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Abstract

This paper pools panel data from Uganda, Tanzania, Ethiopia, and Malawi to
examine the heterogeneous impact of extreme heat on subsistence farmers. Despite
significant differences in agricultural practices and performance between smaller and
larger farms, we find that high temperatures have a negative impact on agricultural
productivity, output, and food security regardless of farm size. Farms of different size
seem to respond differently to extreme temperatures: small farms increase their land
use while larger farms use more pesticides. While all farms also increase off-farm work,
these responses do not fully mitigate the effects on output and food insecurity.
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1 Introduction

Small-scale, subsistence, farming is an essential source of employment, food and rural income

in most developing countries (Lowder et al., 2021). It is also particularly vulnerable to the

negative effects of climate change. Several studies, for instance, find that extreme heat

reduces agricultural output and productivity, particularly among subsistence farmers (see,

for example, Ortiz-Bobea et al. (2021)). A growing literature is also examining how poorer

farmers mitigate the impact of weather shocks, for instance, by changing land use, cropping

patterns or agricultural practices (Jagnani et al., 2021; Aragón et al., 2021; Cui and Xie,

2022).

Among subsistence farms, a large literature has investigated the role of farm size on

different measures of productivity.1 As climate change disrupts agricultural production in

low-income countries, there are at least three possible reasons why farm size could shape

effects and response to extreme heat among subsistence farmers. First, the factors shaping

the size-productivity relation, such as technological differences or size-dependent market

distortions, could also affect farmers’ ability to mitigate weather shocks. Second, there could

be economies of scale in some mitigation strategies. For instance, adopting a new input

usually involves a fixed learning cost, while diversifying crops might require a minimum

plot size. Finally, farm size may correlate with wealth and consumption levels. These

differences might, in turn, affect households coping responses. Understanding these potential

heterogeneous effects is important to assess farmers’ vulnerability to weather shocks, and the

distributional impacts of climate change.

This paper examines whether the impact of high temperatures on subsistence farmers
1There is a large literature document an inverse yield-size relationship. For an overview of this literature,

see Barrett (1996), Desiere and Jolliffe (2018) and Barrett et al. (2010) and references therein. Several
macroeconomic studies document a positive relation between measures of total factor productivity and
farm size (Adamopoulos and Restuccia, 2014; Chen et al., 2017; Restuccia and Santaeulalia-Llopis, 2017;
Adamopoulos and Restuccia, 2019). Aragon et al. (2022) provides an explanation for these seemingly opposite
results.
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varies by size. We focus on two outcomes: agricultural productivity and farmers’ mitigation

responses (such as input use, agricultural practices and off-farm labour). For this purpose, we

pool together a large panel of households from four eastern Sub-Saharan African countries

where at least 2 in 3 people live in rural areas and rely on traditional farming (Uganda,

Tanzania, Ethiopia and Malawi). Using detailed and comparable information on household

farms over time, we exploit within-household variation in weather to explore agricultural

performance and responses by farm size.

We show that household farms suffer a negative productivity shock when exposed to high

temperatures. While these results are consistent with previous findings in the literature, our

household fixed effect specification implies that this reduction in productivity is observed

from variation in temperature over time within farms across East Africa. We also document

that the reduction in productivity has a negative impact on agricultural output and food

security, suggesting that responses, if any, do not offset losses generated by climate change.

We find however, no evidence of significant differences by farm size in productivity, out-

put or food security. This result is surprising given that, even among small-scale subsistence

farmers, size is correlated with significant differences in productivity and agricultural prac-

tices. We find, for instance, that large farms have lower yields and labor-land ratios, have

more diversified crop portfolios and are more likely to use modern inputs, such as chemical

fertilizers and improved seeds. We interpret these findings as evidence that both large and

small farms have a similar, limited, ability to mitigate the negative impacts of extreme heat.

While we find no differences on the impact of high temperatures on productivity, we

do find suggestive evidence of heterogeneous responses. Farmers increase off-farm work of

household members and use of some inputs. However, while large farmers increase use of

pesticides, small farmers seem to increase the amount of land used. This change in land used

is consistent with consumption-smoothing and non-separability: farmers might use more land

to partially attenuate the reduction in agricultural productivity, and thus mitigate the drop
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in household consumption (Aragón et al., 2021; He and Chen, 2022). Interestingly, we find

no evidence of changes in cropping patterns, a mitigation strategy documented in previous

studies, for any farm size.

There are at least three possible explanations for these heterogeneous responses. First,

it could reflect different abilities to expand agricultural activity. For instance, larger farms

may have relatively less suitable, unused, agricultural land, or have limited availability of

complementary inputs, like labor. Second, it could reflect different needs to mitigate negative

shocks. Small farmers have initially lower levels of income. Thus they would be more willing

to engage in costly actions to mitigate the drop in consumption. Finally, it could reflect

differences in access to other unobserved coping strategies. For instance, larger farms might

have large precautionary savings or access to informal support networks. However, while

these responses are size-specific, all types of farmers seem to endure similar negative effects

on a key indicator of welfare, i.e., food security. This suggests that agricultural households

in East Africa do not have coping mechanisms at hand to face climate change.

The remainder of the paper is organized as follows. Section 2 describes the data and

the empirical approach. Section 3 discusses the main set of results, while section 4 explores

mitigation responses by farm size. Section 5 concludes.

2 Data and methods

We construct a household-level panel dataset with information from four sub-Saharan African

countries in East Africa: Malawi, Uganda, Tanzania and Ethiopia. The dataset pools several

rounds of household surveys, and combines them with weather information from satellite

imagery and reanalysis data. We define a farm as a set of production units (plots or parcels)

managed by a household.
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Household surveys Our main data source is panel household surveys collected as part of

the World Bank’s Living Standards Measurement Study - Integrated Agricultural Surveys

(LSMS-ISA) project for years 2008 to 2016.2 These surveys contain detailed information on

agricultural outcomes and activities during a cropping season.3 To increase comparability

across countries, we focus on data from the long rainy season only. Table A.1 in the Appendix

lists the panel surveys, rounds, and cropping seasons used in the analysis.

Our main variables are measures of agricultural output, inputs, and farm size.4 To

measure agricultural output, we calculate the value of harvested crops multiplying self-

reported quantities by a proxy of a baseline price. We use the median national unit value

of each crop in the first year of the survey rounds. Our measure of output is similar to a

Laspeyres index of production.

We focus on two main inputs: land (area planted) and labor. To measure area planted,

we add up the area of plots reported as cultivated in a cropping season. To measure farm

labor, we add up the number of person-days employed on the farm. We distinguish between

domestic and hired labor. We also construct an indicator of child labor, i.e., paid and unpaid

work done by children between 5-15 years of age.

Farm size We construct measures of farm size based on the area of land available to a

farmer. Available land includes land owned by the farmer and land over which she has user

rights. Our measure of farm size is the average available land over cropping seasons.

Figure B.1 in the Appendix displays the distribution of farm size for each country. Over-

all, the median farm is around 1 has, with most farms between 0.5 to 2 has. However,
2More information on the data sources is available at https://www.worldbank.org/en/programs/lsms/

initiatives/lsms-ISA.
3Ethiopia collects information for one cropping season, but other surveys distinguish two cropping seasons

each year: dry and rainy seasons in Malawi, long and short-rainy seasons in Tanzania, and two rainy seasons
for each semester in Uganda.

4Each survey is collected by a country’s statistical agency. They have similar, albeit not identical,
methodologies and questionnaires. We focus on variables that are comparable across all surveys.
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distributions vary by country, with smaller farms in Malawi and larger ones in Tanzania. To

increase cross-country comparability, our baseline specification uses a categorical variable of

farm size. This variable classifies farms into 3 categories (small, medium, and large) based

on country-specific tertiles.

Temperature and precipitation We use data on daily daytime temperature from the

MOD11C1 product provided by NASA, and monthly data on precipitation from the CHIRPS

re-analysis product. To link weather to household data, we first aggregate the raw weather

data at the sub-county level. Then, we construct measures of cumulative exposure to heat

and water during the growing season, i.e., the period during which there is active growing

of plants.5

We measure cumulative exposure to water using the average monthly precipitation during

the growing season. In the case of heat, we follow the extant literature and construct two

measures of cumulative exposure to heat:6 average degree days (DD) and harmful degree

days (HDD). DD measures the cumulative exposure to temperatures between a lower bound,

usually 8℃, up to an upper threshold τ , while HDD captures exposure to extreme heat (above

τ).7 This last variable is our regressor of interest.

We define τ as the 80th percentile of a country’s temperature distribution during the

growing season.8 This value ranges from 27 ℃to 35 ℃. We choose this approach to obtain

country-specific τ and account for differences in temperature distributions.9 The percentile
5For Malawi, the growing season corresponds to November to April. For Tanzania it is the period April-

June, while for Ethiopia is June-October. In the case of Uganda, we take into account that the southern part
has two distinct growing seasons: February-July and September-January; while the north of the country has
one main growing season April-October.

6See for instance, Schlenker et al. (2005, 2006); Deschenes and Greenstone (2007); Lobell et al. (2011);
Burke et al. (2015); Carleton and Hsiang (2016); Chen et al. (2016); Zhang et al. (2017); Aragón et al. (2021).

7Formally we define DD = 1
n

∑n
d=1(min(hd, τ) − 8)1(hd ≥ 8) and HDD = 1

n

∑n
d=1(hd − τ))1(hd > τ),

where hd is the average daytime temperature in day d and n is the total number of days in a growing season
with valid temperature data.

8See Figure B.2 in the Appendix for the distribution of daily temperatures.
9It also allows for temperatures to be different according to the time of the day that satellite data is

collected in different countries.
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is chosen to produce values of τ in a similar range as previous studies. 10 That said, we

check the robustness of our main results by using a wide range of values for τ (see Figure

B.5 in the Appendix).

We restrict the sample to households that respond to the agricultural module. Our final

dataset consists of a panel of 9,459 households and more than 32,000 observations. Table 1

presents summary statistics of our main variables by farm size.

Table 1: Summary statistics

All Farm size
Small Medium Large

Average degree days (℃) 15.7 15.5 15.8 15.9
Average harmful degree days (℃) 0.80 0.74 0.84 0.84

Farm size (has) 1.39 0.42 1.07 2.69
Area planted (has) 1.14 0.41 0.95 2.08
Farm labor (person-days) 408.9 217.6 407.2 604.6

% uses chemical fertilizer 21.8 17.7 23.0 24.7
% use pesticides 11.0 7.7 10.7 14.5
% uses improved seeds 18.5 13.5 18.9 23.1
Concentration index (crop area) 0.43 0.48 0.42 0.40
% area planted with grains 38.8 36.5 39.7 40.4

% did not have enough food 31.0 33.7 30.9 28.3
ln (agric. output per capita) 6.1 5.6 6.2 6.5
No. HH members work off-farm 0.945 0.898 0.921 1.016
No. children work off-farm 0.061 0.041 0.058 0.080

No. obs. 32,628 10,968 10,853 10,807

Baseline model To assess whether farm size affects the impact of extreme heat on agri-

culture, we estimate the following regression model,
10For instance, Schlenker and Roberts (2006) and Deschenes and Greenstone (2007) set this value between

29-32℃ in the context of US. Aragón et al. (2021) use a value of 33℃ in Peru.
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yit = αDDit +
3∑

k=1
βkHDDit × sizek

i + γPP 2
it + ηt + ρi + εit, (1)

where y is the outcome of farmer i in season-year t. We focus on proxies of several outcomes

including agricultural productivity, food security, and input use. DD and HDD are degree

and harmful degree days, while PP 2 is monthly precipitation and its square. sizek are

indicators of farm size (small, medium or large). Our baseline specification includes country-

season, country-year and household fixed effects (ηt and ρi) and cluster standard errors at

the household level.

This specification is similar to previous studies on the effect of extreme heat on agriculture

(Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009; Aragón et al., 2021). We use

similar measures of cumulative exposure to heat (DD and HDD) and exploit within-locality

variation in weather. The main differences are that we include household fixed effects and

interaction terms. They allow us to reduce the scope of omitted variables and examine the

heterogeneous effects of HDD by farm size (βk).

3 Main findings

Figure 1 displays the estimated impact of HDD on two measures of agricultural productivity:

yields and the time-variant component of total factor productivity (time-variant TFP). Yields

are the value of agricultural output (in real terms) divided by area planted. Note that yields

only measure partial (land) productivity. The time-variant TFP is the residual of estimating

model (1) using the log of output as an outcome and adding measures of inputs (area planted

and farm labor) as additional controls. We focus on the time-variant component of TPF

since the household fixed effects absorb the time-invariant component. This implies that

our specification captures changes in farm productivity for a given household after they are

exposed to different temperature realisations during two or more growing seasons.
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The results confirm the negative impact of extreme heat on agricultural productivity

documented in previous studies. The estimated reduction in both yields and time-variant

TFP due to an increase of one HDD is around 15-20%. There is, however, no evidence of

significant differences by farm size. Table 2 shows the regression results.

We also reach similar findings when examining proxies of household well-being, such as

agricultural output or food security, that could be affected by the negative productivity

shock . Table 2 displays the regression estimates for total output (column 3) and food

security (column 4). We note two interesting results. First, the temperature shocks reduce

agricultural output and increase food insecurity. This suggests that any mitigation measure

implemented by households, whether to protect production or consumption, does not fully

offset the negative effects of extreme temperatures on economic activity. Second, while point

estimates are similar, it seems that smaller farms are slightly better at responding than larger

ones, as the point estimates suggest relatively worse outcomes for the latter.

The lack of significant differences does not seem to be driven by the measure of farm

size or model over-specification. We replicate the main results interacting HDD with the

normalized farm size (a continuous variable) instead of the size indicators. We also estimate

a more parsimonious model using region instead of household fixed effects (see Table A.3 in

the Appendix). In all cases, the estimate of the interaction term is statistically insignificant

or has a negligible magnitude.

Does size matter? A possible explanation is that among subsistence farmers size does

not really matter. Since they are all relatively small, especially in comparison to modern

farms, size may not be a relevant source of heterogeneity.

We examine empirically the validity of this argument by assessing whether farm size

is correlated to productivity and agricultural practices. To do so, we estimate model (1)

adding the normalized farm size as control variable and dropping the interaction terms

9



Figure 1: Effect of HDD on agricultural productivity, by farm size

Notes: Figure displays estimates of the impact of HDD by size (β) on log of yields (circles,
solid black line) and the time-variant component of total factor productivity (diamond,
dashed gray line). Vertical lines represent the 95% confidence interval. Regression results
are available in columns 1 and 2 of Table 2 in the Appendix.
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Table 2: Impact of HHD on agricultural productivity and proxies of
well-being

ln(yields) ln(agric. ln(agric. Did not have
output) output) enough food

(1) (2) (3) (4)

Average DD 0.011 0.010 0.037** -0.001
(0.016) (0.014) (0.017) (0.006)

Average HDD × -0.185*** -0.151*** -0.123*** 0.029**
small farm (0.048) (0.041) (0.039) (0.014)

Average HDD × -0.162*** -0.149*** -0.152*** 0.028**
medium farm (0.037) (0.036) (0.037) (0.014)

Average HDD × -0.15*** -0.155*** -0.184*** 0.048***
large farm (0.04) (0.037) (0.042) (0.014)

Average 0.686* 0.553* 1.134*** 0.210
rainfall (0.362) (0.335) (0.419) (0.168)

Average -0.214 -0.141 -0.424 -0.072
rainfall sq. (0.249) (0.241) (0.304) (0.142)

Input controls No Yes No No
Observations 32,034 31,928 32,575 30,658
R-squared 0.970 0.883 0.860 0.618
Notes: Standard errors (in parenthesis) are clustered at the household level. *
denotes significant at 10%, ** significant at 5% and *** significant at 1%. All
regressions also include country-year and country-season fixed effects. Farm size
is the area of average land endowment (land owned or with user rights). Weather
variables measured over the growing season. DD= degree days. HDD= harmful
degree days.

with HHD. We also substitute household for region-fixed effects since there is no within-

household variation in our measures of farm size.

We find evidence of significant and economically relevant differences by farm size (see

table 3). Larger subsistence farms have higher time-variant TFP, lower yields and lower

labor-land ratios (columns 1 to 3). They are also more likely to use modern inputs, such as
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chemical fertilizers, pesticides and improved seeds, and have a more diversified crop portfolio

(Columns 4 to 7).

These findings are consistent with a large literature documenting an inverse relationship

between yields and farm size, and recent work on factor misallocation, which finds a positive

correlation between farm size and measures of total factor productivity.11 As shown in

Aragon et al. (2022), the different signs of the estimated size-productivity relation using

measures of TFP and yields can be explained by yields being a measure of partial (land)

productivity. Thus, they would reflect differences in TFP and input ratios.

11See for instance Adamopoulos and Restuccia (2014), Restuccia and Santaeulalia-Llopis (2017) and
Adamopoulos and Restuccia (2019). For references on the yield-size relationship, see Barrett (1996), Assun-
cao and Ghatak (2003) or Barrett et al. (2010).
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Table 3: Farm size, productivity and agricultural practices

ln(yields) ln(agric. Input ratio Use chem. Use Use improv. Concentration
output) ln(labor/land) fertilizer pesticides seeds index

(1) (2) (3) (4) (5) (6) (7)

Normalized -0.106*** 0.095*** -0.226*** 0.038*** 0.018*** 0.029*** -0.041***
farm size (0.010) (0.015) (0.008) (0.003) (0.003) (0.004) (0.002)

Input controls no yes no no no no no
Mean dep. var. 6.362 8.404 2.865 0.218 0.110 0.185 0.434

Observations 32,211 30,949 32,113 32,580 28,085 26,853 32,583
R-squared 0.945 0.740 0.905 0.483 0.130 0.075 0.278
Notes: Standard errors (in parenthesis) are clustered at the household level. * denotes significant at 10%, ** significant at 5%
and *** significant at 1%. All regressions include region (n=71), country-year and country-season fixed effects, DD, HDD, monthly
precipitation and its square. Column 2 includes log of land and labor as in column 2 in Table ??. Farm size is the area of average
land endowment (land owned or with user rights). This variable is normalized using country-specific mean and standard deviation.
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4 Farm size and mitigation responses

Our main results suggest that both large and small farms have a similar, limited, ability to

mitigate the impact of extreme heat. In this section, we examine some of these mitigation

responses and whether they differ by farm size. Based on previous findings and data avail-

ability, we focus on three types of mitigation responses: changes in input use, agricultural

practices and off-farm labor.

Agricultural inputs We focus on two key agricultural inputs: land and labor (see Figure

2). We find evidence of heterogenous responses by farm size, especially in land use. Medium

to large farms do not change their area planted due to extreme heat, but small farms increase

it. The effect on labour is less clear. Even though that pattern is similar to the area planted,

the coefficient for small farms is statistically insignificant.

The increase in area planted is similar to findings by Aragón et al. (2021) and He and Chen

(2022) in the Peruvian and Ethiopian context, respectively. A possible explanation is that

farmers increase land used, despite the harsher weather conditions, to reduce the impact

of extreme heat on consumption. This response is not optimal in a standard production

model, in which farmers reduce inputs to attenuate the impact of a negative productivity

shock on profits. However, it can be optimal in a context with incomplete markets and

non-separability of consumption and production decisions.

The lack of response on larger farms is very interesting. It could reflect different degrees

of market imperfections, for instance, due to more secure and transferable property rights.

However, it could also be driven by differential access to coping mechanisms (such as larger

savings or better access to off-farm jobs) or higher initial levels of consumption, which would

make reductions in output less costly. However, note that the results in the previous section

suggested that food insecurity increased similarly for both larger and smaller farms. This im-

plies that larger farmers are not better protected from the deleterious effect of temperatures
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than their smaller counterparts. A similar finding is documented in He and Chen (2022).

They find that the expansion of cropland due to extreme heat occurs only among households

without enough assets, as relatively richer households look for off-farm opportunities to cope

with the shock. We explore this response below, before inspecting other potential productive

responses.

Figure 2: Effect of HDD on input use, by farm size

Notes: Figures display estimates of the impact of HDD by size (βk) on the log of area planted
(circles, solid line) and log of farm labor (diamond, dashed line). Farm labor is the total
number of person-days worked on the farm by household members (adults and children).
Vertical lines represent the 95% confidence interval. Regression results are available in
columns 1 to 2 of Table A.2 in the Appendix.

Agricultural practices Several studies find that farmers adjust their agricultural prac-

tices to mitigate the harm of extreme heat. Some responses include changes in crop composi-
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tion, use of fertilizers and pesticides, or shifting planting schedules.12 Due to data availability,

we restrict the analysis to two set of outcomes: (1) measures of cropping patterns such as

a Herfindahl-Hirschman concentration index (based on the share of area planted per crop)

and the share of area planted with grains, and (2) indicators of using chemical fertilizers or

pesticides.13

We find no sizeable effect of HDD on any of these outcomes (see Figure 3a), except for

an increase in the use of pesticides for larger farms. This last result is similar to Jagnani

et al. (2021) which also document an increment in pesticide use due to extreme heat in

Kenya. The lack of impact on cropping patterns, however, contrasts with previous studies.

For instance, Ahmed et al. (2022) find that in response to extreme heat farmers in Ethiopia

increase the area planted with maize, while Li (2023) document that farmers in Bangladesh

substitute rice for non-rice crops. Changes in crop composition have also been documented

the U.S. context (Cui, 2020).

Off-farm work Finally, we examine the impact of HDD on off-farm labor (see figure3b).

As shown in previous studies, households could reduce the impact of agricultural shocks on

consumption by increasing off-farm activities (Rosenzweig and Stark, 1989; Kochar, 1999;

Call et al., 2019).

We find increments in the number of household members who have paid jobs off-farm

in the last 12 months. The effect is similar for all farms, regardless of size. We also find

increments in the number of children working off-farm, albeit only for large farms. The mag-

nitude is not quite large, around 5-7 percent of the mean for every average HDD. However,

our results might underestimate the total effect since our measure of off-farm work only cap-

tures the extensive margin (number of workers) not the intensive margin (number of hours
12See, for instance, Jagnani et al. (2021), Ahmed et al. (2022), Cui and Xie (2022), Li (2023) and references

therein.
13Grains include maize, rice, millet, sorghum, wheat, teff, enset, and oats
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worked).
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Figure 3: Effect of HDD on agricultural practices and off-farm work, by farm size,

(a) Agricultural practices

(b) Off-farm work

Notes: Figures display estimates of the impact of HDD on measures of agricultural practices and off-farm
work, by size (βk). The outcomes in panel (a) are: crop diversification index (circles, solid line), share of
area planted with grains (diamond, dashed line), prob. of using chemical fertilizer (squares, dotted line), and
prob. of using pesticides (triangles, dash and dot line). Outcomes in panel (b) are the number of household
members who held paid off-farm jobs in the last 12 months. We distinguish between all household members
(circles, solid line) and children 5-15 years old (diamond, dashed line). This last regression restricts sample
to households with non-zero children. Vertical lines represent the 95% confidence interval. Regression results
are available in columns 4 to 6 of Table A.2 in the Appendix.
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5 Conclusion

This paper examines the heterogeneous impact of extreme temperatures on subsistence farm-

ers by farm size. We corroborate previous findings of negative effects of high temperatures

on agricultural productivity and output. We also document significant differences in pro-

ductivity and agricultural practices between large and small subsistence farms.

We find, however, no evidence of significant nor sizeable differences in the impact of

extreme heat by farm size. We interpret this finding as evidence that, despite their techno-

logical differences, both large and small farms have a similar, limited, ability to mitigate the

negative effects of extreme heat.

There are at least two unsolved issues that warrant further research. First, our results

focus only on subsistence farmers. Thus, it is not informative of the impact of extreme

temperatures on modern farms, including several family-own commercial operations. It is

possible that size becomes more relevant among these type of farms. Second, we are unable

to assess why farmers’ responses, in particular the use of land, varies. Understanding this

issue is, however, relevant to assess the welfare impacts of weather shocks, and to inform

mitigation and compensation policies.
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ONLINE APPENDIX

A Additional Tables

Table A.1: List of household panel surveys

Country Survey name Round Season
Ethiopia Socioeconomic 2011-2012 Long rainy

Survey (ERSS) 2013-2014
2015-2016

Malawi Integrated Household 2010-2011 Rainy
Survey (IHS) 2013

2016-2017
Tanzania Tanzania National 2008-2009 Long rainy

Panel Survey (TZNPS) 2010-2011
2012-2013

Uganda National Panel 2011-2012 Jan-Jun and
Survey (UNPS) 2013-2014 Jul-Dec

2015-2016
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Table A.2: Impact of HHD on agricultural inputs, practices, and off-farm work

ln(area ln(farm Concentration % area planted Uses chem. Use No. household members
planted) labor) index (crops) with grains fertilizer pesticides with off-farm jobs

All Children
(1) (2) (3) (4) (5) (6) (7) (8)

Average DD -0.001 0.016 0.001 0.006* 0.001 0.002 0.008 -0.001
(0.010) (0.011) (0.003) (0.003) (0.005) (0.004) (0.010) (0.002)

Average HDD 0.060** 0.040 0.001 0.008 0.004 -0.005 0.061* 0.004
× small farm (0.025) (0.028) (0.007) (0.007) (0.011) (0.010) (0.032) (0.005)

Average HDD 0.007 -0.019 0.001 0.000 0.005 0.008 0.061 0.016
× medium farm (0.019) (0.028) (0.006) (0.007) (0.009) (0.011) (0.029) (0.009)

Average HDD -0.013 0.003 -0.003 0.003 0.002 0.023 0.08 0.018
× large farm (0.027) (0.028) (0.006) (0.006) (0.009) (0.009) (0.026) (0.006)

Average -0.133 0.209 0.012 0.309*** 0.077 0.049 -0.029 0.044
rainfall (0.238) (0.272) (0.079) (0.087) (0.120) (0.105) (0.266) (0.054)

Average 0.224 0.101 -0.091 -0.158** -0.128 -0.094 0.465** 0.012
rainfall sq. (0.170) (0.180) (0.065) (0.069) (0.087) (0.062) (0.205) (0.032)

Input controls No No No No No No No No
Observations 32,034 32,458 31,950 31,950 32,564 27,435 22,912 22,912
R-squared 0.979 0.803 0.675 0.748 0.804 0.559 0.604 0.399
Notes: Standard errors (in parenthesis) are clustered at the household level. * denotes significant at 10%, ** significant at 5% and *** significant
at 1%. All regressions also include country-year and country-season fixed effects. Farm size is the area of average land endowment (land owned or
with user rights). Weather variables measured over the growing season. DD= degree days. HDD= harmful degree days.
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Table A.3: Robustness checks: HHD and agricultural productivity

ln(yield) ln(agric. output) ln(yield) ln(agric. output)
(1) (2) (3) (4)

DD 0.011 0.010 0.011 0.023***
(0.016) (0.014) (0.011) (0.006)

HDD -0.165*** -0.151*** -0.124*** -0.075***
(0.026) (0.023) (0.020) (0.012)

HDD × norm. 0.007 -0.005 -0.007 -0.013**
farm size (0.022) (0.020) (0.008) (0.007)

ln(area planted) 0.314*** 0.387***
(0.018) (0.014)

ln(farm labor) 0.336*** 0.389***
(0.014) (0.011)

Fixed effect Household (n=9,459) Region (n=71)

Observations 32,034 31,928 31,032 32,113
R-squared 0.970 0.883 0.951 0.784
Notes: Standard errors (in parenthesis) are clustered at the household level. * denotes sig-
nificant at 10%, ** significant at 5% and *** significant at 1%. All regressions also include
country-year and country-season fixed effects, monthly precipitation and its square. Farm size
is the area of average land endowment (land owned or with user rights). Variable is normalized
using country-specific mean and standard deviation.

B Additional Figures
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Figure B.1: Distribution of farm size

Notes: Figure displays the distribution of farm size (in has)
by country. Box plot excludes outliers and shows range
(min-max), percentile 25th, 50th and 75th..

Figure B.2: Distribution of daily temperature, by country

Notes: Figure displays the distribution of average daily temperature (in Celsius) during the
growing season.

26



Figure B.3: Effect of HDD on agric. output, by farm size

Notes: Figure displays estimates of the impact of HDD by size (βk) on log of agric. output.
Circles are the point estimates, while vertical lines represent the 95% confidence interval.
Estimates are available in column 3 of Table 2 in the Appendix.
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Figure B.4: Effect of HDD on food security, by farm size

Notes: Figure displays estimates of the impact of HDD by size (βk) on an indicator of not
having had enough food in last 12 months (solid line). Circles are the point estimates, while
vertical lines represent the 95% confidence interval. Estimates are available in column 4 of
Table 2 in the Appendix.
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Figure B.5: Effect of HDD on yields and area planted (by farm size) using alternative
definitions of HDD

(a) ln(yields)

(b) ln(area planted)

Notes: Figure displays estimates (point estimates and 95% confidence intervals) of the impact of HDD by
size (βk). Regressions use alternative values of τ to define harmful degree days (HDD). HDD27 refers to
estimates using tau = 27℃. Note that our baseline results use the 80th percentile of a country’s distribution
of daily temperatures.
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