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Abstract
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term contract with one-sided commitment. Markov-perfect contracts imply a determinate asset
time-path and a non-degenerate long-run stationary wealth distribution. Quantitatively, we
show that Markov-perfect risk-sharing contracts provide sizably more consumption smoothing
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opposite holds for high asset levels.
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1 Introduction

We define, characterize and compute Markov-perfect risk-sharing contracts in a dynamic economy
with stochastic income and endogenous asset accumulation by risk-averse agents. We highlight
the roles of two market frictions that simultaneously affect the degree of consumption and income
smoothing: (i) limited commitment, by which we mean inability to use long-term contracts; and
(ii) private information, in the form of moral hazard. Importantly, the agents’ wealth interacts
with both frictions endogenously, as it affects their demand for insurance and their incentives and
intertemporal trade-offs.

We define Markov-perfect insurance as a sequence of one-period incentive-compatible risk-
sharing contracts which depend only on payoff-relevant variables. We characterize, both theo-
retically and quantitatively, the properties of Markov-perfect risk-sharing contracts and compare
them to two commonly studied alternatives: self-insurance and long-term contracts. We also quan-
tify the size and distribution of the welfare costs from the commitment and information frictions
across agents with different wealth.

Markov-perfect insurance restricts the contract space to recursive policy functions of observable,
payoff-relevant fundamentals: current output and assets. However, we show that in our setting
the sequence of one-period Markov-perfect risk-sharing allocations are equivalent to the allocation
obtained in a mechanism-design problem with an infinitely-long contract. Specifically, we prove
a one-to-one mapping between a Markov-perfect equilibrium (MPE), in which the dynamic state
variable is the agent’s assets, and a setting with long-term commitment by the insurer, in which
the state variable is promised utility. The key assumptions delivering this equivalence result are
free entry and non-exclusivity in the insurance market, and the ability of agents to carry assets
over time, facing the same rate of return as insurers.

The allocation equivalence obtains regardless of whether the agent’s savings or effort are con-
tractible or not. Intuitively, the agent’s assets “encode” the history of income shocks and thus
completely determine the current and future terms of risk-sharing, just like promised utility in
the standard approach. When the agent is subject to a borrowing constraint, as we assume, this
constraint maps into a lower bound on promised utility. As we discuss in more detail below, these
results are related but also significantly different from recent contributions by Albanesi and Sleet
(2006) and Khan et al. (2014).1

MPE as a solution concept highlights the main risk-sharing friction on which we focus: the
fact that in many situations individuals and firms cannot, or are legally not allowed to, enter
binding long-term agreements (e.g., labor, rental, insurance, TV, phone, internet, etc.) Instead,
both insurers and the insured can only sign short-term contracts and can costlessly walk away at
specified times.

While in our model the risk-sharing outcome does not depend on whether the insurers can
commit to long-term contracts or not, Markov-perfect contracts lend themselves more directly to
quantitative analysis and empirical work as the agents’ asset holdings are an integral determinant
of the contract, with non-trivial endogenous dynamics and non-degenerate limiting distributions
that can be taken to data, as we demonstrate. This differs from the mechanism-design problem
with one-sided commitment by the insurer in which the contracts and allocations are expressed in

!See also DeMarzo and Sannikov (2006) who use continuous-time methods and show how a dynamic contracting
problem with hidden cash flow and unobserved effort can be decentralized via the firm’s capital structure (credit line,
debt and equity).



terms of the mathematical abstraction of promised utility as the state variable and asset dynamics
are indeterminate.

Our equivalence result can also be interpreted as a decomposition of a long-term insurance
contract with limited commitment and private information into a sequence of short-term contracts
that are only a function of agents’ assets and current income. Such decomposition does not emerge
in many dynamic contracting settings in which there are gains from enduring relationships (e.g.,
Townsend, 1982).2

We model risk-averse agents endowed with a stochastic technology that transforms labor effort
into output. An agent can imperfectly self-insure through accumulating or drawing down a risk-free
asset. A perfectly competitive risk-neutral insurer offers a risk-sharing contract. The agent’s assets
and output are observable, but the agent’s effort is not observable, which gives rise to a moral
hazard problem. Though the insurer observes the agent’s assets, he cannot control them. That is,
given the contract terms (insurance premia/transfers), the agent makes his own effort, consumption
and savings decisions.

We first show that Markov-perfect risk-sharing contracts with moral hazard provide partial
insurance and are characterized by “inverse Euler equations” relating the reciprocals of current
and future marginal utility of consumption, therefore preserving the standard properties of optimal
insurance with private information from the literature. Similarly, Markov-perfect insurance con-
tracts preserve the standard properties of optimal insurance with full information: consumption is
equalized across states of the world and the relationship between present and future consumption
is described by an Euler equation equalizing current marginal utility of consumption with appro-
priately discounted future marginal utility. Assuming free entry in the insurance market, we prove
and numerically verify that Markov-perfect insurance contracts yield history-contingent time paths
for consumption and effort which are equivalent to the time paths implied by an infinitely-long
contract with commitment by the insurer.

We use numerical methods to further characterize the properties of Markov-perfect insurance
contracts. The MPE problem is tractable, low-dimensional and relatively easy to compute, both
with and without private information. We show that an MPE can be parameterized to match several
broad dimensions of US data. We find that Markov-perfect insurance contracts provide sizeable
additional consumption smoothing relative to self-insurance, particularly for agents with low asset
holdings. Even in the presence of very volatile output-shock realizations, access to Markov-perfect
insurance allows agents to smooth consumption to a considerably higher degree compared to when
only relying on their own savings. In addition, the transfers implemented by the Markov-perfect
insurance contracts imply a much smoother income process for the agent.

The properties of Markov-perfect insurance described above have important consequences for
wealth inequality. In an MPE a large fraction of agents have zero assets in the limiting distribution,
since poorer agents have weaker incentive to supply effort and accumulate assets when they have
access to outside insurance. Our model also delivers a long-term consumption distribution that
is broadly in line with the data, avoiding the counterfactual degree of left skewness in models
with limited commitment alone. In addition, our approach allows us to compute the welfare costs
of moral hazard and limited commitment for any level of wealth. For our parameterization, we
find sizable gains from resolving either friction which are the highest at low-wealth levels, near the

2In a broader sense, rewriting a dynamic problem recursively in terms of promised utility reduces it to a sequence
of one-period problems that can be decentralized via “component planners” who trade contracts (see Atkeson and
Lucas, 1992). However, a decentralization in terms of other observable variables such as wealth, debt, etc. is not
always available (see Golosov et al., 2016).



borrowing constraint. We also find that the gains from resolving the commitment friction are larger
than the gains from resolving the moral hazard friction at low asset levels, while the opposite result
holds at high asset levels. Intuitively, the gains from commitment are the largest for low-wealth
agents who are close to the no-borrowing constraint and for whom the value of obtaining additional
smoothing by front-loading consumption (as if relaxing the borrowing constraint) is the highest. In
contrast, the wealthier agents who are farther from the borrowing limit do not benefit much from
relaxing the commitment friction but still gain from the improvement in incentives by resolving the
moral hazard problem.

Related literature

Our equivalence results between Markov-perfect and one-sided commitment contracts and be-
tween short- and long-term contracts complement but also significantly differ from two recent
papers—Albanesi and Sleet (2006) and Khan et al. (2014). Albanesi and Sleet (2006), henceforth
AS, study optimal taxation in a finite-horizon economy with private information due to unobserved
i.i.d. labor disutility shocks. There are no commitment frictions and no real assets. Assuming
separable preferences in consumption and labor effort and an exogenous lower bound on promised
utility, the authors show that the constrained optimum in their private-information setting can be
decentralized via a relatively simple system of non-linear taxes and non-contingent claims subject
to borrowing constraints. Specifically, each agent’s tax payment depends only on her current labor
income and current claim holdings. The agents’ claim holdings map to their promised utility value
in the planner’s problem and the tax schedule provides incentives for the “correct” sequence of
claim holdings to be chosen in equilibrium.

Khan et al. (2014), henceforth KPR, study an infinite-horizon, linear-production economy
with capital and private information due to unobserved productivity (output). The agent’s capital
holdings are observable and can be contracted upon. The authors characterize the constrained
optimal allocation of consumption and capital and show that, assuming constant relative risk-
aversion (CRRA), the constrained optimum can be decentralized via consumption transfers and
investment requirements that condition only on current capital. The agent’s capital stock is shown
to map one-to-one into promised utility in the planner’s problem.

The common feature in these two papers and ours is the result that, under appropriate condi-
tions, an equivalence mapping can be constructed between promised utility as the state variable
in a mechanism-design problem and another state variable in a different problem—non-contingent
claims in AS, capital in KPR or assets in our paper. However, while the fundamental friction in
both AS and KPR is private information with i.i.d. structure across agents and time, the funda-
mental friction in our setting is double-sided lack of long-term commitment.? As is well-known from
the literature, private information and commitment problems have different natures and hence it is
not obvious that there should exist a parallel in terms of results. Moreover, our equivalence result
holds both with and without private information in the form of moral hazard (see Karaivanov and
Martin, 2015).

Second, unlike KPR and AS who start with a planner’s problem and decentralize it as a compet-
itive equilibrium, we relate back to the literature on Markov-perfect equilibria by doing, in a sense,
the opposite of AS and KPR—we propose an MPE and show that, with free entry by insurers, it
delivers equivalent allocations as a hypothetical long-term contract with one-sided commitment. In
contrast, AS have a setting with double-sided long-term commitment while in KPR there are no

30utput in our model is not i.i.d. over time since effort depends endogenously on assets.



commitment problems since both sides do not have an incentive to renege in any period. Third, be-
yond these major distinctions, there exist other potentially important differences between the three
papers: private information vs. unobserved actions; finite (AS) vs. infinite horizon; endogenous
(our paper) vs. exogenous (AS) utility lower bound; CRRA (KPR) vs. more general preferences,
etc.

In another related recent paper Broer et al. (2017), henceforth BKK, study consumption risk
sharing in a setting with both private information (unobservable persistent income shocks) and
one-sided limited enforcement (the agents but not the insurers can renege and go to autarky).
The authors show that, in contrast to models with limited enforcement alone, their model has
implications about consumption which are similar to those in self-insurance (e.g., Aiyagari, 1994)
and therefore closer to the data. BKK also compare their model with the self-insurance and limited
enforcement settings in the context of a social insurance policy intervention and find that public
insurance always crowds out private insurance. While our model also has both private information
and limited commitment frictions and delivers similar distribution of consumption, it differs from
BKK in two important ways. First, our private information friction stems from an unobserved
action which makes the income process endogenous. Second, our MPE approach allows us to
analyze asset accumulation dynamics and the long-run distribution of wealth, in addition to the
model implications for consumption and income.

In Karaivanov and Martin (2015) we analyze Markov-perfect contracts with full information
and exogenous income process and focus on the return-on-assets differential between agents and
insurers with market power. We show that limited commitment by the insurer is restrictive and
distorts the agent’s consumption profile only when the insurer has a rate of return advantage and
the agent is sufficiently wealthy. In contrast, in the current paper we assume away any return
differential, endogenize the agent’s effort and private information, and focus on the quantitative
implications of Markov-perfect insurance contracts relative to other settings from the literature and
data.

Our timing assumption regarding when parties can quit the contract differs from much of the
literature on limited commitment (Thomas and Worrall, 1988, 1994; Kocherlakota, 1996; Ligon et
al., 2002; and Krueger and Uhlig, 2006 among others). In those papers, the key issue is the potential
inability to support full insurance when agents can opportunistically renege on the contract within
a period, typically after high output is realized, and go to autarky or to another insurer. The
result is that, under certain conditions, no additional consumption smoothing over self-insurance
can be provided. In contrast, our agents and insurers can only quit at the beginning of a period,
before output is realized and additional smoothing over self-insurance is always possible, including
with two-sided lack of commitment.* Furthermore, asset accumulation is not studied in those
papers since the insurers are assumed to be able to commit to an infinitely-long contract and
thus implement the incentive-feasible consumption allocation directly, through utility promises. In
contrast, we emphasize the private asset dynamics that arise when both agents and insurers can
commit within a period but not across periods.

In assuming two-sided lack of commitment our paper relates to Thomas and Worrall (1988),
Kocherlakota (1996) and Ligon et al. (2002). Thomas and Worrall (1988) study a firm-worker rela-
tionship in which each party can always walk away to a competitive spot labor market. Kocherlakota
(1996) and Ligon et al. (2002) study risk sharing among risk-averse households who can walk away
to autarky, with the focus being on occasionally binding participation constraints and accounting

4Our timing is similar to Phelan’s (1995) who, however, assumes that insurers can fully commit, no asset accu-
mulation and unobservable agent’s income.



for partial insurance, as observed in the data. In contrast, we model the lack of commitment prob-
lem as a Markov-perfect equilibrium and emphasize the role of asset accumulation in consumption
smoothing.

Our paper also relates to a large literature emphasizing the gains from enduring relationships in
settings with incomplete markets caused by private information or enforcement problems.> Much
of this literature assumes commitment to an infinitely-long agreement and does not allow agents to
save or provide any other role for asset accumulation.® While welfare improving ex-ante, the optimal
long-term contracts exhibit counterfactual properties such as the agents’ consumption converging to
zero (immiseration), exploding consumption inequality, or degenerate long-run wealth distributions
(see Phelan, 1998 for a review). In addition, long-term contracts can be time-inconsistent—at a
later date a party may gain from reneging on the ex-ante agreement.

Our result on the allocation equivalence between Markov-perfect insurance contracts and a
long-term contract with one-sided commitment by insurers relates to Malcomson and Spinnewyn
(1988) and Fudenberg et al. (1990) who also analyze short- and long-term contracts in multiperiod
moral hazard economies.” While related, their results are not directly applicable to our setting for
several reasons: (i) we study infinitely-long contracts; (ii) we do not assume two-sided commitment
to the long-term contract; and (iii) with multiperiod moral hazard the Pareto frontier may not be
downward sloping everywhere (Phelan and Townsend, 1991). Finally, Meh and Quadrini (2006)
study a model of one-sided limited commitment via capital diversion, discuss a mapping from
assets to promised utility and numerically verify the Fudenberg et al. (1990) conditions for their
parameterization.

The paper is organized as follows. Section 2 describes the model environment. Section 3 defines
and characterizes Markov-perfect insurance contracts and the roles played by private information
and limited commitment. Section 4 explores numerically the properties of Markov-perfect contracts,
compared to a self-insurance economy and US data. Section 5 quantifies the welfare costs of private
information and limited commitment. Section 6 concludes. All proofs are in the Appendix.

2 The Environment

An infinitely-lived agent maximizes expected discounted utility over consumption ¢ and effort e.
Period utility is given by u(c) —e, where u.(c) > 0, uc.(c) < 0 and u satisfies Inada conditions.® The
agent discounts future utility by factor 5 € (0,1) and has a stochastic production technology that
maps effort into output. There are n > 2 possible output values, y',...,y" where 0 < y! < ... < y".
Denote by 7(e) the probability that output level 4 is realized, given effort level e. Assume effort
takes values on the set E which is a closed interval in R;.

®Green (1987), Spear and Srivastava (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992), Townsend
(1982), Rogerson (1985b), Phelan and Townsend (1991) among many others.

An exception is the work on hidden saving or borrowing, e.g. Allen (1985) or Cole and Kocherlakota (2001) from
which we differ by assuming that the agent’s asset accumulation is observable.

"Fudenberg et al. (1990) show that, under certain conditions on the information structure ruling out adverse
selection, equal discount rates by the principal and the agent, downward sloping Pareto frontier and finite duration,
a sequence of short-term contracts and a long-term contract yield equivalent allocations. Malcomson and Spinnewyn
(1988) allow agents to save in an observable asset and prove equivalence between two consecutive one-period contracts
and one two-period contract under certain conditions (see their Proposition 2).

8We use subscripts to denote partial derivatives and primes for next-period values. Given our assumptions on
7'(e), we can assume that period utility is linear in effort without loss of generality.



Assumption 1 For all e € E:

(i) iy m'(e) =1;
(i) 7(e) >0 fori=1,...,n;
(iii) 7(e) are twice continuously differentiable for i =1,...,n;

(iv) Ji =1,...,n such that 7i(e) # 0;

(v) the monotone likelihood ratio property (MLRP) holds: :é-(e; s non-decreasing in i; and

1(6’

(vi) the convezity of the distribution function condition (CDFC) holds, Z§:1 72e > 0 for all
1=1,...,n.

Assumption 1 is relatively standard but some aspects need elaborating. Part (i) is the familiar
full support condition stating that any income level 4* can be realized with positive probability
from any feasible effort level, e € E. Part (iv) rules out the possibility that all probabilities 7* do
not depend on the agent’s effort e (in such case there would be no moral hazard problem when
effort is unobservable). Parts (v) and (vi) are well-known sufficient conditions for the validity of
the first-order approach in moral hazard models (Rogerson, 1985a).

The agent can save and borrow at the gross interest rate, r. Assume that the agent’s asset
holdings, a belong to the bounded set A = [a, a].

Assumption 2 (i) 0 < r < B~ (i) the lower bound on assets is the natural borrowing limit:
1

Y

a= Tr—1-

Assumption 2(i) is a standard condition ensuring finite long-run asset holdings. Assumption
2(ii) sets the minimal asset level, a equal to the natural borrowing limit (Aiyagari, 1994) which
allows us to focus on interior solutions for asset choices. We further assume that the upper bound
a is sufficiently large so that it never binds in equilibrium.

2.1 Self-insurance

We first describe what the agent can achieve on his own, using savings to self-insure against output
fluctuations. We use this self-insurance problem as an intuitive comparison benchmark in the
theoretical and quantitative analysis of Markov-perfect risk sharing.

Consider an agent who can only self-insure by using assets as a buffer stock. Given current
assets a € A, the timing of each period is as follows: (1) the agent decides how much effort e to
put in; (2) output 3 is realized; and (3) the agent decides how much to consume, ¢! and how much
assets to carry into the next period, a’ € A. The agent faces the state-by-state budget constraint,
¢! +a' = ra +y'. The agent’s self-insurance problem can be written recursively as

Qa) = max Y wl(e)fu(ra+y’ —a’) + BQ(d")] — e, (ST)

iln
elatio 15



where Q(a) denotes the agent’s self-insurance value function.”

It is easy to show that Q(a) is strictly increasing in agent’s assets. Intuitively, since 75 < 1
by Assumption 2, the agent only saves to insure against future consumption volatility. Clearly, an
agent with more assets can do everything an agent with less assets can, but is in a better position
to self-insure against a sequence of low output realizations.

As is standard in such models, since n > 2 states cannot be spanned using a single asset,
consumption smoothing is imperfect (¢! differs across states with different y?). Other easy-to-show
properties of self-insurance are that the optimal consumption, ¢’ and next-period assets, a’ in each
state are increasing in current assets a. Asset holdings are reduced if the lowest output state(s) are
realized and increased (for some asset range) if the highest state(s) are realized.!”

3 Markov-Perfect Insurance

3.1 Markov-perfect equilibrium

Suppose now that the agent has access to a perfectly competitive insurance market with free entry,
populated by risk-neutral profit-maximizing insurers. Demand for market insurance exists in our
setting since the agent cannot span the n-dimensional output uncertainty by borrowing and saving
in the single non-contingent asset a.

We assume limited commitment in the form that neither insurers nor agents can commit to
a contract extending beyond the current period. One-period risk-sharing contracts are, however,
perfectly enforceable. Our notion of limited commitment thus differs from other papers in the
literature in which contract parties can opportunistically renege within a period. The agent’s
effort is not observable by the insurers (private information). In contrast, the agent’s assets, a are
observable. Given the insurance contract terms, the agent chooses current consumption and the
next-period asset level (this occurs after output is realized).!!

We study insurance contracts the terms of which depend only on fundamentals, that is, payoff-
relevant variables: the agent’s beginning-of-period assets, a and the current output (state) real-
ization, y’. Following Maskin and Tirole (2001), we call these contracts Markov-perfect insurance
contracts. Specifically, an insurance contract is offered before effort, e is exerted and next-period
assets, a' (and hence, current consumption) are chosen and consists of output-contingent transfers,
7% as functions of the agent’s beginning-of-period assets, a € A. Agents with different beginning-of-
period assets are, in general, offered different contracts. The insurer takes into account the agent’s
incentives to exert effort and save given the contract terms via incentive-compatibility constraints.
Since the insurer cannot commit beyond the current period, he takes future insurance contracts
as given. That is, the insurer takes as given the agent’s present value utility V(a?), to be defined
formally below, induced by the contracts implemented in the future which themselves depend on
the agent’s asset level. The insurer can affect the agent’s continuation value V(a') by affecting the
asset choice, a*. In equilibrium, the Markov-perfect insurance contracts consist of policy functions

9Using standard arguments, our assumptions on u, together with 78 < 1 and the upper bound on assets @ are
sufficient for the self-insurance problem (SI) to be well-defined (details available upon request).

10The proofs of these statements are standard and available upon request.

1Tn Proposition 1 we show that in our free-entry setting whether the agent or the insurer controls asset accumulation
does not matter. See also Karaivanov and Martin (2016) for an analysis of asset non-contractibility in a related
dynamic setting without a moral hazard problem.



for state-contingent transfers, as functions of beginning-of-period assets and output realization:
{THa) ey

After entering a contract with an insurer, the agent chooses effort e and future assets, a’, which
depend on output realization, taking as given the current and anticipated future contracts delivering

the value V. Call the associated state-contingent agent consumption Ci(a) = ra + T*(a) — a*, for
i=1,...,n. The agent’s problem is

max Zﬂ' (a)) + BV(a")] —e.

e, at

The first-order conditions are
Z?T (a)) + V()] —1=0 (1)

and ‘ ‘
—uc(C'(a)) + BVa(a’) =0 (2)
foralli=1,...n

The insurer must take into account how the agent’s effort, e and savings, a’ respond to the offered
contract (incentive-compatibility). We use the “first-order approach” (Rogerson, 1985a) and impose
the agent’s first-order condition for effort choice, (1) as a constraint in the contracting problem.
By Assumption 1, the output probabilities 7?(e) satisfy sufficient conditions for the validity of the
first-order approach: the monotone likelihood ratio property (MLRP) and the convexity of the
distribution function condition (CDFC)—see Rogerson (1985a). Alternative sufficient conditions
to parts (v) and (vi) of Assumption 1 are also possible.'? We also treat equations (2) as constraints
in the insurer’s problem but we show in the proof of Proposition 1 that the solution is the same as
that of the relaxed problem in which the insurer controls agent’s assets directly, that is, without
imposing constraints (2).

Free entry in the insurance market results in zero expected profits in each period and each
sub-market indexed by agent’s asset holdings, a. Cross-subsidization across agents with different
asset levels is ruled out—if an insurer makes profits on agents with some asset levels but a loss on
others, another insurer can offer a better contract to the former (assets are observable). Perfect
competition also implies that all the surplus from risk sharing goes to the agent. The problem of
an insurer facing an agent with assets a € A can be thus written as

max Zw ) + pV(a’)] - (3)

1 1N
e {rha'}7_, P

subject to incentive-compatibility in effort and savings and zero per-period profits for the insurer:

n

Y me)u(d) + V()] —1=0 (IC)

=1

—uc(ci) + BVa(a’) =0 (ICS)

Zﬂ' )yt — 7] =0, (ZP)

12For example, if n = 2 it is easy to verify directly that it is sufficient to assume that 72(e) is strictly increasing
and strictly concave in e.



where we use {T *_, for the current-period contract and define ¢! = ra + 7° — @’ to simplify the
notation.

Next, we formally define a Markov-perfect equilibrium and Markov-perfect insurance contracts.

Definition 1 A Markov-perfect equilibrium (MPE) is a set of functions {€,{T", A}, V} :
A —E xR™x A" x R such that, Va € A:

{€(a), {T (a), A'(a)}1} = argmax ZW )+ pV(a’)] -

ef{rhal}i =1

subject to (IC), (ICS) and (ZP) and where
=Y m(E@)[u(C () + BY(A'(a)] - £(a),
i=1

with C(a) = ra+ T'(a) — A% (a) and ¢' = ra+ 7° — a'.

A Markov-perfect insurance contract for any asset level a € A consists of the state-
contingent transfers {T* = T"(a)}}_, associated with an MPE.

3.2 Characterization

We now characterize the properties of Markov-perfect insurance contracts. Note first that the
constraint set of the problem in Definition 1 is non-empty for all @ € A. For example, a full-
insurance (equal consumption) contract with e = min{IE}, or the contract setting 7¢ = y* and {e, a’}
to their self-insurance values (see problem SI) are feasible and incentive-compatible. In Proposition
1 we show that constraints (2) are redundant in the insurer’s problem, that is, the agent and insurer
would pick the same next-period asset level a’ given the MPE insurance contract. Since the set A
is compact, existence of a fixed point V can then be shown as in Abraham and Pavoni (2008) using
standard contraction mapping arguments.

For any a € A it is easy to see that Markov-perfect insurance yields larger present value utility
than self-insurance. That is, V(a) > (a), where the self-insurance value function 2(a) was defined
n (SI). In all our numerical simulations this inequality is always strict. Intuitively, the self-
insurance allocation is always feasible (satisfies constraints IC, ICS and ZP) but not necessarily
optimal for the Markov-perfect insurance problem. Thus, with free entry, an agent can never be
worse-off in an MPE compared to in self-insurance. In other words, in an MPE there are gains from
risk sharing over and above self-insurance. We characterize and quantify these gains in more detail
in Section 4.

Proposition 1 Given Assumptions 1 and 2, an MPE is characterized by:

(i) monotonicity: consumption, C*(a) is non-decreasing in i;

(i1) partial insurance: Cl( ) < C”(a) for all a € A; and C'(a) < C¥(a) for alla € A and 1 < i <

O 108

7 < nif and only zf i e)’

10



(iii) inverse Euler equations:

11 1

———=—F|————— |, Vi and Va € A.

uc(Ct(a))  fBr [uc(C(Al(a)))}

(iv) irrelevance of asset contractibility: whether the agent’s assets are mon-contractible or con-
tractible does not affect the Markov-perfect insurance allocations for effort, consumption and
savings, Ya € A.

Proposition 1 shows that Markov-perfect insurance contracts preserve standard features of op-
timal insurance with private information. Part (i) shows that higher output realizations imply
(weakly) higher consumption. Parts (i) and (%ii) show that Markov-perfect contracts do not pro-
vide full insurance and the MPE consumption time path is characterized by the familiar inverse
Euler equations from the literature on multi-period moral hazard with commitment (e.g., Rogerson,
1985b; Golosov et al., 2006).

Part (iv) of Proposition 1 demonstrates that whether the agent’s asset holdings are non-
contractible (freely chosen by the agent, as we assumed) or contractible (directly controlled by
the insurer) results in an equivalent MPE solution. That is, given the transfers in an MPE, for
any current observable assets a € A, agents have no incentive to choose a future assets level a’
that differs from the value that the insurer would choose if he had control over the agent’s asset
accumulation. The key reason for this result is our free-entry assumption—since all the surplus
goes to the agent, there is no misalignment of dynamic incentives between the insurer and insured.
We use this result to simplify the analysis and proofs in the rest of the paper.

3.3 The role of private information

To illustrate the role of private information in Markov-perfect insurance, we compare the MPE char-
acterized above with an analogous setting in which the agent’s effort is observable and contractible.
An MPE with full information is defined as in Definition 1 but without imposing constraint (IC).
Let g(e) = Y., m(e)y’ denote expected output given effort e € E.

Proposition 2 An MPE with full information (observable effort) has the following properties:

(i) full insurance: ¢ = ¢/ = c=C(a); a' = a/ = d = A(a) and 7° = g(e) for all i, =1,...,n

and Va € A

(ii) standard Euler equation:

uc(C(a)) = Bruc(C(A(a)))

(i7i) consumption: strictly decreasing over time, C(a) > C(A(a)); with C(a) strictly increasing
Va € int A

(iv) assets: strictly decreasing over time, A(a) < a; with A(a) strictly increasing Ya € int A

(v) effort: E(a) decreasing in a.
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When the agent’s effort is observable and contractible, Markov-perfect insurance contracts yield
standard properties of risk sharing with full information. Consumption is equalized across output
states, since there is no insurance-incentives trade-off. Unlike in Thomas and Worrall (1988) or
many others who define limited commitment as the inability to prevent an agent to opportunistically
renege on the contract after a high-output realization, the limited commitment friction here does
not distort consumption within the period. In contrast to Proposition 1, a standard non-distorted
Euler equation connecting current and future consumption via a decreasing time profile (since
Br < 1) is satisfied because of the removed need to provide incentives to put forth effort. In
addition, with free entry, the insurer’s and agent’s asset accumulation incentives are aligned. The
agent’s effort decreases in assets since the marginal return on effort is lower for wealthier agents
who finance a larger part of their consumption with the asset returns, ra.

3.4 The role of limited commitment

We next study the role of limited commitment while keeping the private information friction (un-
observed effort). To do so we compare the allocations from the Markov-perfect insurance contracts
with the allocations resulting from a dynamic risk-sharing contract in two alternative settings
in which commitment to a long-term contract is assumed possible. Specifically, we call full-
commitment (two-sided commitment) the setting in which both the agent and the insurer can
commit to an infinitely-lived contract at time zero. We call one-sided commitment the setting
in which only the insurer can commit to a long-term contract. In this latter case, the agent can
still walk away from a contract at the beginning of each period, as in the MPE. To simplify the
exposition and for analytical tractability, assume from now on that the agent cannot borrow.

Assumption 3 The agent cannot borrow, that is, the lower bound on assets is zero: a = 0.

Assume also that the insurer discounts future profits with factor 1/r, that is, he has the same
intertemporal return as the agent. In this section we use heavily the result in Proposition 1, part (iv)
which allows us to simplify the analysis by considering the equivalent Markov-perfect contracting
problem with asset choice controllable by the insurer instead of the agent. We can write the
dynamic insurance problem with (full or one-sided) commitment as a two-stage problem. In the
first stage, without loss of generality, the insurer replaces the agent’s initial assets ag with promises
of present-value utility, w from the next period onward.!> When commitment is one-sided (by the
insurer only), the problem is also subject to the agent’s limited-commitment constraint, w¢ > w for
all 7, where w is the lowest feasible present-value utility for which the agent would not quit. In the
second-stage problem, after the asset extraction, optimal consumption ¢! and promised utility w’
are chosen respecting promise keeping (and, if one-sided commitment, w’ > w). See the Appendix
for full details and definitions.

Let s; € {1,...,n} be the output state in period ¢ and let s = {sq,...,s;} denote the his-
tory of output states from period 0 up to period f. For any initial agent assets ag € A, the
constrained-optimal insurance contract with long-term commitment implies history-contingent se-
quences for consumption (equivalently transfers) and recommended effort. Denote these sequences
as {c(ao, s'), e(ap, s')}22,. For any t = 0,...,00 and any history s?, call a(s'~1) the beginning-of-
period asset holdings by the agent, obtained by applying the MPE choice rule A%(a). That is, call
a(st) = A%t (a(s'™1)) with a(s™1) = ag. We prove the following equivalence result.

13In Karaivanov and Martin (2015) we formally show this result in a full-information setting. It is straightforward
to adapt the proof for the setting here.
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Proposition 3 For any initial assets ag € A and any oulput state history s, T = 1,2,...,00,
the optimal contract with one-sided commitment by the insurer and promised utility set WMP =
[V(0),V(a)] yields history-contingent consumption and effort sequences {c(ao, s'), e(ao, s*)}1_, iden-
tical to the sequences {C% (a(s'™1), E(a(st™1))} L, generated by the MPE defined in (3)—(ZP). In
addition, V°(a) = V(a) for all a € A where V°(a) is the agent’s value function in the one-sided
commitment contract.

Proposition 3 shows that, under appropriate conditions on the set of promised utilities, the
consumption and effort allocations in an MPE are equivalent to the corresponding allocations with
long-term commitment by the insurer, for any history starting from any initial assets ag € A (see
the Appendix for full details on the one-sided commitment problem). The agents’ assets in an MPE
implicitly replicate the commitment embedded in the promised utility—just like an agent knows
that a long-term insurer would not renege on his promise, the agent in an MPE knows that she can
always secure the best possible contract given her assets tomorrow. The zero borrowing constraint
corresponds to the limited-commitment constraint that the agent can always sign with another
insurer.'* That is, in our setting, Markov-perfect insurance contracts are not more restrictive than
a dynamic insurance contract with one-sided commitment which has been studied by many authors.
The insurance contract with one-sided commitment implies an indeterminate path for the agent’s
assets, since assets and promised utility are interchangeable in implementing future allocations (see
the proof of Proposition 3 in the Appendix). In the corresponding MPE the agent’s asset holdings
are the only instrument which insurers can use to affect the contract’s future value. Quantitatively,
this implies determinate and non-degenerate asset (savings) dynamics which can be used to evaluate
the MPE model numerically and empirically, as we show in Sections 4 and 5.

The equivalence result in Proposition 3 requires: (i) a lower bound on promised utility in the
one-sided commitment contract equal to the MPE value at zero assets, w = V(0); and (ii) that all
utility promises are bounded from above by V(a). Since with one-sided commitment the equilibrium
lower bound w equals the agent’s outside option value (the lowest promised utility for which the
agent would not quit), we can interpret the one-sided commitment contract in Proposition 3 as a
long-term risk-sharing contract which the agent can quit at the beginning of each period and go to
a Markov-perfect insurer, with zero assets. However, since we show that V¢ (0) = V(0), the outside
option is also equivalent to the agent going to another insurer with one-sided commitment. The
interpretation of the outside option is consistent with our assumption of free entry by insurers (no
exclusive contracts).

Regarding the upper bound of the set WM¥ in Proposition 3, there is no general guarantee
that promised utility in the one-sided commitment setting may not exceed a particular fixed value
after some output history.!> For the case of full information and exogenous probabilities 7%, in
Karaivanov and Martin (2015) we prove that promised utility in a one-sided commitment setting
is strictly decreasing over time when Sr < 1. Hence, whenever the initial promise in the one-sided
commitment setting satisfies wg € [V(0),V(a)], the upper bound V(a) is never exceeded by the
future promised utility choices (in fact, wp is never exceeded), for any history. While we do not
have a formal proof of this result, we conjecture that, for a sufficiently large upper bound a on
assets, the same property (promised utility choices bounded from above) also holds in our current
MPE setting with private information. We check and confirm this conjecture numerically in Section

"We thank an anonymous referee for this intuition.

15For example, under moral hazard, large values of promised utility may be needed to provide incentives after long
history of high output realizations and are feasible, since with commitment the insurer can run a loss in a given
period.
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4. Specifically, for our choice of a, we verify that for sufficiently high current promised utility levels
w € [V(0),V(a)], the next-period promised utility choices, w are strictly lower for any output level;
that is, w* <w for alli =1,...,n.

To help further understand Proposition 3, note that its equivalence result would not hold if
promising present-value utility smaller than V(0) were feasible for the insurer, or if @ were such
that promised utility choices larger that V(a) were optimal. In a setting with two-sided commitment
by both the agents and the insurers (which we compute in Section 5), promised utility values smaller
than the lowest value in an MPE, V(0) are feasible, as the agent cannot quit the contract ex-post.'6
In this case, the parallel between the agent’s borrowing constraint (the lower bound of the set
A) and the minimum possible promised utility in the long-term contract breaks down and hence,
the equivalence result no longer holds. While giving the agents the ability to commit could be
interpreted as relaxing their borrowing constraint by allowing debt, this may be infeasible (if debt
repayment cannot be enforced) or it can cause losses for the insurers (if the debt exceeds the natural
borrowing limit). On the other hand, with long-term commitment the agent’s promised utility can
be freely set arbitrarily low.

4 Quantitative Analysis

In this section, we use numerical methods to further describe the properties of Markov-perfect
insurance contracts with private information and limited commitment. We use the self-insurance
economy without borrowing as a comparison benchmark. We compute and describe the Markov-
perfect insurance policy functions and sample time-paths as well as its implications for the degree
of risk sharing and the long-run stationary distributions of wealth and consumption. We perform
these exercises using a parameterization chosen to match aggregate features of the US data as in
Castaneda et al. (2003). In Section 5 we then use the parameterized model to quantify the welfare
gains from eliminating either the private information or the commitment frictions and show that
their relative severity is heterogeneous and depends on the agent’s wealth.

4.1 Parameterization

We assume a generalized constant-relative-risk-aversion (CRRA) utility function,

1—0

where a > 0 and o > 0. There are three possible output levels, “low”, “medium” and “high”,
labeled y~, yM and y respectively. The probability functions, 7?(e) for i = {L, M, H} are

mle) =1 —7M(e) — nfl(e)

el/
M (e) = L
14 e¥
1—yp)e”
7TH(€) — ( (:0) 7
v+
%Indeed, if u(0) = —oo then promised utility values w* — —oo are optimally used to provide incentives, as in the

standard immiseration result from the literature on multi-period moral hazard.
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where v > 0, v > 1 and ¢ € (0,1). It is easy to verify that the probability functions 7(e) satisfy
the sufficient conditions in Assumption 1.

To parameterize the MPE and self-insurance models we follow Castaneda et al. (2003) who
match earnings, the wealth distribution and other aggregates for the US economy. Table 1 displays
the resulting parameters. For the three output levels, y”,y™ and y, we use the Castafeda et al.
(2003) values for the endowments of labor efficiency units.!” We set v arbitrarily to 0.5 and pick the
output probability distribution parameters ¢ and v so that the simulated long-run distribution of
realized output levels matches the corresponding proportions in the US data reported in Castaneda
et al. (2003)—see Table 2.

Table 1: Parameter values

o B o r v @ v yb oy oy

4.000 | 0.924 | 1.500 | 1.061 | 0.500 | 0.450 | 2.000 | 0.100 | 0.315 | 0.978

The values for the discount factor § and the risk aversion parameter o are taken directly from
Castaneda et al. (2003). We also set r equal to the value implied by their calibration for the annual
interest rate net of depreciation. The final free parameter, a only affects the scale of effort and we
set it sufficiently large so that effort is significantly different from zero for all asset levels.

Following Castaneda et al. (2003) and the related literature, we assume that the agents are
subject to a non-borrowing constraint, that is, @ = 0. This implies that we can interpret the self-
insurance setting defined in Section 2 as a storage economy. In our parameterization the constraint
a = 0 binds only when output is at its lowest state (y*) and assets are close to zero.

Table 2 shows the fractions of agents with each output realization in the long-run stationary
distributions in MPE, self-insurance and the data. As explained above, the MPE values were
targeted to match the reported fractions in Castaneda et al. (2003). However, the corresponding
values in our self-insurance economy are also very similar. This suggests that the differences between
the MPE and self-insurance economies described below do not stem from targeting these specific
moments of the data within the MPE setting but are fundamentally related to the additional
insurance provided by the Markov-perfect contracts.

Table 2: Long-run measure of agents, according to output realizations

y" LMy
Self-insurance (storage) | 0.59 | 0.23 | 0.19
MPE 0.61 | 0.22 | 0.18
Castaneda et al. (2003) | 0.61 | 0.22 | 0.17

Using the 1998 Survey of Consumer Finances, Budria-Rodriguez et al. (2002) report bivariate
correlations between earnings and income, earnings and wealth, and income and wealth in the US
equal to 0.72, 0.47 and 0.60, respectively. Although we do not explicitly target these moments,

17See Table 5 in Castafieda et al. (2003). Note that they parameterize four endowment levels; the fourth type is
about 1,000 times more productive than the first type and comprises 0.04% of working-age households. Since our
economy already makes important simplifications with respect to theirs—no life-cycle features, taxes, etc.—we omit
this fourth type to simplify the numerical analysis and exposition of results.

15



our simulated economy is close to the US data along this dimension. Specifically, in the MPE,
defining income as transfers plus capital income, 7¢ + (r — 1)a; defining earnings as output, 3* for
i ={L,M,H}; and defining wealth as assets a, we obtain bivariate correlations between earnings
and income, earnings and wealth and income and wealth of 0.81, 0.39 and 0.67 respectively.

While our theoretical framework emphasizes the role of moral hazard and limited commit-
ment in a dynamic setting with endogenous labor effort and asset accumulation, it abstracts from
other realistic elements modeled in the literature, notably a more detailed structure of the income
process—for example, including both permanent and transitory components (e.g., Broer et al.,
2017).'® Nevertheless, in Section 4.3.2 we show that MPE insurance contracts successfully ap-
proximates several features of those alternative models and/or the data, as related to the degree
of consumption smoothing and the long-run distribution of wealth, despite not targeting these
features directly.

4.2 Computation

We first compute the self-insurance (storage) model. We use a 1,000-point discrete grid for the
state space A =[0, @] but allow all choice variables to take any admissible value.'® We use the same
assets grid for all computations performed below. Cubic splines are used to interpolate between
the grid points. The upper bound for assets, a is set to 60 which ensures that all three asset policy
functions, A*(a) cross the 45-degree line. For clarity of exposition, all graphs below only display
asset holdings up to a = 5, which includes 99.95% of agents in a stationary equilibrium in the
self-insurance economy and virtually all agents in MPE.

To compute the Markov-perfect equilibrium described in Definition 1, we use the following
iterative algorithm to find the fixed-point in the value function V(a) and the policy functions: (7)
start with the agent’s value in the storage economy as an initial guess for V(a); (i) solve the insurer’s
problem (3)—(ZP) which outputs a new value function; (i) update and continue iterating until
convergence. Subsequently, we use the first-order conditions of the insurer’s problem to improve
the precision of the solution. Finally, we compute the long-run stationary distribution of assets
by assuming a continuum of agents. This is done using standard techniques: the decisions rules
derived from the numerical solution imply a transition matrix on which we iterate until obtaining
a distribution that maps into itself.

4.3 Markov-perfect insurance vs. self-insurance
4.3.1 Consumption smoothing

To provide further insights into the workings of Markov-perfect insurance contracts we first describe
their implications for consumption smoothing and compare these implications to those in the self-
insurance model with endogenous effort choice (SI). Consider an agent with assets a € A and output
realization y*, i = {L, H, M} and define the agent’s income in MPE (m?) and in the self-insurance
economy (') respectively as,

m' =74+ (r—1)a and m' =y’ + (r—1a. (4)

8Note that our model does feature a degree of endogenous persistence in the earnings process via the effort choice
which is a function of assets.

19WWe did not find significant gains from further increasing the size of the A grid. For example, the value function
at a = 0 computed with 1,000 vs. 10,000 grid points differs by only 0.02%.
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We can then write the agent’s consumption in MPE and self-insurance respectively as:

0 9

d=y+ra—a=m'—(a' —a) (6)

d=1m"4+ra—a =m'—(a

where 7° = T%(a) and a' = A%(a) in the MPE, and where a' is the optimal end-of-period asset
choice in the self-insurance economy. The expressions a* — a and a* — a are the agent’s change in
assets (net savings).

The decomposition in (5)—(6) helps clarify the mechanism of consumption smoothing in the
MPE vs. self-insurance (SI) settings. The output realizations y* enter consumption directly in self-
insurance and can be smoothed only by accumulating or decreasing the non-contingent asset stock.
That is, smoothing in the self-insurance setting is only possible across time, by borrowing from the
future in bad times and saving in good times. In contrast, the endogenous insurance transfers 7% in
MPE enable both smoothing across time periods, as in self-insurance, but, in addition, smoothing
across states of the world within any given period (as if “borrowing” from high-income states). In
other words, Markov-perfect insurance allows both (i) income smoothing (note that m! does not
vary one-to-one with the output realization y*) and (ii) further consumption smoothing, out of the
already smoothed income. In contrast, in the self-insurance setting the only mechanism to smooth
consumption in response to output shocks is via assets.

Figure 1 illustrates the consumption smoothing in MPE vs. the self-insurance economy. The
upper left panel plots the Markov-perfect insurance transfers, 7¢ = 7*(a) against output, showing
the extent to which the agent and the insurer share risk via smoothing the agent’s income compared
to self-insurance. If realized output is low (y”) the insurer provides the agent with higher non-asset
income component than under self-insurance, that is, 7% > y% in (4), while, if realized output is
medium (y™) or high (y), the opposite holds.

The upper right panel of Figure 1 displays the agent’s net savings in the MPE and the self-
insurance economies. For the lowest income state net savings as function of the agent’s assets a are
nearly identical in both settings. In contrast, for the highest output state savings are much larger
when the agent is self-insuring. Intuitively, in the self-insurance setting the agent chooses to stock
up assets for future “bad times”. This asset accumulation incentive is dampened in the MPE since
the insurer chooses instead to optimally use transfers to smooth consumption across states of the
world. Indeed, the bottom two panels of Figure 1 show that the consumption levels in all three
output states are much closer to each other in the MPE setting compared to those in self-insurance.
Naturally, these consumption differences are most pronounced for low asset levels for which agents
are most severely constrained in terms of their ability to smooth consumption on their own.?°

Figure 2 compares effort, e and expected non-asset income, defined as gi(e) = >, 7'(e)y’ in the
self-insurance setting and as 7(e) = Y., 7'(e)7" in the MPE. In the self-insurance setting, effort
and labor income are monotonically decreasing, due to the decreased demand for self-insurance
by richer agents. In contrast, effort in the MPE economy is significantly flatter and varies non-
monotonically with agent’s assets a. In particular, effort e and expected “labor income”, i.e.,
expected transfers, 7(e) increase in the agent’s assets for low asset levels, which in our calibration
corresponds to agents in the bottom one-third of the stationary asset distribution. This result shows

20Given the additional insurance in MPE compared to self-insurance, the agent’s MPE effort £(a) in our simulation
is strictly lower than in self-insurance and decreases in the agent’s assets a (not depicted in the Figure). This is another
mechanism which reduces MPE asset holdings since, for any given a, the probability of high output is lower in MPE
compared to in self-insurance.
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Figure 1: Policy Functions
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that, unlike self-insurance, MPE insurance can generate a positive correlation between agent’s assets
and work effort, at least for a range of asset values.?!

The intuition for the non-monotonicity of effort is the interaction between the incentive-insurance
trade-off and the borrowing constraint. To provide incentives for the agent to supply effort, the
insurer needs to offer a spread in consumption—reward high output and/or punish low output.
At low assets (or, low promised utility in the equivalent one-sided commitment problem) the only
incentive-compatible combination is relatively low consumption and relatively low effort.?? The
reason is that the insurer is constrained in terms of how much he can punish the agent (7%) and

21The mass of agents with asset values mapping into the increasing part of the effort profile is affected by the
incentives to save. We did a simulation lowering 5 from 0.924 to 0.9, making agents more impatient and thus, less
willing to save. As expected, the mass of agents for whom effort is increasing in assets goes up to about 1/2.

22 A similar “hump-shape” for effort and reasoning is also present in the dynamic moral hazard economy of Phelan
and Townsend (1991), in terms of promised utility.
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Figure 2: Effort and Expected Non-Asset Income
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also cannot raise 77 too much as he needs to deliver a relatively low current utility.

We verify the intuition above via additional numerical exercises. First, we did a simulation in
which we increased the borrowing limit (reduced the lower bound of A to —1) and, as expected,
the effort hump moves to the left, towards the new lower bound. Second, since low-wealth agents
are more averse to consumption volatility and higher effort can increase the variance of output (see
also Sannikov, 2008), we did a simulation in which we reduced the spread in y° and verified that
the non-monotonicity in effort becomes much less pronounced.

We also verified that the effort non-monotonicity is present regardless of how risk-averse the
agent is, though naturally, the “hump shape” is more pronounced at higher levels of risk-aversion.
The non-monotonicity does not obtain with full information (there is no incentive problem), nor
with risk neutrality (there is no demand for insurance), but of course obtains with one-sided com-
mitment.

Figure 3 shows the aggregate degree of consumption smoothing using a panel of simulated data.
Specifically, we generate data for 1,000 agents over 10 periods from each of the MPE and self-
insurance models, initialized at their respective long-run stationary asset distributions. Figure 3
plots the deviations from each period’s average for each of the 1,000 agents for output, * and for
income and consumption, as defined in (4) and (5)—(6), respectively. In the MPE there is significant
additional consumption smoothing compared to self-insurance which is achieved via the two distinct
and complementary mechanisms outlined above. First, the comparison between the left and middle
panels of Figure 3 shows that income in the MPE is significantly smoother than income in self-
insurance. Intuitively, the transfers 7%(a) (which are the main component of MPE income for low
assets a) are optimally adjusted depending on the output history, unlike the exogenous component
y® in self-insurance. Second, comparing the middle and right panels, we see that, out of the already
smoother income in MPE, consumption is smoothed even further relative to self-insurance.

Figure 4 describes the dynamics of the main variables in the MPE and self-insurance economies.
For each of the two settings, we plot the time-paths of simulated output, income, consumption and
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Figure 3: Income and Consumption Smoothing
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next-period assets of an agent with the same initial asset level, ag (set equal to the MPE long-
run median assets) and experiencing the exact same sequence of output realizations (the dotted
line). In the upper row of panels labeled Example 1, the simulated output sequence in both
settings is: medium output (y™) for three periods; low output (y*) for three periods; and medium
output (y™) again for the last 4 periods, or {M,M,M,L,L,L,M,M,M,M}. We observe higher and
smoother consumption in MPE, which is achieved by faster asset accumulation in “better times”
(medium output) and running down assets in “bad times” (low output), in addition to appropriately
varying the insurance transfers. In Example 2, the bottom row of panels in Figure 4, the common
output sequence is instead {L,H,L,M,L,M,L,H,L,M}. Despite the very high variability of output,
consumption is smoothed almost perfectly in Markov-perfect equilibrium but varies much more
over time in the self-insurance economy. In Example 2 most of the smoothing in the MPE is done
via the transfers.

4.3.2 Long-run properties

The MPE and self-insurance settings yield significantly different long-run wealth distributions. The
Gini coefficient of the wealth (assets) distribution is 0.45 in the MPE compared to 0.35 in the self-
insurance economy. As a comparison, Aiyagari’s (1994) canonical self-insurance model with an
exogenous persistent output process yields a Gini coefficient of 0.38 while the wealth Gini in US
data is estimated at 0.80 (Castaneda et al., 2003).

Investigating the wealth distribution implications further, in Figure 5 we display the Lorenz
curves in the MPE and the self-insurance economies. Most of the difference and the higher level of
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Figure 4: Time Paths
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inequality in the MPE are explained by the fact that low-wealth agents have weaker incentives to
self-insure through asset accumulation. Indeed, the median agent in the long-run assets distribution
is significantly less wealthy in the Markov-perfect setting compared to his counterpart in the self-
insurance economy (asset holdings of 0.25 vs. 1.12, respectively).?? Intuitively, the additional
insurance in the MPE decreases the demand for buffer-stock savings. In contrast, in the self-
insurance economy the risk-averse agents work hard to avoid ending up with zero or very low assets
since they would be unable to smooth consumption after a low-output realization.

Figure 6 plots the histogram of the long-run stationary asset distribution in the MPE. The
distribution replicates well the long right tail and significant mass of agents near zero wealth in US
data (see, for example, Chart 3 in Budria-Rodriguez et al., 2002). The reason for the large mass
of agents near zero assets in the MPE is the consumption insurance provided via transfers.

Finally, Figure 7 compares the long-run stationary distributions of consumption in the MPE and
self-insurance economies. We find that the long-run consumption histogram with Markov-perfect
insurance is qualitatively very similar to the consumption histogram in the private-information
limited-enforcement (“PILE”) model of Broer et al. (2017)—see Figure 3 in their paper. Fur-

23The median-assets agent in MPE has asset holdings equal to 80% of his mean income compared to the median-
assets agent in self-insurance who holds assets three times larger than his mean income.
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Figure 7: Consumption Histogram
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thermore, the skewness of log consumption has the same sign and similar magnitude: —0.77 in our
Markov-perfect insurance setting vs. —0.94 in Broer et al. (2017). These similarities obtain despite
the fact that Broer et al. (2017) model unobserved income as opposed to unobserved action, a differ-
ent limited enforcement friction, a different equilibrium/solution concept and a different persistent
income process (exogenous Markov chain). In addition, the long-run consumption distribution in
our self-insurance economy is much more left-skewed (the skewness of In ¢ equals —1.50), much as in
the self-insurance with natural borrowing limit model (“SIN”) in Broer et al. (2017) with reported
skewness of Inc equal to —1.67 or —1.82, depending on the specification. We cautiously interpret
these results as further validation of our Markov-perfect insurance model in relation to the recent
literature.

5 Welfare analysis

Our Markov-perfect dynamic risk-sharing setting features two important frictions: private infor-
mation and limited commitment. In this section, we evaluate and compare the efficiency losses
associated with each of these two frictions for different asset levels in our parameterization. Specif-

ically, for all @ € A we solve for the one-time consumption equivalent compensation function A(a)
defined as

n

> (E(@) {u(C(@)[L + Aa)]) + BQUA (@)} = E(a) = V(a), (7)

i=1
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where {C*(a), A*(a), E(a), V(a)}?_, correspond to the MPE from Definition 1 and V(a) is the agent’s
value in an alternative insurance regime obtained by removing one of the frictions, that is, either
(a) a setting with full information (no moral hazard) and limited commitment or (b) a setting with
private information and full commitment. We interpret A(a) as the one-time welfare gain in terms
of current consumption associated with resolving either the information or commitment frictions,
relative to our baseline MPE with both frictions.

We first compute the welfare gains from resolving the information (moral hazard) friction. A
Markov-perfect equilibrium with full information, that is, when agent’s effort is observable and
contractible, is defined in a way analogous to Definition 1 but without the incentive compatibility
constraint (see Section 3.3). Second, we compute the welfare gains from resolving the commitment
friction by solving the dynamic risk-sharing problem with full (two-sided) commitment, that is,
assuming both the insurer and the agent can commit to a lifetime agreement at time zero.?* This
full-commitment problem is formulated like the one-sided commitment problem in Section 3.4 and
Appendix 7.2, but allowing promised utility values smaller than V(0) (possibly down to —oc). We
compute the equivalent compensation function A(a) defined in (7) for each of the two scenarios.
This means replacing f)(a) with the corresponding value function from either the full-information
(with limited commitment) or full-commitment (with moral hazard) solutions.

Figure 8 displays the welfare gains from resolving the information or commitment frictions,
plotted against the agent’s asset level, a. The welfare gains from resolving the private information
friction are decreasing in a but remain significant at all asset levels displayed in Figure 8—recall
that this range includes virtually all agents in the stationary distribution of the MPE. Going to
the setting with full information and limited commitment at a = 0 would result in a welfare gain
equivalent to a one-time consumption increase of over 200%, holding all else equal. Intuitively, with
full information the moral hazard problem is absent and the agent receives full instead of partial
insurance, which is especially valued at low asset levels. However, since effort decreases towards
zero as assets increase, the moral hazard problem vanishes for sufficiently high assets—see Sannikov
(2008) for a similar result.

Endowing both the insurer and the agent with commitment power also results in significant
welfare gains (see Figure 8). Recall from Section 3.4 that endowing only the insurer with long-
term commitment does not affect the resulting allocations (Proposition 3). Therefore, what is
key for the efficiency gains from commitment is the inability of the agent to walk away from the
risk-sharing contract. This allows the insurer to front-load the agent’s consumption and provide
better incentives to supply effort. The estimated welfare gains from two-sided commitment to a
long-term insurance contract are large, especially at low assets: at a = 0 a move from Markov-
perfect insurance to the full commitment setting results in welfare gains equivalent to a one-time
consumption increase of over 300%. The gains from commitment decrease rapidly as the agent’s
asset holdings increase and eventually converge to zero.

Figure 8 also compares head-to-head the welfare gains from resolving the information and com-
mitment frictions. For our parameterization to US data, the gains from resolving the commitment
friction are larger than the gains from resolving the moral hazard friction at low asset levels, while

24Recall that insurance with one-sided commitment by the insurer is equivalent in terms of allocations to Markov-
perfect insurance—see Proposition 3. We verify this result numerically by comparing the value function of the MPE
with the first-stage one-sided commitment value function, for all asset levels: the maximum numerical error between
value functions is equivalent to a one-time consumption increase of only 0.04%, which occurs at assets levels very
close to zero, where the lower bounds on savings and promised utility bind; the error is essentially zero elsewhere.
Given this result, we assess the welfare gains of resolving both the insurer’s and the agent’s commitment problems
simultaneously.
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Figure 8: Welfare Gains from Resolving the Information or Commitment Frictions
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Note: A(a) solves (7) for each case.

the opposite pattern holds at high asset levels.

The intuition for this result is as follows. The gains from commitment stem from the insurer’s
ability to provide better consumption smoothing to the agent, which in our dynamic moral hazard
setting is achieved by front-loading consumption. As discussed in Section 3.4, we can think of the
agents’ ability to commit as relaxing the borrowing constraint. Thus, the gains from commitment
are the largest at low asset levels, when agents are close to the no-borrowing constraint and the
value of obtaining additional consumption smoothing is the highest. In contrast, wealthier agents
do not benefit much from relaxing this constraint.

We did a simulation in which we reduced the asset lower bound to —1 and, as expected, the
welfare gains relative to the MPE from relaxing the commitment friction at any a > 0 are reduced,
since these asset levels are now further away from the new asset lower bound. The gains from
commitment also depend on the agent’s impatience (the discount factor, ) as this affects the
incentives to save. We did a simulation in which we lowered [ from 0.924 to 0.9 (keeping r
constant) and found that the consumption equivalence gains from commitment relative to MPE
increase, since agents save less on average and end up close to the borrowing limit more often.

On the other hand, the gains from resolving the moral hazard friction arise from being able to
provide full insurance across states of the world and induce higher effort (removing the incentive
constraint). In absolute terms these gains are the largest at low asset levels. However, in relative
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terms, compared to the gains from commitment, relaxing the moral hazard problem is more benefi-
cial for wealthier agents. In our calibration, the gains from commitment decrease faster with wealth
than the gains from resolving the moral hazard problem and the latter gains remain sizable for all
asset levels in the relevant range of the stationary wealth distribution (e.g., they are equivalent to
about 15% of consumption at a = 5, as shown in Figure 8). For very high asset levels, outside
the range relevant for the stationary wealth distribution, the gains from resolving either the moral
hazard or commitment frictions vanish.

6 Conclusions

Understanding how individuals cope with idiosyncratic risk is a fundamental economic problem with
policy-relevant implications. Savings are a natural vehicle for insuring against income fluctuations
and expenditure shocks. However, self-insurance via asset accumulation generally does not allow
agents to hedge against all contingencies. The resulting demand for additional risk sharing is
addressed by private contracts or public insurance policies. We highlight two fundamental frictions
which afflict the scope of insurance: private information and limited commitment. Furthermore,
an individual’s wealth affects the bite both these frictions have in the design of insurance contracts.

We propose Markov-perfect equilibria as a solution concept to characterize dynamic risk-sharing
contracts subject to private information and limited commitment. We show that Markov-perfect
insurance contracts preserve standard properties of optimal contracts with private information
and are not more restrictive than long-term insurance contracts with one-sided commitment by
the insurer. The terms of Markov-perfect insurance contracts (insurance premia or payments) are
expressed entirely in terms of observable and measurable variables: output (income) and the insured
agent’s assets. This differs from many papers on dynamic contracts which rely on unobservable
state variables (“promised utility”) and opens up new venues for quantitative and empirical analysis
of risk sharing with commitment and information frictions, some of which we explore here. In
particular, endogenous asset accumulation is an integral part of Markov-perfect insurance contracts
and hence, our model delivers implications for the dynamics and distribution of wealth in an
economy with endogenously incomplete markets, in addition to the implications for consumption
and income smoothing emphasized in the existing private information and limited commitment

literatures.2®

While we have not yet investigated the full quantitative implications of Markov-perfect risk-
sharing contracts beyond the presented examples, we believe that our approach offers a viable and
tractable computational framework for dynamic macroeconomic analysis of risk sharing subject
to commitment and information constraints. Elements such as a persistent income process with
permanent and transitory shocks or various public policy schemes (e.g., taxes, social security, etc.)
can be added to the basic setting while preserving its relatively low computational burden.

25The computational tractability of Markov-perfect insurance contracts makes our approach suitable for structural
estimation work using consumption, income and wealth data, for example as in Karaivanov and Townsend (2014).
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7 Appendix

7.1 Proofs of Propositions 1 and 2

Proof of Proposition 1. We first consider the relaxed problem for the insurer in which we
do not impose the savings incentive compatibility constraints, (ICS). We then show that these
constraints are satisfied at the solution to the relaxed problem, i.e., the MPE problem solution is
equivalent to the solution of the relaxed problem without constraints (ICS).

With Lagrange multipliers A and g on (IC) and (ZP) respectively, the first-order conditions
with respect to transfers and assets in the relaxed problem (3) are

ue(e') [w(e) + Ami(e)] — prr'(e) = 0 (8)
[—uc(c’) + BVa(a))] [7'(€) + Ame(e)] =0 (9)
for all i = 1,...,n. Since, by Assumption 1, 7(e) are such that the first-order approach is valid,

the incentive constraint (IC) binds at optimum and A > 0—see Rogerson (1985a) or Bolton and
Dewatripont (2004) for discussion and proofs.

We also show that p > 0. Indeed, re-arrange (8) as,

br (e — wi(e) + Ml (e)

and sum over ¢ = 1,...,n to obtain

:U'; ;r:((cel)) = Zﬂi(e) + )\;Wé(@_

=1

.

Given that Y 1" | m'(e) = 1 for all e, we have Y 1 | 7’(e) = 0, which implies

1
n= — > 0. (10)
E[uc(c)]
Next, re-arrange (8) as .
ucl;ci) =1+ )‘7:58 (11)

which, given Assumption 1 (MLRP) and given p, A > 0 and the strict concavity of u(c), implies
cl < < ... <" Since this is true for any a € A, the result in part (i) follows.

(ii) The second result, the inequalities between C¢(a) and C’(a), follows directly from (11) using
that pu, A\ > 0 and the strict concavity of u(c). We prove the first result, partial insurance, by
contradiction. By part (i), C'(a) < C"(a). Suppose ¢! = C'(a) = C"(a) = ¢". Then, from (11), it

must be that :%8 are equal for all ¢ = 1,...,n, that is,

me(e) = mn'(e)

for some constant m. Suppose m #% 0. But then, summing the above equalities over i, we obtain a
contradiction since the LHS adds up to 0 while the RHS adds up to m for any e. The case m =0
is ruled out by Assumption 1 (ii and iv). Therefore, C!(a) < C"(a) and there is partial insurance

in an MPE.
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(iii) and (iv) Note that, given u.(c!) > 0 and p > 0, (8) implies 7(e) + Awi(e) > 0 for all
i =1,...,n. Thus, from the first-order condition (9) we obtain:

—ue(c") + BV,u(a’) =0 Vi (12)

which is the agent’s incentive compatibility condition with respect to next-period assets, a’. That
is, for any a € A and i = 1,...,n, the relaxed problem without imposing constraints (ICS) implies
next-period asset levels a’ that are exactly the same as the asset levels which the agent would
choose in an MPE.

The envelope condition implies
Vaola) =1 Z ue(c))[rt(e) + Axl], (13)
i=1

which, using (8), yields V,(a) = ru. Replace p from (10) and update one period ahead. Substituting
the resulting expression into (12) yields the inverse Euler equations.

Finally, using V,(a) = rp and p > 0, the value function V(a) is strictly increasing on int A. We
use this result in Proposition 3. =

Proof of Proposition 2. As in the proof of Proposition 1, consider the relaxed problem without
imposing the agent’s incentive compatibility constraints for savings. We then show (see the end of
part i) that these constraints are satisfied at the solution.

(i) Taking the first order conditions with respect to 7¢ immediately yields ¢! = ¢/ = ¢ for all
i,j =1,...,n. Thus, using (ZP), we obtain 7/ = gj(e) for all i = 1,...,n. The FOCs with respect
to a’ are symmetric across the output states. Therefore, assuming a symmetric solution (existence
is ensured as discussed in the main text), a’ = a/ = o’ for alli,j =1,...,n.

Given the above, the relaxed insurance problem with full information is equivalent to the fol-
lowing dynamic programming problem:

V(a) = ax u(ra+yle) —a')+ BV (d') —e (14)

a

where fj(e) = Y. 7'(e)y® denotes expected output at effort level e.
The FOC of problem (14) with respect to a’ is:

—uc(c) + BVa(d’) =0,

which, given 7¢ and V, is exactly the agent’s incentive compatibility condition for next-period’s
assets a’. That is, the agent’s incentive-compatibility constraints for savings are satisfied and
therefore the solutions to the relaxed problem and the MPE with full information coincide.

(ii) The Euler equation is derived in the standard way, from the FOC of problem (14) with
respect to a’ and the envelope condition V,(a) = ru.(c).

(iii-v) Since fr < 1 and wu(c) is strictly concave, the Euler equation in (ii) implies ¢ < ¢, or
equivalently, C(A(a)) < C(a). To show the remaining results, we use the following auxiliary lemma.

Lemma S1: Ezpected output y(e) is strictly increasing and concave in e.

Proof. Expected output is strictly increasing since, using Assumption 1, it is well-known that
MLRP implies first order stochastic dominance; thus e; > ey implies g(e1) > y(e2) and hence g(e)
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is strictly increasing. By the definition of 7'(e), differentiating Y 1, 7*(e) = 1 twice with respect
to e, we obtain Z?zl wi.(e) = 0 for all e € E and hence, using Assumption 1(vi), the partial sums

from j to n satisfy 37 mle(e) <0 for j =2,...,n and all ¢ € E. To show that 7(e) is concave,
compute the derivative:

de?
=1
n n )
=Y "wley' + > me)@ -y + . k(e —y") <0

The derivative is non-positive since the first term in the sum is zero while all other terms are < 0
by the non-positivity of the partial sums shown above.[]

Re-write problem (14) as:
V(@) = max f(c,e) + AV (a)

s.t. a < g(a,ce)

where f(c,e) = u(c) — e is the return function and g(a,c,e) = ra + g(e) — c is the feasibility
constraint. Since u(c) is strictly concave, f(c,e) is strictly concave. In addition, the set {(a,a’)
such that o' < g(a,c,e)} for all admissible (¢, e) is convex and compact since A is compact and
a enters g linearly. By standard arguments (e.g., Ljungqvist and Sargent, 2004), these conditions
imply that the functional equation has a unique strictly concave solution V (a).

Now go back to the FOC with respect to a’ in (14),

Since both u and V are strictly concave, the FOC implies that ¢ and a’ must change in the same
direction as a varies (both go up or both go down). The FOC with respect to effort e is

dy(e)
de

UC(C) =1,

which, by the concavity of y(e) shown in Lemma S1 and the strict concavity of u(c), implies that
c and e must change in opposite directions as a varies. We use these results regarding how c,e
and a’ change in a to prove that ¢ and a’ are strictly increasing in agent’s assets a while effort e is
decreasing in a. Suppose not, that is, suppose ¢ and a’ both decrease in a while e increases in a
and consider the zero profit constraint,

a +c=ra+e).

If ¢ and @’ were decreasing in a, the 1.h.s. goes down in a while the r.h.s. goes up, which would
contradict the optimality of c¢,a’ since we could increase ¢ and achieve a higher value for the
objective—a contradiction. Therefore, the consumption and asset policy functions, ¢ = C(a) and
a’ = A(a) are strictly increasing in a while effort, e = £(a) is decreasing in a.

Finally, the result A(a) < a follows from the previously shown results that C(a) is strictly
increasing in a and that C(A(a)) < C(a). =
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7.2 Proof of Proposition 3
7.2.1 Recursive formulation of risk sharing with commitment

The contracts with full (two-sided) or one-sided commitment described in Section 3.4 can be written
as a two-stage recursive problem in which the agent’s assets are “replaced” by promises to deliver
future utility via transfers. In the first stage, the insurer solves a static problem of offering the agent
the maximum possible utility subject to zero ex-ante expected profits and incentive-compatibility.

As in Phelan (1995) or Krueger and Uhlig (2006), suppose the feasible values for promised
utility in the commitment setting belong to the set W = [w,w]. The bounds of the set W are, in
general, endogenous. For the moment we treat W as given and discuss it in more detail below.
The first-stage (¢ = 0) problem is

VY ap) = max . Zﬂ' (eo) [u(ch) + Bwl] — e (FS)

80,{86,'&)1}1 145=1

subject to
Zﬂ' 60 CO +,8'LU1] =0

Zwi(eo) [yz +rag — cg + rilﬂc(wi)] =0.
i=1

The insurer sets the agent’s future asset holdings, aﬁ = 0 and, in exchange, promises the agent
state-dependent lifetime utility w! from period 1 onward. The first constraint ensures incentive-
compatibility of the effort choice. The second constraint is the zero ex-ante profits condition implied
by the free entry assumption. The insurer discounts future profits by ! which can be interpreted
as having the same savings technology as the agent.

With one-sided commitment, the agent can walk away at the beginning of each period. Thus,
the promised utility w? with which the agent exits the first-stage problem must be at least as large
as the agent’s outside option, which we assume equals the agent’s (endogenous) value of contracting
with another insurer, carrying zero assets.?6 Hence, in the one-sided commitment setting, the lower
bound of the set of feasible promised utilities equals the value of the agent’s outside option, w = v°%
which we discuss in detail below. The following constraint then ensures the agent remains in the
contract from ¢ = 1 on, for any realization of current output

wh > vt Vi
With two-sided commitment the future promised utility w! can be unbounded from below as the
agent cannot quit (for example if u(0) = —o0).

The profit function II¢(w) in the first-stage problem (FS) solves the following second-stage
problem, defined for any w € W:

1% (w) = max ZT[‘ y — % (w )} (SS)

i ot
e,{ct,w S

26We assume that if the agent leaves his current contract any “promised utility” from the previous insurer is
canceled as it is unverifiable.
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subject to
> wi(e)ulc)) + puw’] - 1=0

Zwi(e) [u(c") + pu'] —e=w

i=1
and, in the case of one-sided commitment, also subject to:
w' > v Vi

The first constraint ensures incentive compatibility with the agent’s unobserved effort choice. The
second constraint, “promise keeping”, embodies the commitment ability of the insurer to deliver the
promised utility value w. The last constraint reflects the lower bound on feasible future promises
implied by the agent’s inability to commit beyond the current period.

7.2.2 Auxiliary results

To prove Proposition 3 we use three auxiliary Lemmas which we prove first.

Lemma 1 For any At > 0 there exist € > 0, i = 1,...,n such that: Y » " = A7 and
> iy me[u(c' +€') —u(c')] = 0.

Proof. Since Y, m! = 0, it is enough to show that we can choose the consumption increments e’
so that u(c® + €*) — u(c’) = b where b is some appropriately chosen positive constant. From the
strict monotonicity of u, a unique solution to this equation in £ on [0,00) exists and is strictly
increasing in b, for each @ = 1,...,n. Call this solution £'(b, ). It is a continuous function of b
by the continuity and strict concavity of u. But then ), g'(b,c) is also continuous and strictly
increasing in b. Since €'(0,c") = 0 for all ¢’ this implies that 3b > 0 which solves Y, (b, ") = At
for any A7 > 0. m

Lemma 1 shows that it is always possible to increase transfers ¢ by appropriate amounts while
preserving incentive-compatibility.

To help the further analysis we reproduce the relared Markov-perfect insurance problem, with-
out constraints (ICS), for any a € A (see Section 3.1). We call this problem Problem P1. We
know from Proposition 1 that the solution to the problem and the value function V(a) coincide
with those in the original MPE problem in Definition 1.

Problem P1 .
Vo) = max S re)u(e) + BV(a)] ¢
e{rha'} im1
subject to:
> wi(e)ulc’) + V()] -1 =0 (I1C)
=1



Call P2 the following auxiliary problem defined for any a € A and in which V(a) is the value
function from Problem P1. We will show that problems P1 and P2 are mathematically equivalent.

Problem P2 '
LI . TI(a?)
I — ) it
(a) max E 7' (e) [y T+ . ]

e, {Tt,at}? i1
subject to
Y m(e)u(c) + V()] —1=0 (15)
=1
> w(e)[u(d) + V()] — e = V(a) (16)
i=1

Lemma 2 (Equivalence of problems P1 and P2) (i) Any solution to problem P1 is a solution
to problem P2 for alla € A. (ii) Any solution to problem P2 is a solution to problem P1 and satisfies
II(a) =0 for all a € A.

Proof. For any given a € A, call S1 a solution to problem P1 and S2 a solution to problem P2.

(i) Observe that S1 is feasible for problem P2 (it satisfies both constraints) and, by construction
given (ZP), yields II(a) = 0 for all @ € A. Suppose, however, that S1 is not a solution to problem
P2, that is, the insurer’s profits II(a) evaluated at the P2 solution S2 = {7, ab,es} are strictly
positive. This implies that, either in the current or in some future period (omitting time subscripts),
S mi(e2)[yt — 73] > 0. But then, since S2 satisfies (IC) in problem P1 and achieves the value
V(a) (as does S1), we can increase expected transfers in problem P1 (in the appropriate period)
starting from allocation S2 until (ZP) is satisfied, while keeping (IC) satisfied (see Lemma 1). Since
u is strictly increasing, this transfer increase would yield present value for the agent larger than
V(a)—a contradiction with the assumed optimality of S1 in problem P1.

(ii) Any P2 solution S2 = {74, a}, e2} satisfies (16), that is, V(a) = Y1, 7' (e2)[u(ch)+BV(a})] -
ea. Hence, S2 achieves the same value of the objective, V(a) in problem P1 as its solution S1.
Clearly, S2 also satisfies (IC) since it is identical to (15). However, could S2 violate the zero-
profit condition (ZP) in P1? Suppose it does. Suppose first that the transfers in S2 were too
low relative to output on average, that is, Y., 7'(es)[y’ — 74] > 0. But then, in problem P1,
we could strictly increase transfers (holding all else constant) starting from allocation S2, while
maintaining incentive-compatibility (IC) (see Lemma 1) until (ZP) binds and hence obtain a value
for the agent which is strictly larger than the objective function’s maximum, V(a) — a contradiction
(recall that S2 attains V(a)). Next, suppose the S2 transfers, 75 were too high relative to output,
that is, Y., m(e2)[y’ — 73] < 0. This would imply that S1 must feature strictly lower expected
transfers than S2 since S1 satisfies (ZP) at equality. Therefore, since it attains V(a) by definition,
S1 would satisfy both constraints of problem P2 but yield larger profits than S2 (due to its lower
expected transfers). This would contradict the optimality of S2. Therefore, it must be that S2
satisfies constraint (ZP), which means it solves P1 which implies that its associated profits, II(a)
are identically zero for any a € A. m

Lemma 3 Problems P1 and P2 are equivalent to
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Problem P3

ﬁ(a> _ maxn Zﬂi@) [yi — + H(az)

ez{ci:ai}i:1 i=1 r

subject to
> wi(e)u(d) + V()] =1 =0
Z m'(e)[u(c") + pV(a")] — e = V(a)
In addition, T1(a) = I1(a) — ra for all a € A where T(a) is defined in problem P2.

Proof. By Lemma 2 problems P1 and P2 are equivalent. Take problem P2 and use that y* — 7% =
y' — ¢ +ra — a*. Defining II(a) = I(a) — ra, we obtain problem P3. m

7.2.3 Equivalence between MPE and one-sided commitment

Proof of Proposition 3. As explained in the main text, the lower bound, w = V(0) of
the promised utility set WM¥ defined in Proposition 3 equals the present value utility of an agent
leaving the contract and going to a Markov-perfect insurer with zero assets. This implies v = V(0)
in the one-sided commitment problem described in Proposition 3.

Call (wi, ¢}, eq), {w?, ¢!, e} the allocation path solving the one-sided commitment problem (FS)—
(SS) with promised utility set WM* = [V(0),V(a)], starting from some ag € A. In the proof of
Proposition 1 we showed that the agent’s value function V(a) in an MPE is strictly increasing in
a. Hence, V(a) is invertible. Consider the second-stage problem SS for any w € WMF . Since
w' € WMP and V is strictly increasing, we can call a’ = V™! (w') and @ = V™! (w). The inverses are
well defined since a’ € A if and only if w’ € WMP and similarly for a and w. Since v°** = V(0), the
agent’s limited-commitment constraint w® > v°% is equivalent to a’ > 0 which is always satisfied.

Call TI(a*) = I¢(V(a’)). We can then re-write problem SS as the mathematically equivalent
problem

i gt ln
e:{T ,a =1 i=1

M(a) = max Zﬂ'i<€) [yi —c 4 H(:Z)]

subject to

> wi(e)[u(c) + pV(a’)] =1 =0
=1

YT (Ou(d) + BV(a')] — e = V(a)

=1

which is equivalent to problem P3 (and hence, by Lemma 3, to P1) for any a € A. This implies
that the allocation path in problem SS with promised utility choice set WM and initial value
w = V(a) € WMF coincides with the MPE allocation path (obtained in problem P1) from initial
assets a for any a € A and after any output history.
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The demonstrated equivalence between problems SS and P3 implies I1(a) = I1(a) = II(a) — ra,
where II(a) and II(a) were defined in Lemma 2 and Lemma 3 and where the second equality follows
from Lemma 3. Since II(a) = 0 by Lemma 2, we then obtain

I(a) = I%(V(a)) = —ra for all a € A.

Consider now the first-stage problem, (FS). Calling ai = V~!(w!) and using that I1(V(a})) =
—ra} as shown above, re-write (FS) as

max Z 7 (eo) [ulch) + BV(a})] — eo

60){0(1))(111 }?:1 i=1

subject to
> mileo)lulch) + BV(ai)] =1 =0
i=1

n
Zwi(eo) [yZ +rag — ¢ — ail] =0.
i=1

The agent’s limited-commitment constraint w? > v°“ is satisfied using the same argument as above.
Since y' 4+ rap — ¢y — a} = y* — 73, the above problem is mathematically equivalent to the Problem
P1 for assets ag, which in turn is equivalent to the MPE insurance problem in Definition 1.

Overall, we have shown that, starting from the same initial assets ag, the allocation path implied
by the one-sided commitment problem (FS)—(SS) with promised utility set W™ and the MPE
allocation path coincide in each time period and for any output history. Therefore, the present
values achieved coincide too: V% (ag) = V(ag) for all ap € A. =
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