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Abstract

I map the link between financial contracts and the algorithmic tools and constraints of

blockchain technology related to property rights, information, commitment, and enforcement.

I describe and formalize the microfoundations and possible use of blockchains as direct conduit

for implementing financial contracts in incomplete markets settings and as collateral mecha-

nism for on- and off-chain transactions and contracts.
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1 Introduction

Internet-based digital markets and platforms have grown rapidly with recent technological ad-

vances making possible previously prohibitively costly search, indexing, matching, storage and

quick transmission of large amounts of data. Blockchain internet platforms are a fast growing seg-

ment of digital markets. On January 28, 2021 the two largest blockchain platforms, Bitcoin and

Ethereum, had market capitalizations of $632bn and $152bn respectively and 100,000s of daily

transactions.

A blockchain is a decentralized (most often free to join and access) networked computer

database of transactions and other data (e.g., ‘smart contracts’ or ‘tokens’) among pseudo-anonymous

accounts, organized in a sequence of connected time-stamped blocks. Network nodes or users

each hold or have free access to a full copy of the database, hence blockchains are often called

‘distributed ledgers’. A user may have many blockchain accounts. Ownership of funds and trans-

action verification (e.g., prevention of double spending or re-writing the ledger) is done via con-

sensus algorithms (computer code) and cryptographic technology (private-public key pairs, hash

functions1), without the need for a trusted central party. Economic incentives to verify, perform

and record transactions on the blockchain are provided by transaction fees and the issuance of

digital tokens (cryptocurrency).

In this paper I explore and map the relationship between key economic concepts and con-

structs upon which financial contracts and transactions are based (property rights, information,

commitment, enforcement) and the algorithmic tools and constraints of blockchain technology,

with specific economic examples. Unlike other papers in this literature, I explicitly model actual

micro-level details regarding how different types of on- and off-chain transactions can be enabled

by blockchain technology, with the ultimate goal of constructing a correspondence between mech-

anism design concepts from the theory literature and the actual algorithmic building blocks of

blockchains (accounts, transactions, single or multi signatures and timelocks).

I characterize the main advantages and limitations of blockchain technology in implementing

and enforcing financial contracts and payments, with applications to settings with financial market

frictions (exogenously incomplete markets, private information, limited enforcement). I analyze

how these financial market frictions could be addressed by transactions and (smart) contracts de-

fined on a blockchain network.

The main takeaways are as follows. Blockchain technology excels at locking, unlocking and

tracking funds, that is, verifying and transferring ownership. Blockchains are also excellent in

1Hash functions are mathematical functions which are easy to evaluate but nearly impossible to invert without
many brute force tries (known as ‘proof of work’). For example, solving a 10,000-piece jigsaw puzzle is easy to verify
but very time-consuming to do.
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recording and making publicly accessible complete current and historical information of what

happened on the blockchain but, naturally, not what happens off it. An important limitation of

self-enforcing transactions performed via blockchain technology is the need foron-blockchain

collateral (escrow) for enforcing promised payments; that is, the algorithmic tools alone are insuf-

ficient. Any payment promise must be backed up by locked funds (penalty, guarantee), otherwise

it is unenforceable. I show, however, how blockchain technology can be used to enable collater-

alizing and securing off-chain payments, saving on transaction fees. Leveraging the main advan-

tages of blockchains (history and information verifiability and security of proving ownership) with

trust/commitment/enforcement mechanisms (including trusted third parties) can facilitate imple-

menting complex abstract notions and solutions from mechanism design and general equilibrium

theory into reality while saving on collateral costs.

In this paper I abstract from issues related to cybersecurity, mining, or achieving consensus on

the blockchain. These blockchain technology ingredients are treated as exogenous and assumed to

function as intended and specified by the computer code. All following discussion about informa-

tion, commitment and enforcement in blockchains is predicated on this assumption and should be

interpreted accordingly, especially when comparing to other existing technologies or institutions

such as courts, formal financial intermediaries, centralized databases, etc. I also do not analyze

monetary issues, e.g., stable coins, monetary policy questions, the possible impact on blockchain

technology on central banks, or regulation issues.

Related literature

Much of the early economic research on blockchains consists of review papers (Koeppl and

Kroninck, 2017; Chapman et al., 2017; CPMI, 2017; He et al., 2016; Catalini and Gans, 2016;

Tasca et al., 2016) focuses on currency and/or monetary issues (e.g., Yermack, 2014 on Bitcoin;

Raskin and Yermack, 2016 on digital currency central banking; Chiu and Wong, 2014 on e-money

and system stability; Andolfatto 2018; Berentsen and Schar, 2018). There is also a technical

literature emphasizes security and prevention of double spending (Nakamoto, 2008; Buterin, 2013;

Antonopoulos, 2017; Peyrott, 2017), also with game theory applications (Eyal, 2015; Kiayias et

al., 2016). Chiu and Koeppl (2017) are among the first authors to propose an economic model of

blockchains and transaction verification incentives, calibrate it to data and perform policy analysis.

Early conceptualizations of smart contracts and digital ownership can be found in Szabo (1996,

1997, 1998). On the blockchain as ‘public memory’, see Andolfatto (2016a,b). On policy and

regulation see Kiviat (2015), Chapman et al., 2017 or Szabo (2017) among others.

I relate to the above literature but abstract from monetary aspects and instead focus on blockchains

as digital platforms onto which payments, credit and insurance in incomplete market settings can

be mapped and implemented. Doing so, I draw on the theory literature emphasizing the role of
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history-dependence and the use of promised utility as state variable in multiperiod settings with

private information (Spear and Srivastava, 1987; Green, 1987; Abreu et al., 1990; Phelan and

Townsend, 1991; Atkeson and Lucas, 1992; Phelan, 1998; Fernandes and Phelan, 2000; Cole and

Kocherlakota, 2001; Albanesi and Sleet, 2006), or with limited commitment (Thomas and Worrall,

1988, 1994; Phelan, 1995; Kocherlakota, 1996, 1998; Krueger, 1999; Alvarez and Jermann, 2001;

Ligon et al. 2000, 2002; Kehoe and Perri, 2002; Broer at al., 2017). I also use blockchain-specific

mechanism design elements, as in Chiu and Wong (2015) or Chiu and Koeppl (2017) and linear

programming representations and solution methods (Prescott and Townsend, 1984; Doepke and

Townsend, 2006; Ligon et al.,2000; Karaivanov and Townsend, 2014).

This paper is most closely related to recent work trying to conceptualize the possible (fu-

ture) applications of distributed ledgers and blockchains in economic activity, drawing on results

from mechanism design and contract theory. Contributions include the agenda-setting review by

Townsend (2019) and the applications in Holden and Malani (2019) on the hold-up problem, Cong

and He (2019) on collusion, or Gans (2019) on international trade.2 I draw on this literature but dif-

fer by exploring in detail the algorithmic tools and constraints of blockchain technology as related

to property rights, commitment, enforcement and information.

2 Blockchain technology - key elements

I start by introducing the key elements (tools) of blockchains in a stylized form, emphasizing their

economic significance for enabling contracts and transactions. The terminology used borrows

from, but is not always equivalent to the terminology in the various blockchain ‘white papers’.

2.1 Transactions

In this paper I use the termblockchainto mean a dataset of recordedtransactionsorganized in

time-stamped data ‘blocks’, together with the associated computer code/algorithms. Cryptographic

tools (Merkle-Patricia trees, hash functions, etc.) ensure the integrity of the data and the inter-

connectedness of the blocks (hence the “chain” in blockchain), however, I abstract from these

technical issues here. Transactions are the main building block of blockchains.

1. Transactions – input and output funds

Define a transaction� as the process of unlocking (‘spending’) pre-existing unspent fundsxt�k

(input funds) and locking them into new unspent fundsxt (output funds). This can be thought

2The work by Routledge and Zetlin-Jones (2018) on self-fulfilling currency attacks is also broadly related, to the
extent that it demonstrates how smart contracts on the Ethereum blockchain can be used to implement a currency peg.
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of sending or transferring funds from one person or account to another but more general inter-

pretations are possible. New blockchain funds (cryptocurrency) originate from special ‘coinbase’

transactions as a reward for miners but I abstract from this here; the focus is on transacting pre-

existing funds.

2. Cryptographic locking scripts (keys)

Funds on the blockchain are secured (locked) by cryptographic locking scripts (e.g., private

keys). Only the possessor of a matching key/script can spend/unlock the locked funds. I model

locking scripts as the scriptlt�k paired with given input fundsxt�k.

3. Signing a transaction

The process of supplying an unlocking script (‘signature’),ut to the input funds of a transaction

is called signing the transaction. If the supplied unlocking script matches the locking script for

some unspent input fundsxt�k (that is,ut = lt�k), then the input fundsxt�k can be spent, that is,

transferred and re-locked intoxt by a new specified locking scriptlt.3

Definition 1: Transaction

A transaction� is defined as the mapping

� : (fxt�k;lt�kg; ut)! fxt; ltg

where subscripts denote time (block height) and where

� the transaction inputs, fxt�k; lt�kg consist of unspent funds,xt�k with corresponding locking

script(s), lt�k. A transaction can have several inputs

� the transaction signature, ut is a supplied unlocking script. A transaction can require several

signatures

� the transaction outputs, fxt; ltg are new unspent locked funds,xt with locking script(s), lt. A

transaction can have several outputs.

The blockchain data T are theset of all posted and confirmed transactionsf� itgi;t wherei

indexes a transaction andt indexes its block, up to the current date.4 These data can be used to

trace back all past funds transfers or balances, e.g., by account or other criteria. There is a natural

mapping betweenT and the concept of ‘history’ in contract theory / mechanism design which I

will use below.
3Technically, signing a transaction asserts cryptographically that a node (e.g., the sender) has the private key or

script required to unlock the referred input funds but does not reveal that key.
4In actual blockchain platforms there could be submitted transactions that are unconfirmed for some time (not

recorded on the blockchain), e.g., Bitcoin’smempool. I abstract from this issue here and use the term “posted” for
transactions that are both submitted and confirmed.
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2.1.1 Locking scripts

I model the following forms of locking scriptsl that are present in major blockchain implementa-

tions (e.g., Bitcoin)

(a)simple key

lt�k = k
a

whereka is a single private key required to spend/unlock the input fundsxt�k.

(b) multisig key

lt�k = anym out ofn keysfka; kb; :::; kng wherem � n

For example, a 2-of-2 multisig key,

lt�k = k
a ^ kb

means that two private keys,ka andkb are required to spend the input funds. That is, to be valid

the transaction must be signed by two signatures proving possession of both keys.

(c) composite script

lt�k = s

In this paper I will use two main types of composite locking scripts:

– timelock script– a combination of keyskj, timelocksT i > 0, and the logical operators

“and” ^ and “or”_; for example,

s = (ka; T 1) or s = (ka ^ kb; T 1) or s = (ka; T 1) _ (kb; T 2)

– timelocked redeemable secret(e.g., as implemented in Bitcoin’sHash Time Locked Con-

tracts, HTLC):

s = H _ (k; T )

whereH = H(�) is the hash function value of some secret message�.5 Anyone with knowledge

of � can redeem the locked funds immediately. Alternatively, one can redeem the funds by signing

with keyk afterT time periods.

2.1.2 Writing vs. posting a transaction

In the following analysis I distinguish between

5Hash functionsH(w) are special mathematical functions that take a message (string)w of any length as input and
output a value,H(w) of fixed length. Importantly, hash functions are easy to compute but practically impossible to
invert.
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writing a transaction– the act of defining a transaction’s input funds, locking scripts,

signature(s) and output funds, as defined in Definition 1.

posting a transactionon the blockchain – the act of submitting a written transaction for ex-

ecution through a software node connected to the blockchain network. Here, I abstract from waiting

time, effectively assuming that all posted transactions are confirmed (recorded on the blockchain).

An important difference between writing and posting a transaction is that writing a transaction

does not involve paying blockchain transaction fees (reward to miners) while posting it does. Once

posted and executed a transaction is irreversible.6

2.1.3 Valid vs. invalid transactions

A transaction� will be calledvalid transactionif it executes on the blockchain as written and

intended, that is, it results in a successful transformation of past locked funds into new locked

funds. Once a posted blockchain transaction is valid it remains valid and cannot expire.

A transaction� will be calledinvalid transactionif executing it on the blockchain network/code

would result in an error (code exception). Possible reasons can be: the referred input funds have

been already spent; the supplied unlocking signatures do not match the locking scripts for all

referenced inputs, or coding errors.

It is important to note that a transaction� can beinvalidated on purposeby writing and posting

another transaction (‘double-spend’) that spends� ’s inputs. A written transaction can only be

invalidated this wayprior to posting it to the blockchain, not after. Posting a valid transaction

therefore can be used not only to transfer funds (by unlocking and re-locking) but also to render

invalid other written (but not posted and confirmed) transactions by spending their input funds. I

will show that this technological feature of blockchains is very useful in constructing multiperiod

or multi-party financial transactions.

2.1.4 Accounts and balances

For the purposes of this paper a blockchainaccountis identified with a simple (private) key,ka.

Account fund balances can be derived from the records of all transactions on the blockchain (hence-

forth, the blockchain dataT ) as the sum of all funds locked by given key (e.g., in Bitcoin); or are

retrievable from the blockchain as part of the virtual machine state (e.g., in Ethereum).

6A new transaction could be constructed to “reverse” the actual ownership of funds but this involves a new set of
inputs and outputs and will be recorded as a different transaction.
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2.2 Algorithmic constraints

Given the definition of a transaction (Definition 1), the blockchain algorithm imposes and enforces

the following constraints on input funds, output funds, locking scripts and signatures for a transac-

tion to be valid and successfully posted on the blockchain:

1. funds availability – each inputxit is an unspent outputxjt�k from a previous valid

transaction

xit = x
j
t�k for somej and somet� k < t (C1)

2. no double spending– no two valid transactions can spend/unlock the same input funds

xit�k

@ �1; �2 2 T andxit�k such thatxit�k is an input of both�1 and�2 (C2)

3. proof of ownership – the supplied signature(s) for each inputxit must match (crypto-

graphically satisfy) the locking scriptljt�k of the previous output it attempts to unlock/spend7

uit = l
j
t�k for the samet; i; j; k in (C1) (C3)

The locking script could bemultisig in which case two or more signatures may be required to

satisfy (C3).

4. input-output balance – the total value of a transaction’s output funds cannot exceed

the total value of its input funds X
i

xit�k �
X
j

xjt (C4)

where the superscriptsi andj indicate multiple inputs/outputs, if applicable. Allowing for inequal-

ity in (C4) capturestransaction fees(blockchain network processing fees) that normally accrue to

the miner of the block in which a transaction is included. Below I ignore those fees for simplicity.

Note that no new funds are injected via transactions8 and no funds are “lost” (the funds for miners’

fees are locked in their accounts). In Bitcoin one of the outputs could be ‘change’ – e.g., part of

the total input funds going back to the sender (locked by her key).

Constraints C1-C4 prevent ‘double’ or fraudulent spending which is one of the foundational

ideas of blockchain technology (e.g., Nakamoto, 2008). These constraints essentially ensure that a

transaction cannot spend funds that are not available and that are not unlockable. If an attempt is

7In Bitcoin the most common scenario is that a signature applies to all inputs but targeted signatures are techno-
logically feasible too.

8The focus of this paper is transactions between blockchain nodes and hence I abstract from the special “block
reward” (coinbase) transactions that accrue to miners.
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made to spend fundsxit�k that have already been spent by a previous posted transaction, the current

transaction will be rejected by the blockchain as invalid. In practice, e.g. in the Bitcoin implemen-

tation, the blockchain algorithm and network keep track of the complete set of unspent funds (so-

called UTXO set), which is updated after every recorded block of transactions. Other blockchain

algorithms (e.g. Ethereum) directly keep track of actual account balances as the blockchain state.

5. respecting timelocks– timelocked outputsxjt�k cannot be spent before their timelock

(if it exists) has expired

t � t� k + T jt�k for the samet; j; k in (C1) (C5)

3 Blockchains and financial contracts – possibilities and limi-

tations

This section discusses how the key ingredients and algorithmic tools of blockchains help or con-

strain writing and enforcing financial contracts and transactions. The focus is on the key building

blocks of contracts – property rights, information (verifiability), commitment (trust) and enforce-

ment. The strengths and limitations of blockchain technology with respect to each of these building

blocks are summarized at the end of each sub-section.

3.1 Property rights

Contracts require well-defined property rights. In blockchain platforms property rights over funds /

assets (e.g., amount of unspent Bitcoin or Ethereum balance) are fully digital (algorithmic) and are

established and verified by cryptographic tools. Examples of the latter tools include thescriptSig,

scriptPubKeyfunctions in Bitcoin or the transaction nonce and ECDSA signatures in Ethereum.

Specifically, using the Section 2 terminology,locking scriptssecure and establish ownership

over funds. Matching signatures to locking scripts is used to transfer ownership. A locking script

or key cannot be forged – it is either objectively correct or not; this is a technological strength.

However, a key or script can be stolen – a limitation. This observation links to a large and important

cybersecurity literature which, however, I will not discuss here.

The property rights over funds in blockchains are of ‘bearer’ type and not tied to a particular

user identity. That is, anyone who produces the required signature matching the locking script

can spend the funds. Importantly, in most (all?) currently existing blockchain platforms there are

no external legal property rights, that is, rights or claims existing outside of the digital algorithmic

rights just described. The anonymity of accounts and lack of central parties and regulation currently
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rule out other existing methods to record property rights but this is a feature of blockchains that

could change in the future.

Multisig and timelocklocking scripts can be used as flexible covenants to constrain property

rights over funds. Multisig locking scripts require the presentation ofm out of n signatures (un-

locking scripts), thus constraining unilateral use. Timelocks can be used to constrainusageprop-

erty rights, since timelocked funds cannot be spent by anyone before expiration of the timelock, for

example, a ‘correct’ private keyka cannot unlock/spend funds locked by the unexpired timelock

script(ka; T a) with T a > 0.

� Strengths: cryptographically secure proof of ownership; low costs of acquiring or transfer-

ring ownership; flexible covenants – multisig, timelocks.

� Limitations: no record/verification outside the blockchain; purely ‘bearer’ type ownership.

3.2 Commitment and trust

Economists use the term commitment to describe or assume one’s ability to make credible/deliverable

promises about future actions. For example, an online seller can commit to ship the purchased item

after receiving payment. Related to this, the termlimited commitmentis used to assume that only

one of two contract parties is bound by their promises or that commitment is possible only in the

short-term (e.g., single period) or with some probability less than one. A huge literature on time

inconsistency and lack of commitment exists analyzing those issues.

Here I abstract from any external commitment devices or institutions and focus solely on

the blockchain algorithmic tools that can be used to ensure commitment to future payments.

Blockchains are often described as ‘trustless’ decentralized platforms on which economic transac-

tions can be made. The term ‘trustless’ is not fully correct. While most blockchain applications

(e.g., Bitcoin, Ethereum) indeed do not rely on a trusted authority in the traditional sense (court

system, banking system, etc.), they rely strongly on trust in the computer code and algorithm on

which the platform is based and run.9

Specifically, for a transaction� as defined in Definition 1 to be valid, that is, to represent a

commitmentto pay/transfer certain amount from account A to B it is essential that:

Condition (i): the referencedinput fundsxt�k must be availableand accessible at the

moment of posting the transaction on the blockchain. Obviously, this requires having the requisite

signature/ unlocking script(s),ut.

9This includes technical issues such as reaching and maintaining consensus (e.g., about the longest transaction
blockchain), susceptibility to malicious attacks, network throughput, etc. which I do not discuss here.
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The availability of input funds is crucial and shows that blockchain transactions (and, by exten-

sion, smart contracts) are not automatic or ‘set is stone’ once written or submitted. A transaction�

can be rendered invalid (effectively canceled) by spending its input with another valid transaction,

� 0 prior to � being posted and confirmed on the blockchain. I show an application in Section 4.

The second implication of (i) is that a necessary condition for anyfuturetransfer commitments

is that the required funds must befully collateralized. That is, the promised funds must be locked

until needed and still available to be unlocked at the time the transfer is due. In practice this

can be achieved using the algorithmic tools reviewed in Section 2 –multisig scripts, timelocks

and combinations thereof. Multisig locking scripts, e.g.,lt�k = kA ^ kB ensure that one of the

parties cannot spend or syphon the funds without the agreement of the other. Hence, only when the

economic incentives of both parties are aligned can the funds be transferred. Timelocks directly

lock the funds from use byany partyand can algorithmically ensure that the funds are still available

at the intended redemption date (note that potential self-control problems are avoided too).

Condition (ii): the transaction which established the promised funds availability (known

as collateral or funding transaction, see Section 4) must beposted and confirmed on the blockchain

(transaction fees must be paid) – this activates the algorithmic tools and ensures the future avail-

ability of funds.

� Strengths: commitment and trust can be generated algorithmically

� Limitations: commitment and trust is limited to the available algorithmic tools (timelocks,

multisig) and require locking funds as collateral (costly)

3.3 Enforcement

Contractenforcementrefers to executing the terms of the contract as stated and/or intended. Specif-

ically, my focus in this paper is on enforcing transactions transferring funds between blockchain

accounts (unlocking and re-locking funds).

Blockchain transactions are enforced algorithmically (automatically) by software, as long as

theproperty rightsandcommitmentconditions ensuring transaction validity are satisfied:

– input funds ownership is proved cryptographically

– any locking script conditions (multisig, timelocks) are satisfied by providing all neces-

sary signatures or posting at the correct time

– transaction fees are paid.

Conditional on the above, the receiver of the transaction output does not need to do anything

(except possibly wait) after a transaction is posted and successfully validated on the blockchain.

Contract verifiability and execution is algorithmic, via unambiguous computer code. The latter
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reduces uncertainly about what is promised (a form of counterparty risk) and legal (interpretation)

risk; see Holden and Malani (2019) for further discussion.

An enforcement problem could therefore arise only when a transaction isinvalid and hence

rejected by the computer code when submitted to the blockchain. This could happen, for example,

when the transaction’s input funds has already been spent in another previously validated trans-

action (e.g. in Bitcoin) or, equivalently, if there is insufficient balance in the sending account at

the time of posting (in Ethereum). Note that the recipient has no resort in such case since external

enforcement is ruled out.

� Strengths: enforcement is automatic, no human element; low enforcement costs

� Limitations: only valid transactions can be enforced – the pre-conditions for property rights

and commitment must be satisfied (e.g., costly collateral); no third-party / external enforce-

ment (courts, arbitration, etc.)

3.4 Information

By design a blockchain recordscomplete information of all posted and confirmed transactions

going back to the initial block 0. Also by design, everything that is posted on the blockchain is

public informationthat is free to access. Typically, the minimum amount of data written on the

blockchain are transactions (input, output, value), organized in time-stamped data blocks that are

organized in an inter-connected chain (via hash functions, Merkle trees, etc.). Cryptography makes

it nearly impossibly hard to modify past written data – the recorded data are permanent – this data

immutability is a design feature, not a limitation. The public, complete and permanent nature of

the blockchain data has a natural parallel with the notion ofhistory in mechanism design.

The transactions information on the blockchain could also be used to construct account bal-

ances at any moment of time (block height). Depending on the platform, other data may be written

too – e.g., smart contracts, gas used, gas limit and gas price in Ethereum.

While blockchains provide a vast amount of public information in the form of the recorded

transaction data, obviously they do not necessarily solve or avoid important economic problems

arising from asymmetric information such as hidden actions, hidden income, unobserved type.

Essentially, anything that is not recorded on the blockchain can be private information for other

users or counterparties. In addition, most blockchain platforms are permissionless and anonymous

and users can have multiple addresses/accounts which renders difficult relating transactions to

actual individuals / firms unless they want to reveal such information (e.g., in Bitcoin by default

most wallet software would create a new account for each transaction). Coordination and other
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efficiency gains from required posting of information are possible.10

� Strengths: complete, permanent and public record of historical information, similar tohistory

in mechanism design (see the next section for application)

� Limitations: any off-blockchain information can remain hidden, including strategically; the

immutability of recorded data might cause problems in practice (e.g., permanently locked

funds; coding errors)

3.5 Blockchains strengths and limitations – discussion

Blockchain technology excels at securing and verifying property rights over digital assets via lock-

ing scripts and signatures. It also excels in recording a complete and immutable history of on-chain

transactions (the blockchain data). The leading blockchain implementations also provide good al-

gorithmic tools for making and enforcing future commitments (multisig, timelock and composite

locking scripts).

The main limitation of blockchains in writing and enforcing economic contracts and trans-

actions appears to be the need forfull collateral regarding future promised payments.11 This

collateral requirement can be costly, as shown in the economic applications in the next section.

However, in Section 5 I show that collateral (locked funds) posted on the blockchain can be used,

together with the algorithmic tools in Section 2, to back multiple off-chain payment transactions,

hence mitigating this technological limitation.

The essentiality of collateral arises from the anonymity of blockchain accounts and the bearer

form of digital property rights. How about reputation as commitment mechanism? It is certainly

possible to use a blockchain torecord reputation-related information, for example, as token bal-

ance. However, it is unclear how outsiders (e.g., new contract parties) could verify the authenticity

of such reputation ratings (e.g., a trader may self-generate transactions with other accounts s/he

controls and/or rate himself highly, similar to creating or purchasing fake reviews on business

rating websites).

Another common commitment mechanism from the economics literature involves using pun-

ishment threats not based on collateral, for example, the threat of autarky or no trade. Contract

parties could indeed write such self-enforcing mechanisms using blockchain technology (smart

contracts could be very helpful in this). However, doing so imposes additional constraints and

10See Townsend (2019) for more discussion on this issue and also on the possible gains from obfuscating certain
information, depending on the economic setting.

11In addition, there are costs of posting blockchain transactions (transaction fees) and waiting for confirmation but
these economic costs are often lower than the direct or implied costs in other transaction methods.

13



may severely limit the set of feasible trades and efficiency (see the next section for a risk-sharing

example). It is indeed possible to punish a counterparty with no future trade if a contractual pay-

ment is not made but, without external enforcement or the possibility to restrict access, how can

one prevent the offender from contracting with another lender, borrower or seller? In addition,

such punishments are often time-inconsistent and there is the issue of how to prevent fraudulent

punishment – for example, banning user accounts is ineffective in a permissionless anonymous

blockchain.

4 Applications

I next present two specific examples of economic settings (multiperiod risk sharing and interna-

tional trade) to illustrate the main contracting issues and frictions from the theoretical point of view

and show how the tools of blockchain technology can be used to address them.

4.1 Risk sharing

Townsend (1982) studies a multi-period optimal risk sharing problem. A risk-averse agent with

preferences over consumptionu(c) and discount factor� 2 (0; 1) has an i.i.d. stochastic income

processfytgTt=0 which takes values on the discrete setY (e.g., low or high income). The agent can

enter a contract with a risk-neutral financial intermediary (‘the insurer’) who can provide credit

and insurance against the income shocks. The agent’s income can be public or private information.

In the latter case, assuming a two-period model and two possible values of the agent’s income,

Townsend shows how a multiperiod insurance contract which conditions risk-sharing transfers on

the history of output realizations dominates in terms of efficiency a simple debt contract. Also,

both the insurance and debt contracts attain higher utility than autarky.

Using standard arguments, an infinite-horizon contracting problem in Townsend (1982)’s set-

ting can be written recursively12 in terms of the agent’s promised utility (present value of future

utility), w as the state variable:13

�(w) = max
f�j ;w0jg

#Y
j=1

E(��j + ��(w0j)) (1)

s.t. E(u(yj + �j) + �w
0
j) = w [promise keeping]

u(yj + �j) + �w
0
j � u(yj + �l) + �w0l for anyj; l = 1; ::#Y [truth telling]

12All variables are time-dependent ifT is finite.
13Townsend (1982) did not use this recursive formulation but recognized the optimality of conditioning transfers on

income history which is mathematically equivalent to keeping track of promised utility.
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where�(w) is the insurer’s profit function and the expectation is taken over the income states.

This formulation is equivalent to making the consumption transfers�j conditional on the complete

history of agent messages about her income realizations, i.e.,

�jt = �(y1; y2; :::; yt)

The first-best outcome is full-insurance – the agent receives constant consumptioncj = �c across

all income states. In contrast, when the agent’s incomeyj is private information, the truth-telling

constraint must be imposed to ensure, by the Revelation principle, that the agent would optimally

report her income truthfully and earn the on-path current transfer�j and promised utilityw0j as

opposed to reportingyl (e.g., lower income) and receiving the off-path values�l andw0l.

Townsend’s setting is a prototypical application of mechanism design theory to derive a com-

plex financial contract (credit mixed with insurance) in the presence of private information. Typi-

cally the constrained-optimal contract in such settings can be solved only numerically. Therefore,

a blockchain-based smart contract could be coded to compute and implement the optimal alloca-

tion solving problem (1), either by keeping track of the agent’s history of messages about income

yj or, equivalently, by keeping track of promised utilityw in a blockchain token account (see Sec-

tion 6). Blockchain technology is perfectly suited for storing such data and also for coding the

automatic computation of the needed transfers (e.g., via smart contract), provided the required

economic structure is known as assumed in the theory literature (that is, the distribution of income,

preferences, etc.).

Note that contracting problem (1) and its solution (like many other similar examples from the

literature)assume commitmentby both parties. That is, it is assumed that the requisite insurance

transfers�j can be enforced costlessly. This is an issue that blockchain technology cannot address

automatically. What if a party cheats and does not make the required transfer, e.g., by spending its

input funds? As discussed earlier, this can happen if the required funds are not locked or secured

in advance.

More specifically, suppose the agent could renege after observing her income, but before having

to make the transfer�j and the insurer can commit to punishing with no-trade afterwards. Then

an additional limited enforcement constraint is introduced in the contracting problem (see Thomas

and Worrall, 1988 or Karaivanov and Martin, 2015 for more examples).

u(yj + �j) + �wj � u(yj) + �V a [limited enforcement, agent]

whereV a =
P
�tE(u(yt)) is the agent’s autarky value. Imposing this additional constraint on

problem (1) limits the set of feasible trades and reduces efficiency.
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Discussion

The private information and commitment problems can lead to a significant reduction in sur-

plus (see Figure 1 for illustration). The blockchain cannot solve the private information (hidden

income) problem unless income accrues / is recorded directly on the blockchain, without human

intervention. The blockchain can help implement the private information constrained optimum by

keeping track of history or promised utility.

Blockchain-basedcollateral can help with the commitment problem. One (possibly costly)

way would be to lock sufficient funds ex-ante that allow to pay any possible sequence of due

transfers. I describe a “payment channel” implementation using this idea in Section 5.2.

Another way would be to only lock sufficient funds to ensure that the insurance contract is self-

enforcing, that is both parties have economic incentive to not renege on the contract, at any moment

of time after any history. For example, if we focus only on the agent’s commitment problem, then

locking fundsFj as collateral, to be taken away if the agent reneges on a due transfer�j < 0,

would satisfy the self-enforcement condition in statej as long asFj satisfies

u(yj + �j) + �wj � u(yj � Fj) + �V a (2)

A similar argument can be made about the insurer, by requiring posting sufficient collateral for the

states with�j > 0.

By providing the technological possibility to lock funds as collateral blockchains can support

the optimal history-contingent contract. The tools used are the blockchain data, a blockchain

account to record the history of agent messages~yt or promised utilityw(~yt) and the cryptographic

locking scripts and signatures, to secure the collateral.

Numerical example

AssumeT = 2, two output levelsyL = 3 andyH = 5 each with probability� = 1=2 and

preferencesu(c) = c� :05c2 and� = 1. Then we have the following mechanism design solutions,

depending on the assumed contracting environment / economic frictions (superscripts denote time

and subscripts denote income history)
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Risk-sharing example, Townsend (1982)

two-period setting �1H �1L �2HH �2HL �2LH �2LL ex-ante welfare

1. autarky 0 0 0 0 0 0 6:3

2. first best �1 1 �1 1 �1 1 6:4

3. hidden income

a. debt �:5 :5 :5 :5 �:5 �:5 6:325

b. insurance14 �:56 :64 :45 :45 �:54 �:54 6:33

In this example the constrained-optimal insurance contract 3b. in the hidden income setting

does not satisfy the self-enforcement constraint (2). Hence it cannot be implemented (without

collateral) if there is no commitment. See Figures 1 and 2 for further illustration of the impact of

the information and commitment frictions.

4.2 International trade

Gans (2019) considers an example of an international trade setting. A buyerB wants to purchase a

product from a seller,S. The buyer’s value for the product isV . It costsC for the seller to produce

and ship the product, whereC < V . Clearly, mutually beneficial trade opportunity exists for some

priceP 2 (C; V ). Gans introduces two potential issues related to a trade contract enforcement:

(i) ‘hold up’ – the buyer may receive the product but not pay for it (or try to pay less

ex-post)

(ii) ‘moral hazard’ – the seller could ship an inferior product with lower costc 2 [0; C)
and low value to the buyerv 2 [0; V )

The author then discusses a mechanism-design solution to the trade problem (based on work by

Moore and Repullo, 1988 and Moore, 1992 on sequential mechanisms) and argues how blockchain

technology (smart contract) can be used to implement this solution. The proposed solution is a

sequential mechanism consisting of three stages in which the buyer and seller take turns making

‘take it or leave it’ offers.

Stage 1(announcement) The buyerB announces the received good’s quality:V or v

(v = 0 could be interpreted as ‘not received’). IfV is announced thenP is paid, end.

Stage 2(challenge) Ifv is announced at Stage 1, the sellerS can challengeB’s claim; if

there is a challenge the buyer is fined an amountF which is remitted to the seller. Then the seller

offers the buyer a choice between:

2.1 keep the received product and pay pricep wherep < P , end.

14For simplicity Townsend (1982) restricts per-period insurer’s profits to zero. Here, zero ex-ante expected profits
for the insurer are assumed instead, yielding a minor welfare gain.
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2.2 return the product for refundf .

Stage 3(settlement) If the buyerB chose 2.2 thenB is issued refundf by the seller and

the seller pays fine2F to a third party, end.

The extensive game form is illustrated on Figure 3. It can be proved that, for appropriate

conditions on the parameters, the unique equilibrium is that the seller ships the contracted good

with valueV and the buyer pays the contract priceP (see Gans, 2019 and references therein for

details).

Discussion

While blockchain technology and smart contracts can be used to automate the specified pay-

ments in the proposed mechanism-design solution, observe thatcollateral (funds locked in escrow)

is required to ensure commitment to the contract. First, the buyer must post/lock fundsP + F to

ensure payment for the good,P and the potential payment of the fineF in the off-equilibrium path

whereB challengesS. The latter is needed to prevent frivolous challenges. Second, the seller

must post funds2F as collateral in the off-equilibrium case of refund in Stage 3 (possiblyF of

this could be the buyer’s fine thatS received in Stage 2, if properly script-locked).

The amount of collateral required for the implementation can be significant. Gans (2019) shows

a numerical example withV = 30; v = 0; c = 5; P = 15; C = 10, F = f = 6 andp = 10 which

satisfies the parametric sufficient conditions for unique equilibrium(V; P ). Observe that for these

parameters the total surplus from trade isV � C = 20 while the total collateral/escrow required

from the buyer and the seller isP + 3F = 33 (or at leastP + 2F = 27, if the buyer’s fine can be

re-used as part of the seller’s fine2F in case 2.2).

5 Blockchain collateral and off-chain payments

I explore the idea ofpayment channels(e.g., Antonopoulos, 2017) to describe how the blockchain

tools and algorithmic constraints can be used to make incentive-compatible and self-enforcing

transfers between two nodes. An extension to multiple nodes, as in Bitcoin’s Lightning network, is

also briefly discussed. The focus here is on the economic issues related to incentives, commitment,

and enforcement of blockchain payments. I therefore abstract from any technical issues, e.g., 50-

percent attacks, network congestion, processing delays or cybersecurity concerns.

In the preceding sections I argued that committing to future payments and enforcing promises

of payments via the blockchain requires posting sufficient collateral. In addition, posting trans-

actions on the blockchain is costly – transaction fees must be paid and there could be throughput

constraints and time delays after posting. The challenge is therefore to design how to

(i) use the blockchain as collateral mechanismto support payments and
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(ii) use the blockchain minimally,with the smallest number of posted transactions.

The exposition below mainly follows the Bitcoin blockchain implementation but this is not

essential for the main results and conclusions.

5.1 State transitions and payment channels

Consider the basic economic problem of a bilateral contract between agentsA andB. The agents

start at some initial state(at; bt) whereat is A’s balance andbt is B’s balance at timet, and must

transition to a new state(at+1; bt+1) in an incentive-compatible and self-enforcing way using the

blockchain.

The simplest possible example of suchstate transition problemis a transfer (payment)p from

A toB, in which case

at+1 = at � p andbt+1 = bt + p.

I outline an incentive-compatible blockchain solution to the state transition problem as described

by Antonopoulos (2017) among others, in the context of Bitcoin. This implementation is known as

a payment channel. The key idea is to use a transaction posted on the blockchain tocollateralize

the set of all possible balances between two parties, that is, the set of values(a; b) = (A� z; z) for

some fixed total sumA (called the channel capacity) and anyz 2 [0; A].

5.1.1 One-way payment channel

To illustrate the idea of using blockchain collateral to enforce payments, consider the simplest case

of a one-way (unilateral) payment channel – that is, transfers go only one way (e.g., A’s balanceat

always decreases while B’s balancebt always increases over time). A one-way payment channel

can be implemented as follows:

1. [collateral set-up] Write a collateral (funding) transaction which establishes the maxi-

mum payment that can be implemented:

�c : (fx0; l0g; u0)! fc; lcg

For simplicity I assume that the input fundsfx0g are provided byA, locked by his keyl0 = ka and

unlockable by signing withu0 = ka. The valuec =
P

j x
j
0 (ignoring fees) is the collateral amount

which is locked by 2-of-2multisig locking script:

lc = k
a ^ kb

The multisig locking script is important as it ensures that no single party can unlock the funds
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without the other party’s signature.

2. [refund set-up] Before posting the collateral transaction�c on the blockchain the parties

write a second, refund transaction:

�r : (fc; lcg; uc)! fc; lrg

in which the collateral fundsc are secured bytimelockT > 0 (e.g., 20 days worth of blocks) which

establishes the maximum duration of the channel, that is,

lr = (k
a; T )

PersonA gives the transaction�r toB to sign (that is, to supply thekb part of the required unlock

signatureuc = lc). B agrees to sign since presumably she has something to gain from the contract

(and she is not due any payment yet). The refund transaction�r, once signed byB, protectsA in

caseB disappears. It is is kept byA as guarantee and not posted on the blockchain.

3. [posting collateral] The collateral transaction�c is posted on the blockchain byA

signing it byka. This locks the fundsc and establishes the payment channel.

4. [state transitions] After steps 1 through 3 the payment channel is set up and ready to

support state transitions of the type

(a; c� a)! (a0; c� a0)

where the first argument in the brackets isA’s balance and the second isB’s balance and where

a0 < a, that is,A is sending fundsa � a0 to B. These state transitions correspond to unilateral

transfers of funds fromA toB.

To perform a state transition the parties write the following blockchain transaction with two

outputs corresponding respectively to the balances due toA andB.

�s : (fc; ka ^ kbg; ka)!
(
a0; ka

c� a0; kb

)

A signs transaction�s by his keyka and passes it toB. B can post�s on the blockchain by signing

it by kb (which would satisfy the required locking scriptlc = ka ^ kb) but she could also wait, if

she is due additional payments fromA (as assumed). Further state transitions can be then made

by writing new transactions (communication between the parties may be required for this, or the

process may be automated) that spend the same input fundsfc; lcg but have different outputs, for

example,a00 andc� a00 wherea00 < a0 and so on. Note that along this process wheneverB holds a
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transaction entitling him to (sufficiently) larger balance (e.g.,c � a00 vs. c � a0) she no longer has

incentive to post a previous transaction. On the other hand,A is prevented from posting any old

transactions by not havingB’s signature.

5. [settlement] The final state transition (settlement) transaction�s must be posted on the

blockchain before expiry of the timelockT set in step 2.

Observe that in the proposed mechanism the blockchain is used to post two transactions only –

the collateral transaction�c and the final settlement transaction, while multiple payments fromA

to B can be completed in the meantime. All payments are secured by the blockchain tools from

Section 2, specifically:

– themultisig locking scriptlc = ka ^ kb in the collateral transaction�c ensures that either

party cannot expropriate the collateral fundsc; in particular, it preventsA from posting an old state

(an old transaction�s) which givesA larger balance than the current state.

– thetimelockT in the refund transaction’s locking scriptlr = (ka; T ) ensures thatA can

get his funds back ifB unilaterally quits.

5.1.2 Bilateral payment channel

The unilateral payment mechanism described in Section 5.2.1 is only self-enforcing whenA is

paying toB (that is, more and more ofc becomes due toB over time). To see that suppose the

intended state transition was(a; c � a) ! (a0; c � a0) with a0 > a (that is,B makes a payment

to A). Then nothing would preventB to post the old transaction already signed byA (that is, the

transaction givingB balancec� a) and benefit. To prevent such deviation and allow any direction

of state transitions both parties must hold (asymmetric) refund transactions, as described below.

A bilateral payment channel supporting any state transition(a; c�a)! (a0; c�a0) with a > a0

or a < a0 is implemented as follows:

1. [collateral] The first step is to write and post a collateral (funding) transaction of the form

�c : (fa0; ka; b0; kbg; uc)! fc; lcg

This transaction has two inputs,(a0; ka) and(b0; kb) originating respectively fromA andB and

unlockable by the corresponding signatureska andkb. It is possible thata0 or b0 equals zero – that

is, all collateral could be provided by a single party. As in Section 5.2.1, the collateral transaction

has a single output with valuec, a multisig keylc, requiring both parties to sign and no timelock.

Here, using (C3), we have (ignoring transaction fees)

c = a0 + b0 and lc = k
a ^ kb.
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2. [state transitions] The next step is to perform the transition from balance state(a; c � a) to

state(a0; c�a0), where initiallya = a0. Here and later on in the state transitions chain, botha0 > a

or a0 < a are possible, e.g.A paysB or B paysA. The state transitions must be enforceable

by the blockchain algorithmic tools. That is, each party is able to obtain their contractual due

amount without relying on trust or cooperation from the other party. This is achieved by writing

and exchanging two transactions�sa and�sb, held respectively byA andB and counter-signed by

the other party’s key (�sa is signed bykb and�sb is signed byka):

�sa : (fc; ka ^ kbg; kb)!
(
a0; (ka; T ) _ rb

c� a0; ka

)
(A)

and

�sb : (fc; ka ^ kbg; ka)!
(

a0; kb

c� a0; (kb; T ) _ ra

)
(B)

Crucially, these transactions do not need to be posted on the blockchain, but would be valid if they

are signed and posted. In (A) and (B) above,ra andrb are special ‘revocation’ scripts (to be ex-

plained below), that are exchanged in every state transition and held byA andB respectively. Note

that transactions�sa and�sb serve simultaneously as potential refund/guarantee (via the timelock

T and revocation keysrj) and also implement the state transition.

How do (A) and (B) enable the state transition? Transaction�sa held byA has input fundsc

and has been pre-signed withB’s key,kb as part of the required unlock signatureuc. Hence, ifA

also signs�sa using her keyka, its input fundsc would be unlocked, since they are locked by the

scriptlc = kb^ka. Transaction�sa has two outputs. The second (bottom) output(c�a0; ka) would

releaseB’s contractual balancec � a0 immediately since its locking script isl1sa = ka without

any timelock. However,A’s due fundsa0 (the first/top output of�sa) are locked by the composite

locking script

sa � (ka; T ) _ rb.

This output can be unlocked byA using her private keyka but only after the timelockT expires, or

alternativelyunlocked immediately by whoever has the keyrb. Importantly, the keyrb must remain

in possession ofB until the parties agree to transition to another state. An analogous argument

holds for transaction�sb by changing thea andb superscripts accordingly.

To transition to a new balance state, e.g., to(a00; c � a00) the parties first exchange the revo-

cation keysra andrb (so that the previous state can be revoked if posted) and then counter-sign

new transactions of the form (A) and (B) with the same inputs but new output balances and new

revocation keys. The revocation key exchange and counter-signing should be done algorithmically

and simultaneously to avoid any hold up.
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Why are state transitions achieved by the transactions�sa and �sb self-enforcing? Suppose

A attempted to renege and posted on the blockchain (by signing withka) the transaction��1sa
corresponding to a previous non-current balance state (e.g., because such action would giveA

more funds,a�1 than currently due). ThenB would receivec�a�1 immediately and hasT periods

(the timelock onA’s output in ��1sa , see (A)) to detectA’s deviation and use transaction��1sa ’s

revocation keyrb to claim the outputa�1 as well, essentially seizingA’s share of the collateral.

The same argument applies forB in a symmetric situation. Because of these collateral-enabled

penalties (funds seizure) neither party has an incentive to post an old transaction. What if a party

disappears, that is, does not exchange a revocation key or does not counter-sign the next state

transition transaction? Then the other party can still post the last signed valid transaction after

waiting for its timelock to expire.

Future work. The described mechanism implements the state transition but are there other

self-enforcing mechanisms, e.g., involving less harsh penalties or delays? To do – formalize the

problem using the elements and constraints in Section 3 and characterize the set of solutions to the

mechanism design problem.

5.2 Applications

Multiperiod insurance

Going back to the economic examples from Townsend (1982) and Gans (2019) I show how pay-

ment channels and the collateral backing them can be used to implement the constrained-efficient

outcome.

In the multiperiod risk sharing setting of Townsend one can think of the agent and insurer

starting at balance state(0; 0) and some initial promised utilityw0. Then, depending on the history

of agent’s income realizations(yj1 ; yj2 ; :::) a chain of state transitions is implemented:

(0; 0)! (�1j1 ;��
1
j1
)! (�1j1 + �

2
j2
;��1j1 � �

2
j2
):::! (

TX
t=1

�tjt ;�
TX
t=1

�tjt)

where�tjt is the contractual insurance transfer to the agent (positive or negative) at timet if the

realized income state isjt. For this state transition sequence to be implementable via a blockchain

payment channel the parties would need collateral that spans the maximum possible balance due

to either party. Setting

c = maxfj �min
1� � j; j

�max
1� � jg

where�min is the largest possible transfer from the agent and�min is the largest possible transfer
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from the insurer would be sufficient.

Trade

Consider next a repeated version of the Gans (2019) setting, e.g., the parties do a maximum of

T trades. Assume that if a party reneges on the contracted outcome (S sends the good with value

V andB pays priceP ) the relationship is terminated. In that case, as argued in Section 4.2, a

payment channel with collateral

c = TP + 2F

can support the required state transitions:

(0; 0)! (�P; P )! :::! (�TP; TP )

The additional collateral2F is needed in case of a deviation (see Section 4.2 for details).

Debt contract

A payment channel can be also used to set up a simpledebt contract(one-period loan). Suppose

a lenderA and a borrowerB wish to enter a blockchain-based loan contract to provideB with funds

l for a fixed term (e.g., one year) at interest rater. As assumed throughout this paper, suppose that

no external enforcement is possible. That is, the contract must be implementable solely via the

blockchain algorithmic tools and constraints. This implies that in order forA to be certain that she

will be repaid(1 + r)l, the minimum fundsc thatB must post in the collateral transaction�c must

satisfy:

b0 = c � (1 + r)l.

Suppose also thatA providesa0 in �c where assume thata0 > l, i.e.,A has enough funds to

enable the loan. Disbursing the loan can be then written as the following state transition, where the

output/fundsl are immediately redeemable byB (locked bykb)

(a0; b0)! (a0 � l; b0 + l)

If the loan is repaid as intended (i.e.,B repays(1 + r)l toA), the following state is reached at the

end of the loan term:

(a0 + rl; b0).

Essentially,A gains the interestrl whileB recoups his collateral funds.

If insteadB fails to repay within the specified time, the following alternative state is reached
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in whichA effectively seizes part ofB’s collateral:

(a0 + rl; b0 � (1 + r)l)

An actual real-world example is MakerDAO’s borrowing facility implemented on the Ethereum

blockchain. A user can lock Ethereum cryptocurrency (ETH) as collateral and receive a DAI (to-

ken) denominated loan at a minimum 1.5-to-1 collateral-loan ratio ($150 worth of ETH gives $100

worth of DAI). If the loan is returned the collateral is released; if not, the collateral is liquidated.

To do: suppose the amount of collateral is constrained in the above settings, what is the best

outcome that can be supported?

5.3 Multi-party transactions

The basic idea of bilateral state transitions described above can be extended to transactions in-

volving more than two parties (an example is the Lightning Network in Bitcoin). Essentially, if

a path of bilateral collateralized payment channels can be constructed between any two nodesC

andD, these two nodes can make transfers to each other, even if they do not have a direct channel

between them. The maximum possible transfer is determined by the ‘weakest link’, that is, the

bilateral channel with the lowest collateral on the path.

In the blockchain setting, relying only on internal enforcement via algorithmic constrains and

cryptographic tools, the main challenge of such transfers hopping over anonymous nodes is how

to guarantee that each node will pass the funds forward andprove that it has done so. Notably,

each intermediate node betweenC andD should not be able to unlock the funds (because it can

expropriate them and the senderC has no recourse).

A way to solve this limited enforcement problem is to use atimelocked redeemable secret

(TRS)locking script,H(�) (called HTLC in Bitcoin). HereH(�) is the hash function of a secret

statement�. A hash functions is a mathematical function that is easy to compute/verify (it is easy

to computeH(�) when one knows�) but nearly impossible to invert, that is, one cannot find�

from knowingH(�). When the payment is agreed upon, the intended recipientD creates the

secret� and sends its hashH(�) (but not� itself!) to the senderC. The senderC then creates

a transaction with output fundsF locked by the TRS scriptl1 = H(�) _ (kC ; T 1) and passes it

to the first intermediate node,I1 on the chain betweenC andD. HereC is assumed to have an

established collateralized payment channel withI1. Note that nodeI1 cannot redeem the fundsF

(sinceI1 does not know the secret� needed to supplyH(�)) but she can be incentivized (by means

of a small fee added toF ) to pass the TRS-locked fundsF along to another node,I2 with whom

I1 has an established collateralized channel and locked by the scriptl2 = H(�) _ (kI1 ; T 2) with
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T 2 < T 1, and so on. The pathI1; I2; ::: is constructed algorithmically. The role of the timelocks

T i is to ensure that each sender along the chain would be able to get their funds back in case the

secret is never provided byD.

What happens whenD is finally reached, e.g., from some nodeIn? D knows the secret state-

ment� and so she claims the outputF by debiting it from its state balance withIn. ClaimingF

algorithmically sends the secret� to In who claimsF from her state balance withIn�1 and so on,

until we reachC. The end result of this chain of bilateral state transitions is a transfer ofF from

C toD as intended. Note that no additional use of the blockchain is required in the process, except

as collateral for the pre-existing bilateral channels on the path.

6 Blockchain-enabled financial contracts

In this section I explore more generally how a wide range of mechanism designs problems can be

implemented via blockchain technology and smart contracts. Unlike in the previous sections, I do

not describe in micro-level detail the blockchain algorithmic tools and constraints, but treat them

as available in the background, using the implementations in Section 5. Instead, here I focus on

the role that blockchain accounts and information can play in implementing (constrained-) opti-

mal allocations of contracts in settings with exogenously and endogenously incomplete financial

markets. The role of blockchain-based collateral is also taken as given. Namely, it is assumed that

sufficient collateral can be posted to implement the required transfers (for example, via a payment

channel implementation).

Consider agentsi = 1; :::N who transact via a blockchain network. Each agenti has two

accounts, an expenditure account with balanceait and a ‘token’ account enabled by a smart con-

tract with balancewit. The token account will be used to record various history-dependent state

variables, possibly non-monetary, (e.g., ‘promised utility’, credit rating or debt level). Focus on

transactions� ijt that transfer funds from accounti to accountj.

The recorded history (blockchain data)T up to timeT consists of all transactions�T �
f� ijt gij;t and (possibly) commonly agreed external states,et (e.g., date, GDP, weather, aggregate

shock) fort = 1; ::; T � 1. Account balancesait andwit, summarized in the vectorsAt andWt, can

be constructed from the transactions data going back tot = 0 (as in Bitcoin) or derived from the

blockchain (as in Ethereum). Define the blockchain state at timet as�t � fAt;Wt; etg. Using

superscripts to denote history up toT , all public blockchain data arehT = [�T ;�T ].

A financialsmart contract (SC)with initial datet1 and end datet2 among agentsJ � f1; ::Ng
is defined as the mapping

�(J ; t1; t2) : �! T
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from (a subset of) the blockchain state�t to a matrix of contractual transactions (transfers)Tt,
8t 2 [t1; t2]. The smart contract terms can be contingent on both past and future events (e.g.,

ait1 > 5, et2 = 3). Once initiated, the contract is automatically executed and cannot be modified

or terminated unless a stopping condition is pre-specified. Transactions are valid if the transacted

amount is available and its ownership is successfully verified or invalid otherwise.

Below I focus onbilateral financial smart contracts, defined as state-contingent transactions

T between four blockchain accounts:

(1) node 1’s expenditure account

(2) node 2’s expenditure account (this could be an insurer or lender)

(3) an escrow account (node 3)

(4) a ‘token’ account (transactions will be denoted� 11)

The smart contract solves the expected-payoff maximization problem,

max
T (s)

EU(T (s))

s.t. T (s) 2 �(s)

where the state variables is (a subset of) the current blockchain state� andU is a payoff function.

The feasible set�(s) imposes restrictions on the transactionsT (s) (see examples below) such as:

state transition, exogenous financial constraints (e.g., borrowing limit), promise keeping, incentive-

compatibility constraints, or truth-telling constraints. Both one- and multi-period smart contracts

(using dynamic programming, by definingU(T (s)) = u(�(s)) + �V (s0) whereu is the current

payoff,s0 is the next-period state, andV (s0) is the next-period value) can be modeled.

Example A (one-period debt)

An agent with preferences over consumptionu(c) uses technologyf(k) that maps working

capitalk into stochastic outputy 2 fy1; ::; y#Y g. Here the only state variable is the output realiza-

tion, s = e = y. The agent has no assets and must borrow the working capitalk. Node 1 is the

borrower’s account and node 2 is the lender’s account. A one-period debt contract with interest

r > 0 solves the following problem:

max
�21

Eu(f(� 21)� � 12)

s.t. � 12 = (1 + r)� 21

where� 21 is the loan size and� 12 = (1 + r)� 21 is the repayment. Involuntary default, when

� 12 > y, can be incorporated by adjusting the interest rate� 12=� 21 accordingly. Strategic default

can be addressed by using the escrow account.
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Example B (moral hazard)

Consider a risk-neutral insurer and a risk-averse agent with preferencesu(c; z) wherec is con-

sumption andz is costly effort unobserved by the insurer. The agent has positive stochastic income

y 2 fy1; ::; y#Y g that is i.i.d. over time andP (yjjz) denotes the probability of realizing incomeyj
given effortz. Income is assumed observable and recorded in the public statee, so heres � (w; y).
The constrained-optimal allocation can be implemented as smart contract by using the token ac-

count to store promised utilityw which encodes income history. In the beginning of each period,

given the contractT (s), the agent chooses effortz. Next, incomey is realized and remitted to the

insurer as� 12(s). Then the smart contract transfers� 21(s) to the agent’s expenditure account (con-

sumption) and� 11(s) to the agent’s token account. The constraints�(s) include� 12(w; yl) = yl

for all w, the incentive-compatibility constraint:

Ez[u(�
21(s); z) + �(w + � 11(s))] � Eẑ(u(� 21(s); ẑ) + �(w + � 11(s))) for all ẑ 6= z

and a promise keeping constraint,

E(u(� 21(s); z) + �(w + � 11(s))) = w

Example C(hidden income)

The infinite-horizon version of Townsend (1982)’s hidden income problem can be implemented

via a token account for promised utility. Consider a risk-averse agent and preferencesu(ct) where

ct is consumption and a risk-neutral insurer. The agent’s income streamfytg is i.i.d. over time

andy can take valuesy1; ::y#Y . The agent’s income is unobserved by the insurer. The risk-sharing

problem can be written as the following dynamic program using the agent’s promised utilityw as

state variable that encodes the history of output realizations.

�(w) = max
fT g

E(�� 21j + ��(w + � 11j ))

s.t. u(yj + �
21
j ) + �(w + �

11
j ) � u(yj + � 21l ) + �(w + � 11l ) for anyj; l = 1; ::#Y

E(u(yj + �
21
j ) + �(w + �

11
j )) = w

where the first constraint is the truth-telling constraint (incomeyj is realized but the agent considers

reportingyl) and the second constraint is the promise-keeping constraint. The initial promised

utility (token balance)w0 can be chosen to give zero ex-ante profits to the insurer or satisfy an

ex-ante participation constraint for the agent.

Collateral and/or credit rating can be incorporated too (e.g., if short-term debt contracts are
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used), by using an ‘escrow’ blockchain account. For example, consider adefaultable debtsetting

between a borrower, node 1 and a lender, node 2. Let 1 have initial assetsb � 0 and balance

w in his ‘token account’ (e.g., credit rating). The borrower puts� 13 2 [0; b] as collateral into the

escrow account (node 3). The contract then releases loan size� 21(� 13; w; e) and requests repayment

(principal plus interest)̂� 12(� 21; w; e) wheree is a verifiable external state (e.g., the central bank

reference rate). At the end of the period the agent decides to repay� 12. If � 12 = �̂ 12 (the agent

repays the contracted amount) then the loan is deemed repaid in full, the agent’s token account

(credit rating) is updated tow + � 11, and the collateral in the escrow account is returned to the

agent,� 31 = � 13.

If instead the agent defaults, that is,� 12 = 0 (partial default can be incorporated too), the lender

receives the collateral, from the escrow account via transaction� 32 = � 13 and the agent’s token

account is updated (his credit rating is ‘downgraded’) tow+ ~� 11. It may also be possible to distin-

guish between strategic and involuntary default by recording the appropriate information (e.g., on

agent’s income or business profits) to the blockchain. Aggregate shocks can be incorporated in the

external statee.

Possible extensions:endogenous choice of what information to record on the blockchain; in-

centives for blockchain vs. off-blockchain transactions

7 Conclusions

I describe how key economic concepts underlying (financial) contracts – property rights, infor-

mation, commitment, enforcement relate to and can be implemented with the building blocks of

blockchain technology – transactions and full history thereof, simple and multisig locking scripts,

signatures and timelocks. Blockchain technology excels at recording, securing (locking) and dig-

ital verification (unlocking) of funds ownership and other information. Its main limitation is the

need for collateral – any promised future payments must be fully backed and secured. Multisig

or more complex locking scripts and timelocks can be used to enable promised payments, based

on posted collateral funds. While the need for blockchain collateral appears a costly limitation, I

discuss how the collateral can be leveraged to back multiple off-blockchain transactions (e.g., via

payment channels). This saves on blockchain transaction fees and waiting time costs.

The main takeaways are as follows. Blockchains and smart contracts are not a ‘silver bullet’

that can automatically implement any complicated mechanism design solution. Their usefulness

is limited by the algorithmic tools and constraints on which the computer code is based. En-

forcement of blockchain-based (smart) contracts has to be secured by posting collateral. Private

information (adverse selection or moral hazard related to off-chain unobserved characteristics or
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actions) and limited enforcement may be still present and cause inefficiency. Subject to these

caveats blockchain-enabled contracts can indeed be used to implement constrained optima and

automate very complex mechanism design solutions.

My main goal in this paper was to distill or break down some of the main blockchain technology

and smart contract ingredients to their most essential building blocks (not simply use ‘blockchain’

or ‘smart contract’ as catchall phrases). Economic theory could inform computer programmers

what new algorithmic tools to include in future blockchain implementations or improvements (for

instance, ready-made basic financial contracts). Combining the history and information verifiabil-

ity, proof of ownership and security functions of blockchains with trust, commitment and enforce-

ment mechanisms (possibly including trusted third parties) can be beneficial for bringing abstract

mechanism design theory and constructs into reality while saving on collateral and transaction

costs.
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Figure 1: Multi-period Risk Sharing – Townsend (1982)
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Figure 2: Multi-period risk sharing – constrained allocations
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