost always converges to the theoretically
optimal principal-agent contract. In contrast, the individual learning algorithms based on evaluation
of foregone payoffs (IEL and EWA) that have proven very successful in a variety of Nash environments
completely fail to adapt in our setting. Reinforcement learning (RL) performs somewhat better than

4Our implementation of the evolutionary paradigm is based on genetic algorithms which have had numerous appli-
cations in economics — for example, Arifovic (1996), Arifovic (2000), Marks (1998), Dawid (1999), Lux and Schorstein
(2005). Also, in organization theory, Rose and Willemain (1996) implement a genetic algorithm in a principal-agent
environment where the principal’s and agent’s strategies are represented by finite automata. They find that the variance
of output and agent’s risk aversion affect adaptation. However, they do not analyze the relative performance of different
learning algorithms nor study the reasons for non-convergence.

5For an excellent overview of applications of RL, EWA and other individual learning models see Camerer (2003) and
Erev and Haruvy (2008).

6Arifovic (1994) implemented IEL in the context of the ‘cobweb’ model and showed it captured well price behavior in
experiments with human subjects. More recently, Hommes and Lux (2008) use an individual genetic algorithm to match
experimental data about expectations in cobweb settings. Our IEL implementation follows Arifovic and Ledyard (2004)
who apply it to public good provision mechanisms and call market mechanisms to capture, in real time, behavior observed
in experiments with human subjects. Overall, IEL has proven to be especially successful in adapting to environments
with large strategy spaces (e.g., see Arifovic and Ledyard, 2004 for comparison with RL and EWA).

3



IEL and EWA since it only updates the payoffs of those strategies that were actually used. However,
RL’s overall learning performance is also unsatisfactory relative to SEL’s due to RL’s disadvantage in
handling the large strategy space.

The intuition for the failure of EWA and IEL is that, when evaluating foregone payoffs of potential
strategies that have not been tried out, the principal assumes that agent’s action will remain con-
stant (as if playing Nash), while in fact the optimal contract involves a reaction to the agent’s best
response function as in a Stackelberg game. The inability of these canonical individual learning models
to produce correct foregone payoffs for the principal’s strategies precludes their convergence to the
theoretically optimal contract7. In contrast, social learning involves evaluation of payoffs of only those
strategies that are actually played, thus avoiding this problem. As a result, SEL exhibits high rates of
convergence to the optimal contract.

Two additional reasons, specific to the principal-agent setting, cause further difficulties with adapt-
ing to the optimal contract, independently of the learning algorithm used. First, as usual, the presence
of stochastic shocks makes learning difficult in any type of environment. Second, in ours and any
similar mechanism design model, the principal’s payoffs are a discontinuous function of the strategy
space at the agent’s participation constraint. That is, profits are maximized at some positive value
at a point on the constraint but any nearby contract which violates it yields zero payoff that in turn
results in a large flat area in the payoff function. This creates problems for the successful adaptation
of all learning algorithms since their performance is driven by the differences in payoffs that strategies
receive over time.

The failure of individual learning where foregone payoffs are taken into account stands in stark
contrast to the findings reported in the existing literature. However, our principal-agent environment
is different from the environments studied so far, most importantly in its sequential as opposed to
simultaneous game nature. To address this problem, we evaluate a modified version of the IEL algorithm
where only payoffs of strategies that are actually tried out are updated while, at the same time,
we keep the evolutionary updating mechanism that allows IEL to adapt well in environments with
large strategy space as reported in the literature. The resulting ‘IEL with realized payoffs’ (IELR)
algorithm does much better in adapting to the optimal contract than its canonical ‘foregone payoffs’
counterpart. Nevertheless, the IELR’s convergence rates still fall short of those achieved with social
learning, including when controlling for the total number of strategies being evaluated over a simulation
run. 8

2 Contracting with Full Rationality

Consider a standard moral hazard model of output/equity sharing, for example, Stiglitz (1974) on
sharecropping in agriculture. Other applications include profit sharing under franchising, licensing, or
author-publishing contracts. To fix ideas, interpret the principal as the owner of a productive asset

7Note that another commonly studied learning algorithm, fictitious play (Fudenberg and Levine, 1998) would suffer
from the same problem in our setting, as it also uses foregone payoffs.

8Comparative studies of social and individual evolutionary learning have been done before in the context of the
‘cobweb’ model, e.g. Arifovic (1994), Vriend (2000), and Arifovic and Maschek (2006). Arifovic (1994) shows that both
social and individual evolutionary learning converge to the Walrasian equilibrium. Her individual learning algorithm uses
evaluation of hypothetical payoffs. On the other hand, Vriend (2000) demonstrates that while social learning converges
to the Walrasian equilibrium, individual learning reaches the Cournot-Nash outcome. His individual learning algorithm
uses evaluation of realized payoffs only. Arifovic and Maschek (2006) perform various robustness checks and identify the
differences in the individual learning algorithm and the cobweb model parameter values that result in those different
outcomes. A key difference between these studies and our paper is that our environment is not characterized by a Nash
equilibrium solution.
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(e.g. land) and the agent as a worker (e.g. a tenant working on the land). Output is y(z) = z+ε, where
z is the effort employed by the agent and ε is a normally distributed random variable with mean 0 and
variance σ2. The agent’s effort, z is unobservable/ non-contractible. Output, y is publicly observable.
Assume that the technology is such that the principal cannot infer from the output realization what
effort level was employed by the agent. The principal is risk neutral while the agent is risk averse with
preferences u(c, z) — increasing in consumption, decreasing in effort and strictly concave. The agent’s
outside option of not signing a contract with the principal is ū.

As in Stiglitz (1974) or Holmstrom and Milgrom (1991), restrict attention to linear compensation
contracts, i.e., the principal receives π(y) ≡ (1 − s)y + f and the agent receives c(y) ≡ sy − f where
s ∈ [0, 1] is the agent’s output share and f is a fixed fee. We are aware that, in general (e.g. Holmstrom,
1979), the theoretically optimal compensation contract may be nonlinear (see also the discussion in
Bolton and Dewatripont, 2005, section 4.3). There are several reasons for restricting our analysis
to linear compensation schemes. The first reason is the observation that sharing or compensation
principal-agent agreements in reality regularly take a linear form, e.g. see Chao (1983) on sharecropping;
Lafontaine (1992) or Sen (1993) on franchising; Caves et al. (1983) on licensing; Masten and Snyder
(1993) on equipment leasing, among others9.

The second reason concerns complexity — given that our paper is about modeling learning about
the best compensation contract, the linearity restriction simplifies the principal’s problem to learning
about two numbers, s and f, as opposed to learning about a general nonlinear function c(y), possibly
without an analytic closed form, which could make the setting much harder to adapt in10. Indeed, even
with the restriction to linear contracts, we argued in the introduction that our environment is already
quite hard to learn using the standard algorithms from the literature. Despite its relative simplicity, the
linear contract is sufficiently flexible — its exact form depends on both the preferences and technology
and it nests the (one-parameter) fixed wage, fixed rent, and fixed sharing rule contracts.

Because of all above reasons we assume that our learning principals offer linear contracts. Our
methods can be extended to more complicated contracts to the extent that the strategy space remains
tractable (e.g. if the non-linear scheme can be characterized with a small number of parameters).

2.1 The Optimal Contract

The optimal contract in the above setting can be found as the solution of a standard principal-agent
mechanism design problem. The principal’s objective is to maximize his expected profits subject to
participation and incentive compatibility constraints for the agent:

max
s,f

(1− s)z + f

subject to:
z = argmax

ẑ
Eu(sy(ẑ)− f, ẑ) (1)

Eu(sy(z)− f, z) ≥ ū (2)

The first constraint is the incentive compatibility constraint (ICC) stating that the chosen effort
must be optimal for the agent given the proposed compensation scheme (s, f). The second constraint
is the participation constraint (PC) stating that the agent must obtain expected utility higher or equal
to his outside option ū in order to accept the contract. We assume that ū is large enough so that the
participation constraint is binding at the optimal contract (s∗, f∗).

9Linear contracts could be also required to prevent re-sale among agents.
10See Holmstrom (1979) or Bolton and Dewatripont (2005, ch. 4) for examples of nonlinear and even non-monotonic

optimal contracts in the moral hazard problem and discussion on their general analytical non-tractability.
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2.2 A Computable Example

We use the following easy-to-compute example in our numerical analysis of learning in the principal-
agent model. Assume a mean-variance expected utility of consumption for the tenant, and quadratic
cost of effort, Eu(c, z) ≡ E(c) − γ

2V ar(c) −
1
2z
2. With our production function specification mean-

variance expected utility is equivalent to assuming exponential Bernouli utility of the form u(c, z) =

−e−γ(c− 1
2
z2) (e.g., see Bolton and Dewatripont 2005, pp. 137-9 for a derivation). Thus, our computable

example is the so-called ‘LEN’ model (Linear contract, Exponential/CARA utility, and Normally dis-
tributed performance) widely used in the applied contract theory literature (e.g., see Holmstrom and
Milgrom, 1991 on multi-tasking in firms; Dutta and Zhang, 2002 in accounting, etc.) 11

The tenant’s expected utility is:

UT (z) = sz − f − γ

2
σ2s2 − 1

2
z2.

For our preferences and production function, it is easy to verify that the ‘first order approach’ (Rogerson,
1985) is valid. Hence, we replace the incentive compatibility constraint (1) with its first order condition:

z∗ = s

The principal’s problem then becomes (substituting from the ICC and the participation constraint),

max
s

(1− s)s+
1

2
s2(1− γσ2)− ū,

with a first-order condition,
1− 2s+ s(1− γσ2) = 0,

which implies,

s∗ =
1

1 + γσ2
.

The optimal fixed fee, f∗ is then found using the participation constraint:

f∗ =
1

2

1− γσ2

(1 + γσ2)2
− ū.

3 Learning about the Optimal Contract

Our main objective is to examine the behavior of our principal-agent model under learning. We assume
that the stage game from section 2 is repeated over time. The main reason for this is computational
complexity. Contract theory suggests (e.g. Townsend, 1982) that in a dynamic (as opposed to repeated)
setting, intertemporal tie-ins and history dependence typically exist in the optimal contract. If standard
learning algorithms cannot converge to the optimal static contract, then we expect them to be even
less successful in adapting to the optimal dynamic contract12.

11Holmstrom and Milgrom (1987) show further that the optimal incentive scheme in the LEN model is linear when y is
interpreted as an aggregate performance measure resulting from the agent supplying effort in continuous time to control
the drift of output.
12The optimal dynamic moral hazard contract requires that the principal keep track of the full history of output

realizations and use it to determine the current transfers. This causes an exponential expansion of the dimensionality of
the strategy space. While this could be resolved by introducing an extra state variable, ‘promised utility’ (e.g. Phelan and
Townsend, 1991), the optimal contract must specify both (contingent) current consumption and promised future utility
which significantly increases its complexity relative to the static case. We plan to investigate learning in such dynamic
settings in future work.
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We study how hard (or easy) it is for boundedly rational principals to learn what the optimal
sharing contract looks like. Specifically, as a first pass, we assume that the principal is not endowed
either with the ability to optimize or with knowledge of the physical environment, i.e., she does not
know what the agent’s preferences and the exogenous stochastic shock’s properties are. In contrast,
agents are assumed to be able to optimize13 their effort choice, z∗ given the share, s, and the fixed fee,
f , that they are offered by the principals.

The learning proceeds as follows. Each period, (1) the principal offers a contract (st, ft) belonging
to some known set of feasible contracts14, (2) the agent chooses effort, (3) output is realized, and (4)
the principal’s profit is computed. If the offered contract does not satisfy the agent’s participation
constraint, we assume that the principal gets a payoff of π for the current period (set to zero in the
simulations). After profits are realized the principal updates her strategy set and chooses a new contract
(st+1, ft+1), etc.

We investigate two learning paradigms. The first is individual learning in which a player learns
only from her own experience. Specifically, in our model each principal is endowed with a collection of
different strategies that she updates over time based on her experience. We examine the behavior of
three popular models of individual learning that share some common features but also differ in several
important dimensions: ‘Reinforcement Leaning’ (RL) — Roth and Erev (1995); ‘Experience-Weighted
Attraction Learning’, (EWA) — Camerer and Ho (1999); and ‘Individual Evolutionary Learning’ (IEL)
— Arifovic and Ledyard (2004, 2007).

The second learning paradigm we study is social learning in which players can learn from each
others’ experience. In our setting, this translates into a learning model where principals are given
an opportunity to observe the behavior of some of the other principals and update their strategies
(the contracts offered) accordingly. Our preferred model of social learning is based on the evolutionary
paradigm in which the principals’ performance and survival are based on how successful their strategies,
(s, f) are and on occasional experimentation with new strategies.

3.1 Common Structure of the Learning Algorithms

In each of the learning models we consider all agents are identical and optimize each time period given
the contract proposed by the principal. A strategy15, mt, belonging to the strategy set, Mt at time
t ∈ {1, T0} consists of a share/fee pair, i.e., mt = {st, ft}. The strategy set Mt of fixed size J has
elements mj

t , j = 1, ..., J each of which belongs to the strategy space, G of all possible contracts that
can be offered. We assume G is a two-dimensional grid of size #S ×#F where S and F are linearly-
spaced grids16 for the share, s, and the fee, f . The coarseness of the S and F grids is governed by the
parameter d, which determines the number of feasible contracts in G.

In the case of individual learning, the strategy set Mt is a collection of J ≥ 2 strategies that
belong to a single principal. At each t, the principal chooses one of these J strategies as the actual
contract offered to the agent. In contrast, in the case of social learning, there is a population of
N ≥ 2 principals and each principal, i ∈ {1, ..., N} has a single strategy mi

t that she uses at time t.
That is, in social learning an individual principal’s strategy set, M i

t is a singleton, M
i
t ≡ mi

t ∈ G and

13We provide a brief discussion on double-sided learning in the conclusions.
14The constraints on this contract feasibility set can be natural, e.g., the share s by definition must belong to the

interval [0, 1] or determined by the contractual environment, e.g., the bounds on f can come from limited liability or
similar constraints. We assume these constraints are known to the principal.
15Hereafter, we use the terms strategy and contract interchangeably.
16In principle, we could use continuous sets for s and f in the implementation of the IEL and SEL algorithms. However,

since we also evaluate the performance of the RL and EWA algorithms which can be implemented only using discretized
strategy space, we chose a discrete G for consistency. We perform robustness checks with respect to the grid density.
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the overall (population) strategy set, Mt is the collection of all N individual time-t strategies, i.e.,
Mt = ∪ni=1M i

t = {m1
t , ...,m

N
t }.

Each period consists of T1 ≥ 1 ‘interactions’ between a fixed principal-agent pair (one pair in case
of individual learning, and N pairs in case of social learning) where each interaction17 corresponds to a
separate output shock (ε draw) but the principal uses the same strategy (st, ft) over the T1 interactions.
Specifically, at any t, the principal announces a single contract, a share-fee pair, (st, ft) ∈ Mt. Given
the contract, the agent provides his optimal level of effort, z∗t = st while output and profits vary
depending on the realization of the shock, εs. Formally, output for each within-period interaction, ys,
s = 1, ..., T1 is:

ys,t = st + �s,t

where �s,t are i.i.d. normally distributed with mean zero and variance σ
2 while the principal’s profit is:

πs,t = ys,t(1− st) + ft

At the end of the T1 interactions, the value of the average output produced during time period t is

ȳt = st +
1

T1

T1X
s=1

εs,t,

and the average payoff of the principal for period t is

π̄t = (1− st)ȳt + ft (3)

The average payoff, π̄t represents the measure of performance (fitness) of a particular strategy (st, ft)
that the principal uses at time period t. If the proposed strategy does not satisfy the agent’s partici-
pation constraint, its average payoff, π̄t is set to π= 0.

3.2 Individual Learning

The individual learning paradigm is based on an individual’s learning and updating of strategies based
only on her own experience. In our setting this implies that each period the (single) principal has
a collection of strategies that is used for her decision making process. Over time, as a result of
accumulated information about the performance of individual strategies, the updating process results
in an increase in the frequency of well-performing strategies in the principal’s strategy set. The choice
of a particular strategy as the actual strategy that the principal uses in a given period is probabilistic,
and the selection probabilities depend positively on the strategies’ past performance.

The three individual learning models that we study, RL, EWA, and IEL have this common feature
but they also differ in important ways. The main differences among them are in how the strategy set,
Mt is determined and updated over time. These differences play an important role for the results we
obtain.

3.2.1 Reinforcement Learning

To model Reinforcement Learning (RL) we follow the implementation of Roth and Erev’s (1995). The
strategy set is the whole strategy space, G = S × R, i.e., all possible combinations of s and f, and

17The function of these within-period interactions between a principal-agent pair is to give the principal some time to
learn about the expected profits that can be generated from a given offered contract. We provide comparative statics
with respect to T1 in the robustness section 5.3.
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is the same in all periods, i.e., Mt = M for all t. The number of strategies, J in M for each t hence
equals the total number of elements of G, i.e., in the RL model, J = #S × #R. A single principal
chooses one of these strategies to play each period. Each strategy in M is assigned a propensity of
choice which is updated at time t based on the payoff this strategy earned if it was used at t and is
otherwise left at its previous level. In our implementation, the propensities of choice are given by the
strategies’ discounted payoffs.

Specifically, for each strategy mj
t in M , j ∈ {1, ..., J}, let Ijt denote an indicator value for the

principal’s strategy in period t, where Ijt = 1 if m
j
t is chosen/played in period t and Ijt = 0 otherwise.

Then, the discounted payoff of strategy j, at time t, Rj
t is defined as:

Rj
t = qRj

t−1 + Ijt π̄
j
t (4)

where q ∈ [0, 1] is a time/memory discount parameter and π̄jt is the average payoff of strategy j
computed over T1 interactions. The initial payoff, R

j
1 of each strategy in the strategy space G is set to

0.
Strategies are selected to be played based on their propensities. Those with higher propensities

have higher probability of being selected. Namely, at the end of each period t, the principal selects
strategy mj ∈M , j ∈ {1, ..., J}, to be played at t+ 1 with probability:

Probjt+1 =
eλR

j
tPJ

k=1 e
λRk

t

. (5)

Once a strategy is selected, it undergoes experimentation with probability μ. In case that experi-
mentation takes place, instead of the initially selected strategy, e.g. m̃, the principal uses a randomly
drawn strategy from the square centered on m̃ with sides of length 2rm. The final chosen strategy is
then implemented for T1 interactions as explained above.

3.2.2 Experience-Weighted Attraction Learning

The second individual learning algorithm we evaluate, Experience-Weighted Attraction Learning (EWA),
is a generalization of the RL algorithm. Specifically, we follow Camerer and Ho (1999) to model EWA
learning. The (fixed) strategy set, M of size J = #S ×#R is the same as that under RL, namely the
complete strategy space G. That is, once again Mt = M = G for all t — the principal’s strategy set
does not change over time.

In EWA, a strategy that was actually used, denoted by ma
t ≡ (sat , fat ), receives an evaluation based

on its actual performance from (3), while all other strategies in M receive evaluation based on their
foregone (hypothetical) performance. The period-t foregone payoff, π̄jt for any strategy mj ∈ M,
mj 6= ma

t is computed taking as given the optimal agent’s effort response to m
a
t , the strategy actually

used at t:
π̄jt = (1− sjt )ȳt(s

a
t ) + f jt

where ȳt(s
a
t ) is the average output generated under the actually played strategy. In the performance

evaluation process (see below) the foregone payoff is weighted by the discount parameter δ ∈ (0, 1)
reflecting the fact that these strategies were not actually used.

At the end of each period, the so-called ‘attractions’ (corresponding to the propensities of choice
in the RL model) of all strategies are updated. Specifically, in EWA there are two variables that are
updated after each round of experience: Wt, the number of ‘observation-equivalents’ of past experience
(called the experience weight); and Aj

t , the attraction of strategy mj ∈ M (whether played or not) at
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the end of period t. Their initial values W0 and A
j
0 can be interpreted as prior game experience and/or

principal’s predictions.
The experience weight, Wt, is updated according to

Wt = ρWt−1 + 1 (6)

for any t ≥ 1 and where ρ is a retrospective discount factor. The updated attraction of strategy mj at
time t is given by:

Aj
t =

φWt−1A
j
t−1 + [δ + (1− δ)Ijt ]π̄

j
t

Wt
for all j = 1, .., J

The parameter δ determines the extent to which hypothetical evaluations are used in computing the
attractions, Aj

t . If δ = 0, then no hypotheticals are used, just as in the RL model while if δ = 1
hypothetical evaluations are weighted as much as actual payoffs. The parameter φ is another discount
rate, which depreciates the previous attraction level similarly to the parameter q in RL. If φ = q, δ = 0,
ρ = 0, and W0 = 0 then the EWA model is exactly equivalent to the RL model. Finally, the principal
selects strategy mj ∈M to play at t+ 1 with probability:

Probjt+1 =
eλA

j
tPN

k=1 e
λAk

t

(7)

which is followed by experimentation in the same way as in the RL model.

3.2.3 Individual Evolutionary Learning

Our third individual learning algorithm, Individual Evolutionary Learning (IEL), shares some common
features with both RL and EWA. First, like in RL and EWA, the choice of the principal’s strategy is
probabilistic. Second, the selection probabilities are based on the strategies’ hypothetical (foregone)
payoffs like in EWA learning. However, there is an important difference. In the IEL model, the set
of active strategies is not the complete space G but instead is of smaller dimension and endogenously
changes over time in response to experience and, occasionally, to pure random events (experimentation).

Specifically, at time t = 1, a set of J ≥ 2 strategies18, M1 is randomly drawn from G. Over time,
the principal always keeps J active strategies. Suppose that at the beginning of period t, the principal’s
collection of active strategies is Mt ⊂ G. One of these strategies, ma

t ∈ Mt is selected as the actual
strategy to be played during t, i.e., it is implemented over T1 interactions with the agent.

Similar to EWA learning, the payoffs of all other, inactive, strategies in the set Mt (but not those
in the rest of the strategy space, G\Mt) are updated as well. Their payoffs, averaged over the T1
interactions, are computed by taking as given the optimal agent’s effort response to ma

t , strategy that
was actually used at t. Denote this effort response by z∗(ma

t ) = sat . Then, the hypothetical payoff for
any strategy mj

t ∈Mt, m
j
t 6= ma

t in period t is:

π̄jt = (1− sjt )ȳt(s
a
t ) + f jt (8)

where ȳt(s
a
t ) is the average output generated under strategy m

a
t .

Once the hypothetical payoffs are computed, the updating of the principal’s collection of strategies
takes place applying replication and experimentation. The replication operator allows for potentially
better paying alternatives to replace worse ones. It is used to generate a collection of J replicates

18Unlike in RL and EWA, J is typically chosen to be smaller than the number of strategies in G. IEL also works with
a continuous strategy space.
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of the strategies in the strategy set Mt. As our baseline operator, we use proportionate (‘roulette
wheel’) replication. Specifically, each strategy mj

t , i ∈ {1, ..., J} in Mt has the following probability of
obtaining a replicate to appear in the next period’s strategy set:

Probjt =
eλ barπjtPJ
j=1 e

λπ̄jt
(9)

where λ is a parameter governing the relative fitness weights.
We also consider selective proportionate replication. Under selective replication, the replicate strat-

egy replaces the former strategy at location j in Mt only if the replicate yields a higher average hypo-
thetical payoff. Formally, the payoff of each replicate strategy mj

t+1, j = {1, . . . , N} is compared to the
payoff of strategy, mj

t , j = {1, . . . , N} — the jth member of the strategy collection at t. The strategy
that has a higher payoff between the two, becomes the member of Mt+1 at t+ 1.

As a robustness check, we also implement another commonly used replication operator, tournament
selection, in the following way. For j = 1, . . . , J , the location-j strategy in Mt+1, m

j
t+1 is chosen by

drawing (with replacement) two members of Mt randomly with equal probability. Formally, if the two
drawn strategies be mk

t and ml
t we have,

mj
t+1 =

½
mk

t

ml
t

¾
if

½
π̄(mk

t ) ≥ π̄(ml
t)

π̄(mk
t ) < π̄(ml

t)

¾
. (10)

After replication, experimentation takes place. That is, each strategy mj
t+1 is subjected to ‘muta-

tion’ with probability μ. If experimentation takes place, the existing strategy, mj
t+1 is replaced by a

new strategy from G drawn from a square centered on mj
t+1 with sides of length 2rm. Note that the

IEL experimentation is different from the experimentation in RL. In RL, only the strategy actually
selected for implementation could be experimented with. On the other hand, in IEL, each strategy in
Mt can be changed by experimentation with probability μ.

3.2.4 Individual Evolutionary Learning with Realized Payoffs

We also propose a modified model of individual evolutionary learning that we decided to study in light
of the unsatisfactory convergence performance (see section 5 for details) of the canonical IEL algorithm
with foregone payoffs described above. This modified model differs from the standard IEL in that only
the payoffs of strategies that were actually played are updated. In this respect, the modified algorithm
is similar to RL. We call this algorithm IEL with realized payoffs (IELR). Apart from the elimination
of hypothetical evaluations we keep all other features of the standard IEL model — an endogenous, time
varying strategy set Mt; using replication to change the frequency with which different strategies are
represented in it; and IEL experimentation. Overall, the proposed IELR model is a hybrid between
RL and the standard IEL model.

3.3 Social Learning

The second major learning paradigm we study is social learning, or learning from others. In the social
learning model, learning operates on the level of population. Unlike with individual learning, there is
a ‘large’ number of principals, N who are given an opportunity to learn from each other over time. At
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each time t, each principal i, i ∈ {1, ..., N}, has only a single strategy, i.e., J = 1 and M i
t = mi

t ∈ G.
The population strategy set at time t, Mt consists of the N individual strategies. 19

There are N principal-agent pairs. For each principal, the learning process proceeds following the
general form in section 3.1. Below we describe the specifics related to our implementation of Social
Evolutionary Learning (SEL) to represent the idea of learning from others.

The first element of SEL algorithm is replication. The mechanics of the process are basically
the same as those in IEL. An important difference, however, is that in SEL replication operates on
a population of strategies that belong to different principals, as opposed to operating on the single
principal’s strategy set. Hence, SEL replication can be interpreted as imitation of relatively successful
strategies played by others, as opposed to replicating one’s own strategies that have performed well
in the past. Replication is used to generate a population of N replicates of the strategies that were
used in the population at period t. We use proportionate (‘roulette wheel’) replication as our baseline
operator. Specifically, any strategy mi

t , i ∈ {1, ..N}, in the current strategy set has the following
probability of obtaining a replicate to appear in the next period’s population strategy set:

Probit =
eλπ̄

i
tPN

j=1 e
λπ̄it

(11)

where λ is a parameter governing the relative fitness weights. As in IEL, we also consider selective
proportionate replication and tournament selection20.

After the replication, experimentation takes place. Each replicate strategy mi
t+1 is subjected to

‘mutation’ with a probability μ. If mutation takes place, the existing strategy, mi
t+1 is replaced by a

new strategy from G drawn randomly from a square centered on mi
t+1 with sides of length 2rm.

SEL models the interaction of a population of principals who learn collectively through gathering
information about the behavior of others and through imitation of previously successful strategies.
Strategies that yield above-average payoffs tend to be used by more principals in the following period.
The experimentation stage incorporates innovations by principals, done either on purpose or by chance.

The SEL model shares a common feature with IELR in that only actually played strategies are
used in the updating process. However, in IELR the single principal learning on her own, by definition
can only evaluate one strategy per period, after which updating (replication and experimentation)
takes place. In contrast, in SEL N strategies are simultaneously played each period by the population
and their performance is used in the updating process. Due to the difference in the frequency of
updating and information used, SEL is not equivalent to simply repeating IELR algorithm N times or,
alternatively, to an N -player version of IELR. This important distinction plays a significant role how
these two models adapt towards the optimal contract. We provide a detailed discussion in section 6.

4 Computational Implementation of the Learning Algorithms

In this section we describe the computational procedures we followed to initialize and implement the
learning algorithms in our principal-agent model. The next section contains simulation results obtained
for a large set of parametrizations and numerous robustness checks. 21

19In our simulations, to compare between individual and social learning, we keep the number of strategies in the
population set N under social learning equal to the number of strategies in the single principal’s set J under individual
learning.
20The selection criterion expression is the same as in (10) with i in place of j.
21The MATLAB codes for all simulations reported in this paper is available from the authors upon request.
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To obtain representative results we perform 7,350 different runs for each learning regime. These
runs differ in the parameter values for the risk aversion, γ, the output variance, σ from the principal-
agent model, and the random generator seed used to draw the initial pool of strategies. That is, each
run corresponds to a unique combination of (γ, σ, seed). The values for γ and σ are exhibited in Table
1 below. The agent’s reservation utility is set to ū = 0.

The strategy space, G, from which strategies are chosen is composed of all (st, ft) pairs belonging
to a two-dimensional grid such that st belongs to a uniformly spaced grid on the interval [smin, smax] =
[0, 1] and ft belongs to a uniformly spaced grid on the interval [fmin, fmax] = [−0.05, 0.5]. The strategy
space bounds were chosen to ensure that the optimal contract (s∗, f∗) is always inside G for each
possible γ and σ we use. The strategy space G is discretized in both dimensions with distance, d,
between any neighboring points.

In the SEL and IEL models, N strategies are randomly chosen from G at t = 1 and assigned an
initial fitness (payoff) of zero. Under RL and EWA all possible strategies in G are initially assigned
zero fitness. Each run continues for T0 = 2, 400 periods. At period T̂ = 2, 000 the experimentation
rate, μ (constant until then) is let to decay exponentially. 22

The benchmark values for all parameters used in the computations are described in the table below:

Table 1 — Benchmark Parameter Values

Parameter Values Used

risk aversion, γ 15 linearly spaced points on [0.2, 3]

output variance, σ 7 linearly spaced points on [0, 0.6]

random seeds 70 random integers on [1, 10,000]

SEL population strategy set size, N 30

IEL(R) individual strategy set size, J 30

run length, T0 2,400

output draws per period, T1 10

experimentation rate, μ 0.05

experimentation decay factor, χ 0.9998

experimentation radius, rm 0.1

weighting factor, λ 1

grid density, d 0.01

EWA parameters, δ, ρ, φ δ = 0.2, ρ = 0.8, φ = 0.8

RL discount parameter23 1

In the next section we also report results from numerous robustness and comparative statics runs
varying the baseline parameters.

5 Results

5.1 Benchmark Simulations

We begin by reporting the results from our benchmark individual and social learning runs. Specifically,
we define and examine a number of measures that reflect the qualitative and quantitative aspects of
the learning dynamics. These measures are:

22We use the following formula: μt = μt−10.998
t−T̂ where t is the current simulation period.

23We also tried a discount factor q = .9 but this value resulted in worse performance than the baseline.
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• the frequency distribution over all simulations of the differences between simulated and optimal
payoffs of all strategies in the final period

• the frequency distribution over all simulations of the differences (in Euclidean distance) between
simulated and optimal strategies in the final period

• the time paths of the fraction of simulated strategies or payoffs within a given distance from the
optimum. Each point on these time paths equals the average fraction over all strategies and over
the 7,350 runs. Two distance criteria are considered: 0 and 0.05 (0 and 5% for the payoffs).

• the strategy time paths generated by the different learning models for a sample run.

Table 2 characterizes the performance of the four baseline learning algorithms (RL, EWA, IEL, and
SEL). The table shows two alternative measures of performance, averaged over all 7,350 runs: (i) the
percentage of last period (t = 2, 400) strategies in the strategy set that are within 0 (i.e., achieve the
optimal contract), 0.05 or 0.1 Euclidean distance from the optimal contract and (ii) the percentage of
last period (t = 2, 400) strategy payoffs within 0%, 5% or 10% from the optimal contract payoff.

Table 2 indicates that the benchmark individual learning algorithms are unable to adapt in the
principal-agent environment. The performance of RL and EWA improves negligibly when the per-
formance criteria are relaxed, with RL doing slightly better than EWA. All three individual learning
algorithms show poor performance even under the most relaxed performance criterion (0.1 or 10% from
the optimum). 24

While performing better than all individual learning models, it is evident from table 2 that our SEL
algorithm with baseline replication also has a hard time learning the optimal contract. When the exact
convergence to the optimum (0%) criterion is used, only 1.65% of the last period strategies in the pool
across all runs coincide with the optimal contract (s∗, f∗). When we relax the performance criterion to
include convergence within 0.1 Euclidean distance from the optimal contract (or, alternatively, within
10% of the optimal payoff), the benchmark SEL algorithm shows better performance with 67.8% of all
strategies in the final pool over all runs ending within 10% of the optimal payoff.

Figures 1 and 2 complement table 2 by visualizing the algorithms’ performance. Figure 1 which
displays the histograms of the differences between simulated and optimal payoffs and strategies shows
that only the SEL model can sometimes get anywhere close to the optimal contract and payoff. Figure
2 shows the time paths of the actually offered share, s, and fee, f (averaged over the N strategies in
SEL) for a given sample run under each learning regime. The figures illustrate clearly that all the
learning algorithms we study have serious difficulties with convergence to the optimal contract in our
principal-agent setting.

Discussion
There are three main factors responsible for the poor performance of our baseline learning algo-

rithms. First, and common to all algorithms, is the fact that in our problem (and, generally, in any
similar principal-agent problem), payoffs are discontinuous at the participation constraint. Figure 3
which is drawn for a sample parameter configuration illustrates this point. All strategies above the

participation constraint given by the parabola-shaped dashed line defined by f = s2(1−γσ2)
2 receive

zero payoff since no contract materializes between the principal and the agent. The optimal contract
(s∗, f∗), denoted by a black diamond in the figure, lies on the participation constraint. Thus, small

24The standard IEL algorithm that has been shown previously to perform better than RL and EWA in other environ-
ments with large strategy spaces (e.g., Arifovic and Ledyard, 2004).
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deviations away from the optimal contract that enter the zero-payoff area above the participation con-
straint cause a large discontinuous drop in the payoff. This discontinuity affects the performance of all
learning algorithms and can slow or even prevent convergence. In addition, as evident from figure 3
where we also plot the iso-payoff lines for a typical case, the principal’s payoffs decrease steeply moving
away from the participation constraint while they stay quite high near the constraint even for (s, f)
pairs that are far away from the optimal strategy. Replication can thus result in increasing the number
of instances of strategies that have relatively high payoffs but are far away from the optimal contract.
At the same time, even the smallest amount of experimentation can take a strategy “off the cliff”, to
the right, into an area of much lower payoffs, and to the left, into the area of zero payoffs above the
participation constraint.

A second, extremely important factor is directly responsible for the poor performance of the IEL
and EWA algorithms. It is these algorithms’ reliance on hypothetical (foregone) payoff evaluation.
Specifically, strategies in the principal’s strategy set that have not yet been played receive payoff
updates together with the actual contract offered to the agent. The problem with this is that the
hypothetical payoffs are computed as the foregone profits that the principal would have obtained if
they had played some alternative strategy (sa, fa) — see (8). However, the actual observed output
realization, ȳ, that is used in this calculation reflects the effort that is an optimal response to the
contract that was actually played, not the hypothetical contract that was not played. This is key to
understanding the failure of the EWA and IEL algorithms in our setting. The reason is that, if in
fact the agent were offered a different s, she will change her behavior, and expected output will not
be the observed ȳ anymore. That is, all assigned hypothetical payoffs are incorrect, except by chance.
This dooms any algorithm using foregone payoffs to update the strategies’ fitnesses. Note that this is
a general point that would apply to any economic model in which the underlying game is sequential
(e.g., Stackelberg) i.e., in which one party moves first and then the other party reacts. In contrast, in
simultaneous (Nash) games, evaluating and using hypothetical payoffs as in the IEL algorithm is not
subject to this problem since the equilibrium is defined by finding the best response given (holding
fixed) the other party’s choice.

The problem with using hypothetical payoffs in learning sequential game equilibria is further illus-
trated in the following example in the context of IEL. Suppose, for simplicity, σ2 = 0 and that the
principal offers the contract (st, ft) with st > 0 and ft > 0. The principal then receives the signal
yt = st > 0. Among all strategies in her current set, Mt, the one that makes principal’s profits, πt,
largest while still satisfying the participation constraint is assigned the highest payoff. Let us look

closer at what this strategy would look like. At σ2 = 0 the participation constraint is simply ft ≤ s2t
2 ,

so we have πt ≤ yt(1− st) +
s2t
2 . The IEL hypothetical payoff evaluation scheme assumes (incorrectly)

that the agent’s behavior (i.e., zt and therefore yt) stays the same. Thus, πt is a quadratic function in
s with maximum achieved at a corner solution, s = 0 or s = 1. In particular, if yt > 1/2, the strategy
in Mt that is “closest” to (0, 0) receives the highest payoff, while if yt < 1/2, the strategy in the
pool closest to (1, 0.5) achieves the highest payoff. Suppose the former situation has occurred. Then,
after replication, the pool at t + 1 will be biased towards contracts close to the point (0, 0) in G. If
st+1 < 1/2, (and so yt+1 < 1/2) which is likely given the time-t replication, then at t+1 the strategies
closer to (1, 0.5) are now favored.25 This process cycles over time and which corner strategy survives
the replication and experimentation is up to chance. Clearly, convergence to the optimum under these
conditions can occur only under very special circumstances.

The third major factor explaining our benchmark results and common to all learning models, is
that our setting features learning in a stochastic environment. It is well-known from experiments with

25For simplicity, this discussion assumes that the principal is able to learn the participation constraint.
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different learning models26 that convergence to equilibria in stochastic settings is often difficult and
might depend on the parameters of both the learning algorithm and the underlying economic model.
The main reason is that these algorithms require that the assessment of strategy payoffs (which drives
the selection and reinforcement process) be quite accurate. In our benchmark runs, the principal
observes T1 = 10 output draws on which a strategy’s payoff is based. In the robustness section 5.3
below we show that increasing this “evaluation window” helps improve convergence to the optimum,
confirming this intuition.

One last factor applies specifically to the RL and EWA models in which all the points on the
strategy grid G belong to the principal’s strategy set. In our benchmark simulations this number of
points is quite large (over 5,000) which contributes additionally to the poor performance of these two
algorithms. A decrease in the grid density improves their performance somewhat (see section 5.3).

5.2 Simulations with Modified Evolutionary Algorithms

We try to reduce the potentially negative effects of simple roulette wheel (baseline) replication on the
performance of IEL and SEL by replacing it with selective replication (described in section 3.) Variants
of this type of selection are standard in the applications of social evolutionary learning. The basic idea
is that a new strategy, selected via proportionate replication, replaces the existing strategy only if it
has a higher payoff.

We also modify the benchmark IEL algorithm to deal with the hypothetical payoffs evaluation
problem. Specifically, within IEL we adopt a method for evaluating strategy payoffs that is similar
to RL, i.e., only strategies that were actually selected for play have their payoffs evaluated27 — the
Individual Evolutionary Learning with Realized Payoffs (IELR) model from section 3. With the IELR
version of the algorithm, our objective is to examine whether good features of the evolutionary updating
process, which have proven useful in handling large strategy spaces, combined with realized rather
than hypothetical payoffs evaluation, facilitate individual evolutionary learning in the principal-agent
environment.

The performance of the modified social and individual evolutionary learning algorithms is displayed
in table 3. Selective replication alone does not change the IEL’s poor performance. It however, improves
dramatically the performance of the SEL model — now 73.5% (versus only 1.6% in the benchmark) of all
7,350 simulations converge exactly to the optimal contract and virtually 100% of them come to within
5% of the maximum possible profit, compared to only 37% with the baseline replication operator. We
further illustrate this improvement in performance in figure 4 which displays the histograms of the
differences between simulated and optimal payoffs and strategies for the modified algorithms. Note the
much larger fraction of differences close to zero compared with figure 1. Similar improvement are seen
in the time paths of fractions of strategies equal to or within 5% of the optima shown on figure 5. Note
that the percentage of strategies coinciding with the optimum in the modified SEL (the top panels)
increases fast over time with about 90% of them getting within 5% of the optimal profit by as early as
period 300.

Next, we study the performance of the IELR algorithm. Table 3 and figures 4 and 5 report a
significant improvement in performance under both baseline and selective replication relative to the

26For example, Lettau (1997) shows how agents who learn via genetic algorithms, in a social learning setting, hold
too much risk as compared to the optimal portfolio of rational investors. Lettau and Uhlig (1999) demonstrate a ‘good
state’ bias in decision rules updated with an algorithm that combines elements of reinforcement learning and replicator
dynamics.
27Note that the same modification applied to EWA would reduce it to a version of the RL algorithm whose performance

has already been evaluated so we refrain from this.
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baseline IEL model with hypothetical payoffs. We see large gains in performance resulting from both
modifications (using realized payoffs, and using selective replication, conditional on using realized
payoffs). Ultimately, however, the IELR’s performance remains worse than that of the SEL algorithm
with the same replication method. Specifically, IELR has 30% and 59% of its time-T pool strategies
within respectively 5% and 10% of the optimal profits compared to 0% under hypothetical payoffs.
These numbers rise to 81% and 92% when selective replication is also applied. These results are
further illustrated in figure 6 where we display the strategy time paths for a sample run28.

Looking at figure 5, we see a jump in convergence around period 2,000 where the experimenta-
tion rate starts decaying. This happens because any diversity in the strategy pool disappears since
experimentation is no longer possible. The “jump” is much larger in IEL as new mutants there (en-
tering with a payoff of zero) can survive quite long in the strategy set without being played and hence
without being updated. Once the experimentation rate decays to zero these strategies disappear from
the strategy pool and thus the fraction of strategies in the pool equal or within some distance of the
optimum increases.

Overall, as in the benchmark results, we find that principals using the social learning algorithm
(especially when allowing for the more sophisticated selective replication operator) are better able
to learn the optimal contract in our environment than individual learners. Individual evolutionary
learning with realized payoff evaluation shows promise but still performs much worse than social evo-
lutionary learning. A candidate reason for this under-performance seems that in SEL all N strategies
in the population strategy set are evaluated each period based on their actual payoffs. In contrast, by
definition, the single principal in IELR updates only one strategy at a time (the actual contract offered)
which seems to put the individual learning algorithm at disadvantage as less strategies are evaluated
per fixed number of periods. We come back to analyze this issue more formally in the discussion section
6 showing that SEL still performs better than IELR after controlling for the total number of evaluated
strategies.

5.3 Robustness

In this section we report results from numerous additional simulations which we ran to investigate
the robustness of the performance of the learning algorithms to various changes in the parameters.
Specifically, we study the effect of increasing the strategy pool size, N ; increasing the number of
evaluation runs, T1; varying the payoff weighting parameter, λ; varying the experimentation rate, μ;
varying the scope of the experimentation governed by rm; using tournament selection in the replication
process; and varying the timing of experimentation decay29 All robustness runs were performed for the
same set of 7,350 parametrizations as in the baseline. The results are displayed in table 4. Most of
the robustness runs we did apply to the individual learning algorithm since SEL performs very well
already in the benchmark once selective replication is allowed. Our main findings are as follows:

1. Varying the strategy set size, N or J
We find that increasing the strategy set size, N to 100 (from 30 in the benchmark) improves

convergence in the modified SEL algorithm — the percentage of strategies coinciding with the optimum
rises from 73.5 to 89.7. The intuition is that, with more principals in the population learning occurs
faster as more strategies can be evaluated each period. The results for IEL with realized payoffs are
quite different, however. Both increasing the number of strategies, J to 100 and decreasing it to 10

28The same run (i.e. same γ, σ and seed) was used for all the learning models.
29Due to space constraints, we omit reporting a large number of additional robustness checks that we performed. The

results are available upon request.
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generate slight drop-off in performance from the J = 30 benchmark. The fraction of strategies over all
runs achieving the optimum goes down from 32% to 27-28%. The reason for this difference between IEL
and SEL is that, when using realized payoffs only, the change in J does not affect the actual number of
strategy payoffs that are updated each period. On the one hand, a lower J can be potentially beneficial
for the IELR principal since a smaller number of strategies inMt will have zero payoffs but on the other
hand, it has the disadvantage of not allowing enough diversity in the strategy set which is especially
important in the early stages of the learning process. In general, the results suggest that there is some
optimal pool size that maximizes the algorithm’s performance.

2. Varying the number of within-period output evaluations, T1
Table 4 shows that increasing the number of output realizations, T1, that the principal observes

and uses to compute her payoff from 10 to 100 improves the performance of both the IEL and SEL
algorithms. In the IELR case the percentage of strategies achieving the optimal contract rises from
32% to 51.8%, while in the SEL case the corresponding increase is a bit less significant (from 73.5%
to 88.8%). Note that the IELR with T1 = 100 comes within 10% of the optimal payoff in 99% of all
simulations. Similarly, increasing T1 to 100, improves the performance of IELR with J = 10 compared
to the run with J = 10, and T1 = 10. An increase in the length of the evaluation window, T1 to 100
combined with a decrease in the number of strategies, J to 10 in IELR results in better performance
than the baseline IELR with selective replication but worse performance than increasing T1 alone.

3. Varying the experimentation parameters, μ, rm, and the decay timing, T̂
In this robustness run we explore the sensitivity of the modified IEL algorithm to variations in the

parameters governing the experimentation operator. Decreasing the experimentation rate, μ from 5%
to 2%, motivated by the idea that this will decrease the number of new mutant strategies with zero
payoffs in the strategy pool, causes insignificant change in the performance of the algorithm. We also
experimented with reducing the value of the experimentation range parameter, rm. The motivation
behind this exercise is that after an initial adjustment, the IELR algorithm leads to a strategy set
settled in the area around the optimal contract. At this point, shrinking the strategy space region
within which experimentation occurs can be beneficial for convergence. Indeed, we find an increase of
performance of about 5 percentage points for the runs converging to the optimal payoff, but a smaller
increase (about 1%) for the simulations reaching within 5% of the optimal payoff. We also studied the
effect of moving forward the time period when experimentation starts decaying from T̂ = 2, 000 (in the
benchmark case) to T̂ = 500. The effect is a reduction in performance of about 25-30% relative to the
benchmark values from table 3 as the principal has less time to experiment when trying to learn the
optimal contract.

4. Tournament selection
We also check the robustness of our findings to using tournament vs. proportionate selection, as

our replication operator. As table 4 shows, replacing selective replication with tournament selection
in the SEL model achieves very similar results in terms of performance — over all of the runs — 69%
of the strategies in the final pool coincide with the optimum under tournament selection while the
corresponding number is 73.5% under selective replication. The results for the fractions of simulated
payoffs within 5% and 10% of the maximum are even closer with still over 99% of all strategies achieving
payoffs within 5% of the optimum. However, note that tournament selection significantly outperforms
the baseline replication (see table 2).

We also look at the effect of tournament selection on the IELR model. As in the SEL case,
tournament selection achieves better performance than the baseline roulette wheel replication but,
unlike in the SEL case, it performs much worse than our selective replication operator (e.g., the fraction
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of runs converging to the optimal contract falls from 32% to 2.6%). The reason for superior performance
of selective replication is that new mutants and unplayed strategies have zero payoffs. Such strategies
are replicated less frequently with selective replication than with tournament selection. This results in
more successful adaptation with selective replication.

5. The fitness weights, λ
We also experimented with increasing the value of the parameter λ which governs the curvature in

the mapping between the average profits and the strategy fitness. The results from increasing λ from
1 to 3 show a slight deterioration in performance (the average percentage over all runs of last period
strategies coinciding with the optimum declines from 32% to 27%). Using the biased roulette wheel
replication from (9), a higher λ implies a higher probability of choosing a strategy with a high payoff.
This may be beneficial later on when (or, if) we are close to the optimum but may lead to the strategies
in the pool being “stuck” far away from the optimum in the early stages of the learning process. The
combination of these two effects accounts for the observed outcome30.

5.4 Convergence Analysis

We report the results of our convergence analysis of the best performing social and individual learning
models, SEL and IELR with selective replication in table 5. We define the following criterion for
convergence: we record the time period when the algorithm first reaches the optimum, that is, the first
time when the optimal strategy is played. Then, we continue the simulation for the next 200 periods
and report the frequencies on how often 90% of the strategies in the pool are within a given distance
of the optimum (0, 0.05 or 0.1).

SEL performs well according to this convergence criterion. Once the learning dynamics take the
strategy set close to the optimum, it remains there forever (e.g. see the sample runs in figure 6).
In contrast, the IELR model does not exhibit similar behavior prior to a sufficient decrease in the
experimentation rate (i.e., such ‘settling down’ of the strategy pool occurs only after period 2,000). In
the IELR simulations we often have instances where the optimal strategy shows up in the strategy pool
at some period only to be wiped out shortly after by experimentation or to be replaced with another
strategy with a “lucky” output draw (this is especially likely when T1 is small). An example of this is
presented in figure 7 where we show the fractions of strategies within a given Euclidean distance (0,
0.05, or 0.1) from the optimal contract for a sample IELR run. Observe that in the panel that shows
the fraction of strategies equal to the optimal (that is, the fraction of the J strategies equal to s∗, f∗)
there is a substantial fraction (around 40%) of strategies that are equal to the optimal one between
periods 300 and 400. Later on, between periods 1,200 and 1,400, again a substantial fraction of the
current strategies in the strategy set (around 30%) coincide with the optimal strategy. However, in
both cases, shortly afterwards these strategies disappear from the pool and the fraction of optimal
strategies in Mt remains equal to zero until the end of the simulation.

The above reasoning explains the findings reported in table 5 and suggests that the modified SEL
algorithm converges, in the sense defined above, much faster than the IELR algorithm. For example,
if we use our ‘exactly equal to the optimum’ criterion, SEL is three times faster, and up to twenty
times faster according to the ‘within 10% of the optimal payoff’ criterion. The percentage of IELR
simulations converging exactly to the optimum measured by our “90% of strategies, 90% of time”
criterion is only 21% compared to 74% in the SEL case.

30We also tested increasing the grid spacing parameter, d from 0.01 to 0.1 for RL and EWA. This makes the strategy
space G coarser and thus reduces the strategy set size, J for these models. The coarser grid helps the RL and EWA
algorithms achieve slightly better performance but they remain far from being successful in adapting to the optimal
contract.
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We also analyze the IELR and SEL convergence rates as a function of the structural parameters
γ and σ in the underlying economic model. This is shown in figure 8. The figure depicts the fraction
(out of the 70 random seed runs for any fixed parameter pair) of non-convergent simulations (according
to our criterion above) for the different values of the risk aversion parameter, γ and the variance of
output, σ that we use. Higher output variance, σ2 clearly hampers convergence. The intuition is that
for a fixed number of output observations (T1) the principal has a harder time assigning a theoretically
correct payoff to a strategy that was played, and thus “lucky” sub-optimal strategies can outperform
the optimal one in case the latter obtains a bad sequence of output draws. The role of risk aversion,
γ, on convergence is not so unambiguous but there is some evidence in the figures that higher risk
aversion γ makes the convergence in payoffs relatively harder.

6 Discussion on Non-Convergence

In this section we discuss in more detail the reasons for the non-convergence of the individual evolution-
ary learning algorithm in a large fraction of runs for both the benchmark and the modified algorithms.
At first glance our finding that the standard IEL model with foregone payoffs virtually never converges
to the optimal strategy seems surprising as this algorithm has been previously shown to converge fast
in numerous environments (e.g., Arifovic and Ledyard, 2004, 2007). In these environments, hypotheti-
cal payoff evaluations are actually very helpful in achieving fast convergence. Foregone payoffs play a
useful role in the algorithm’s ability to dismiss strategies that perform poorly. Foregone payoffs also
help in quickly evaluating strategies that are brought in via experimentation — only strategies that are
promising in terms of foregone payoffs are kept and replicated.

However, our principal-agent problem is different and, to some extent more complex than the
environments in which IEL has been previously used. As we already pointed out, the main problem
with IEL’s adaptation comes from the sequential nature of our theoretical setting. According to the
algorithm, in order to evaluate a foregone payoff of a strategy that was not actually used, the principal
assumes that the agent’s action would remain constant for any other strategy played. This is correct in
a simultaneous-game (Nash) setting where each player is playing against a fixed strategy distribution.
However, in our model — and in any similar principal-agent or sequential-play model for that matter —
different principal’s strategies in fact result in different optimal actions by the agent. Under IEL, the
whole collection of strategies (actually played or hypothetical) is evaluated holding the agent’s action
constant. Clearly, principals who use such learning algorithm and thus ignore the direct incentive
effects of their actions would not be able to learn the optimal contract.

Even with the modifications of selective replication and realized payoffs evaluation we found that
the IEL algorithm still experiences difficulties in learning the optimal contract in comparison to SEL.
We discuss the possible reasons next. To begin with, remember that the randomly generated strategies
that comprise the initial period strategy set are assigned zero payoffs31. In addition, any new strategy
generated during the simulation via experimentation is also assigned zero payoff. Strategies that violate
the participation constraint are also assigned zero payoffs. Those strategies that satisfy the participation
constraint can receive positive payoffs only once they have been played. However, strategies with zero
payoffs will always have a positive probability of being replicated, and unless they are replaced by a
strategy with a positive payoff, they may remain idle in the principal’s strategy set for a long time.

Our direct visual observations of the learning process for many sample runs indicate that it takes
a fairly long time for the IELR algorithm to eliminate most of the strategies that do not satisfy the

31The fact that the payoff is zero is not important per se. What is important is that all these strategies have the same
payoff.
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participation constraint. When most of the strategies are on the “correct” side of the constraint,
the algorithm displays improvement in performance in terms of strategy payoffs and closeness to the
optimal contract. This is displayed in figures 9 and 10 which illustrate and compare the evolution
of the strategy set, Mt, for the best performing individual and social learning models, namely SEL
with selective replication (figure 9) and IELR with selective replication (figure 10). The figures plot,
in strategy (s, f) space, the current strategies in the set (the circles) at various time periods and the
participation constraint, for the same sample run. The diamond denotes the currently played strategy
for IELR, and the star denotes the optimal contract. We see that the better performance of the social
learning model is due to the fact that it weeds out strategies that violate the participation constraint
quite fast and then converges quickly and stays close to the optimum. In contrast, IELR exhibits
‘cycles’, i.e., the strategies get close to the optimum but then the set spreads out again. It is only once
experimentation decays sufficiently that IELR converges to the currently best strategy in Mt which,
however, is not necessarily the optimal one.

The main problem with IELR and the reason for the behavior exhibited in figure 10 is that, even if
the optimal strategy appears in the pool at some t, it can, at any later point in time, disappear from it.
This decreases the probability that the algorithm converges to the optimal contract in any fixed number
of periods. To see this more clearly, suppose that the optimal strategy were present in the principal’s
strategy set at some period. One way through which it can be replaced by some different strategy is
via experimentation. A second possibility is for it to be replaced by some suboptimal strategy. The
latter can happen in two ways: (1) because a suboptimal strategy was actually played and received
higher payoff than the optimal strategy that was never played (note this cannot happen in SEL as all
strategies inMt are played before updating); or (2) because a suboptimal strategy was “lucky” and got
a series of favorable output draws which resulted in a payoff higher than the payoff that the optimal
strategy earned the last time it was played (this is less likely to happen in SEL where multiple copies
of the optimal strategy would be present in Mt). In both cases, if the number of other replicates of
the optimal strategy in the collection is small or zero (much more likely for IELR than SEL), this can
be detrimental. The chance of bringing the optimal strategy back into the strategy pool, especially
towards the end of a simulation run when we are either decreasing the radius of the experimentation,
rm (or its rate, μ) is clearly diminishing to zero.

Similarly, given that under IELR not all strategies in the pool are evaluated each period (only
a single one is), previously ‘lucky’ strategies (those that have obtained high payoffs because of good
output draws) can persist in the pool while better strategies in terms of theoretically expected payoffs
could be replaced. As the simulation is moving closer to the optimal contract in (s, f) space, because of
experimentation, there might still be a number of points in the strategy pool outside of the participation
constraint, but close to the optimal and near-optimal strategies in the strategy space. This also
contributes to IELR’s slow convergence or even the lack of convergence to the optimum.

The above discussion and evidence suggests that SEL focuses faster on a smaller number of strate-
gies than the IELR. This point is further illustrated in figure 11 in which we report the frequency
distribution of all the strategies that were ‘active’ (played) during a given simulation. For each strat-
egy in G we plot the number of times this strategy was ‘active’ divided by the total number of strategy
evaluations that took place over the course of the simulation. Comparing the IELR vs. SEL panels,
we see that the SEL simulation results in higher frequencies of fewer strategies that are concentrated
around the participation constraint and around the optimal strategy. At the same time, the IELR sim-
ulation generates a much more spread-out distribution in which a larger number of dispersed strategies
including many on the ‘wrong’ side of the participation constraint were played.

Does the SEL algorithm perform better because N strategies (although not necessarily all different)
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are evaluated per period while only a single strategy is evaluated in IELR each period? To put IELR
on a more equal footing with SEL in terms of the total number of evaluated strategies, in figure 12 we
compare the make-up of the strategy sets at time periods for which the number of strategy evaluations in
IELR roughly equals that in SEL32. More specifically, we run IELR for 30 (=N) times as many periods
as SEL (15,000 vs. 500) — for example, the top row of panels on figure 12 compares the strategy pool at
t = 200 for SEL with t = 6, 000 for IELR. Clearly, even with the same number of evaluations, the IELR
strategy set remains much more dispersed. Looking at the fraction of converging strategy under IELR
over time, we see that after some initial progress, these fractions stabilize around 0.1 for strategies
equal to the optimum and around 0.25 for strategies within 0.05 away from the optimum and stay at
these levels until the end of a simulation.

These results reveal that, since SEL is different from simply ‘repeating’ IELR N times or alter-
natively, an N -player version of IELR, the under-performance of individual learning in our setting is
not simply due to the number of strategy evaluations that are performed. What causes the difference
in performance then? Remember, IELR updates (via replication and experimentation) each time a
strategy is played, while SEL updates once all N strategies in Mt are played. Thus SEL uses more
information to update the strategy set and experimentation occurs less often. In IELR, as shown above,
zero-payoff strategies stay in the pool for a relatively long periods of time as they are unlikely to be
selected to play because of their low fitness. of their low fitnnesses they are unlikely to get played. In
contrast, in SEL such strategies are played with certainty and weeded out quickly. One way to make
IELR perform like SEL would be to ‘force’ the principal to postpone replication and experimentation
and instead play all her J (=N) current strategies before updating. However, there is no reason for
this to be optimal in general. Moreover, this major difference in SEL vs. IELR is not just a modeling
assumption. Instead it is inherent to what these learning algorithms stand for — in SEL one, and
everyone, learns from one’s own and other people’s experiences while in IELR one learns from one’s
own experience only. The physical time to updating is the same (every time period), however in IELR
one (being alone) is able to play just a single strategy at a time, while in SEL N strategies are played.

7 Conclusions

We introduce learning in a principal-agent model and examine whether and what type of learning pro-
cesses converge to the theoretically optimal agency contract. Solving for the optimal contract in such
models is often computationally difficult and may require a fair amount of knowledge about the envi-
ronment by the principal. The learning models that we analyze are social evolutionary learning (SEL)
and three different models of individual learning: reinforcement learning (RL), experience weighted
attraction learning (EWA), and individual evolutionary learning (IEL). In addition, we introduce and
evaluate a modified version of IEL that we call individual evolutionary learning with realized payoffs
(IELR).

Our results show that learning in the principal-agent environment is very difficult. This is due to
three main reasons: (1) the stochastic environment, (2) the discontinuity in payoffs in a neighborhood
of the optimal contract due to the participation constraint and (3) incorrect evaluation of foregone
payoffs in the sequential game principal-agent setting. The first two factors apply to all the learning
algorithms that we study, while the third one is the main reason for the failure of the EWA and
IEL models in our setting. In terms of the performance, we show that SEL (especially with selective
replication) is the most successful in achieving convergence to the optimal contract. In contrast, the

32In fact, since the strategy pool under SEL typically contains several replicates of the same strategy, this exercise gives
an advantage to IELR in terms of total number of strategy evaluations.
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canonical versions of the individual learning algorithms (IEL, RL and EWA) fail to converge.
To overcome the difficulties with convergence to the optimal contract for the individual learning

algorithm and remedy the problem of incorrect evaluation of foregone payoffs, we modified the IEL
algorithm so that only the payoffs of strategies that are actually tried out are updated. This updating
rule is similar to that used in RL. However, we keep all other essential elements of the IEL updating,
namely its replication and experimentation operators that enable IEL to handle environments with
large strategy space much better than RL. The resulting hybrid algorithm (which we call IEL with
realized payoffs, IELR) is much more successful than all other individual learning models we studied.
The implementation of selective replication improves its performance further. Nevertheless, our main
conclusion, based on numerous robustness checks and parametrizations, is that, in both the canonical
algorithms and their modified versions, principals who are learning from each other can achieve much
better results than principals who only learn on their own. Our results thus echo the famous quote
from Marshall’s (1920) Principles of Economics: “If one man starts new idea, it is taken up by others
and combined with suggestions of their own; and thus becomes the source of new ideas”.

More generally, our findings suggest that the relatively simple learning rules we evaluate in this pa-
per, despite having proved successful in many normal form game settings (largely based on Nash play)
or various macroeconomic settings, may not be well-suited for the sequential strategic problems of struc-
turing incentives that arise in the principal-agent models. Our results suggest that these environments
might require much more sophisticated principals in terms of the knowledge about the environment
they operate in, for example, about the nature of the participation and incentive constraints, the nature
of the stochastic process that the technology is subject to and degree to which agents’ are risk averse.
Correct implementation of this knowledge would also require greater computational ability than what
our boundedly rational agents are endowed with.33

We chose a one-sided learning framework for its tractability and to isolate better the relative
performance of the various learning algorithms. Naturally, ours is thus a partial characterization of the
real-world principal-agent environments where both sides can continuously and simultaneously learn
from each other. While this remains outside the scope of this paper, we conjecture that allowing for
double-sided learning in our setting is likely to make the performance of the algorithms worse. Indeed,
due to the one-shot structure of our principal-agent game with the agent playing last, there is no
strategic advantage to the agent of being fully rational — she cannot ‘manipulate’ to her benefit the
principal’s choice of (s, f) and make the principal deviate from the optimal contract. Thus, modeling
the agent as fully rational does not make learning harder for the principal. On the contrary, if the
agents were also boundedly rational and learning about how much effort to supply, then for example,
choosing an incorrect level of effort may lead the principal to pick ‘wrong’ contracts which is likely to
slow the learning process for both parties. Finally, making the agents learn about their optimal effort, z
would not make the problem of incorrect evaluation of hypothetical payoffs disappear. Remember, the
nature of that problem lies in the principal’s taking the agent’s reaction to any other contract offered
as fixed. We know that a fully rational agent varies his effort one-to-one with the share s and there is
no reason that a learning agent would not vary his effort with different offered contracts as well. As
long as the latter is the case, EWA or IEL would fail also with two-sided learning.

How could we test our results empirically? As a first step, we plan to use experiments with
human subjects. We are developing an experimental design for two types of environments. In the
first environment, subjects (who play the role of the principals in the model) will learn from their
own experience only. In the second environment, subjects will be given a chance to interact with other

33Designing a learning model with just the ‘right’ amount of sophistication necessary for successful adaptation in such
settings is on our future research agenda.
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subjects and exchange ideas of what the best strategies are. Given sufficient experimental or other data,
we can formally test and distinguish statistically between the social and individual learning models34.
IEL agents learn from their own experience and therefore only the time they have spent on the task
(plus maybe an idiosyncratic shock or fixed effect) should affect how well they perform. In contrast,
SEL agents learn from others, in addition to what they can achieve on their own. Thus how many
other agents one is in contact with (e.g. data on social networks, friends, neighbors, etc.) should affect
their performance, in addition to their own experience. That is, both the strength of the relationships
an agent has with others and their number should influence her outcome under SEL but not under
IEL.

In future work we plan to apply the basic framework and methodology laid down here to other
principal-agent settings. We have already studied an application to an adverse selection environment
(Arifovic and Karaivanov, 2009) and intend to develop an application to a dynamic models of asym-
metric information (e.g. as in the optimal taxation or optimal insurance literatures).
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Model

x=0 x=0.05 x=0.1 x=0 x=5 x=10

Individual Evolutionary Learning, IEL 0.00 0.00 0.00 0.00 0.00 0.00

Social Evolutionary Learning, SEL 1.65 18.59 41.51 1.65 37.43 67.81

Reinforcement Learning, RL (d = 0.01) 0.03 1.96 6.27 0.03 1.67 3.73

EWA Learning (d = 0.01) 0.00 0.79 3.99 0.00 0.52 1.17

Model

x=0 x=0.05 x=0.1 x=0 x=5 x=10

Selective Replication
Modified IEL (SR, hypothetical payoffs) 0.00 0.00 0.00 0.00 0.00 0.00
Modified SEL (SR) 73.50 92.15 99.70 73.50 99.74 100.00

IEL with Realized Payoffs, IELR
using baseline replication 1.20 14.22 33.18 1.20 30.61 59.36
using selective replication 32.03 62.19 82.12 32.03 80.96 91.80

Notes:
1. SR - selective replication
2. The EWA parameters used are: δ=0.2; ρ=0.8; φ=0.8

Percent of last period strategies Percent of last period payoffs

Table 2: Algorithm Performance - Benchmark 1,2

within x of the optimal contract within x% of the optimal contract

Table 3: Algorithm Performance - Modified

Percent of last period strategies Percent of last period payoffs
within x of the optimal contract within x% of the optimal contract



Model

x=0 x=0.05 x=0.1 x=0 x=5 x=10

Individual (SR, N=100) 27.66 57.84 78.40 27.66 74.94 84.80
Individual (SR, N=10) 26.88 56.97 78.69 26.88 77.63 89.06
Individual (SR, T1=100) 51.77 78.72 94.95 51.77 94.91 98.97
Individual (SR, N=10, T1=100) 42.22 71.77 91.44 42.22 92.48 98.34
Individual (SR, experimentation rate=0.02) 32.61 63.14 83.94 32.61 82.56 92.44
Individual (SR, perturbation radius decay) 37.26 67.28 88.18 37.26 85.17 94.50
Individual (SR, early experimentation decay) 18.94 44.93 67.54 18.94 77.99 90.95
Individual (tournament selection) 2.59 13.03 26.52 2.59 41.76 62.07
Individual (SR, λ=3) 27.09 59.96 81.48 27.09 78.92 88.97

Social (SR, N=100) 89.70 98.94 100.00 89.70 100.00 100.00
Social (SR, T1=100) 88.75 98.71 100.00 88.75 100.00 100.00
Social (SR, early experimentation decay) 48.57 64.04 84.60 48.57 97.54 99.77
Social (tournament selection) 68.90 90.12 99.13 68.90 99.25 99.99

Notes:
1. SR - selective replication
2. All individual runs use realized payoffs only (IELR)

Percent of last period strategies Percent of last period payoffs

Table 4: Algorithm Performance - Robustness Checks 1,2

within x of the optimal contract within x% of the optimal contract



Model

x=0 x=0.05 x=0.1 x=0 x=0.05 x=0.1

Individual (SR, realized payoffs)
     -strategies 20.59 48.29 78.53 2178.50 2170.20 2137.90
     -payoffs 20.59 66.15 84.57 2178.40 2165.30 2149.20

Social (SR)
     -strategies 73.82 94.39 99.99 733.21 525.72 108.27
     -payoffs 73.84 99.74 100.00 733.08 345.95 102.77

Notes:
1. SR - selective replication
2. Maximum number of runs = 2400
3. (90%, 90%) means 90% of runs were within x of the optimum for 90% of a 200 consecutive periods window
     the payoff numbers for x are in fractions of optimal payoff

Percent of simulations Average time to first convergence 

Table 5: Convergence Analysis 1,2

within x of optimum (90%, 90%) 3 within x of optimum (90%, 90%)
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Figure 1: Differences between Simulated and Optimal Payoffs (first column) and Strategies
(second column)
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Figure 9: Evolution of a Typical Run - Social Learning
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Figure 10: Evolution of a Typical Run - IEL with Realized Payoffs
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Figure 11: Frequency of Evaluations of Strategies During a Typical Run
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Figure 12: Equal Number of Evaluations
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