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Abstract

We prove a new identification theorem showing nonparametric identification of the joint

distribution of random coefficients in general nonlinear and additive models. This differs

from existing random coefficients models by not imposing a linear index structure for the

regressors. We then model unobserved preference heterogeneity in consumer demand as

utility functions with random Barten scales. These Barten scales appear as random coeffi-

cients in nonlinear demand equations. Using Canadian data, we compare estimated energy

demand functions with and without random Barten scales. We find that unobserved prefer-

ence heterogeneity substantially affects the estimated consumer surplus costs of an energy

tax.
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1 Introduction

For discretely demanded goods, unobserved preference heterogeneity is typically modeled us-

ing random coefficients, as in Berry, Levinsohn, and Pakes (BLP 1995). In this paper we pro-

pose an analogous way to introduce unobserved preference heterogeneity in nonlinear continu-

ous demand systems. This includes a new identification theorem showing how the joint distrib-

ution of random coefficients in general nonlinear and additive models can be nonparametrically

identified. This is in sharp contrast to almost all existing random coefficients theorems, which,

like BLP, assume a linear index structure for the regressors.
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The application we consider is energy demand by consumers. Energy is consumed in con-

tinuous quantities and displays substantial nonlinearities in income and price effects. Therefore,

energy cannot be appropriately modeled using discrete demand methods like BLP, and instead

requires the methodology of continuous demand systems.

We demonstrate the importance of accounting for random coefficient type unobserved pref-

erence heterogeneity in energy demand. In particular, we show that failure to do so results in

a dramatic underestimate of the variance of impacts of energy price changes across consumers.

Moreover, we find that this variation in energy price elasticities is particularly large among

poorer households. Accounting for this variation is crucial for correctly assessing the true costs

to society of energy policies such as a carbon tax. We show that measures of social welfare

that ignore this unobserved preference heterogeneity yield substantially biased estimates of the

full costs to society of an energy tax on consumers, by failing to fully account for the tax’s

distributional impacts.

One of the most commonly used methods for incorporating observable sources of preference

heterogeneity (such as the impacts of age or family size) in continuous demand systems is

via Barten (1964) scales. Barten scales deflate the prices faced by consumers, and so have a

structure that is equivalent to random coefficients on prices, in that they multiply each price

in the demand system. This suggests that a natural way to introduce unobserved preference

heterogeneity into continuous demand systems is to allow random variation in the Barten scales

via random coefficients on prices. We call these, "random Barten scales."

Allowing for random Barten scales introduces a substantial econometric difficulty because,

unlike discrete demand models such as multinomial logit, realistic continuous demand models

are highly nonlinear in prices, due to constraints like Slutsky symmetry. We therefore require

a general type of random coefficients that can be identified and estimated in nonlinear, or even

nonparametrically specified, demand functions. We define "generalized random coefficients" to

be random coefficients applied to variables in a general nonlinear or nonparametric model, in

contrast to ordinary random coefficients that are applied in linear index models. In our demand

application, generalized random coefficients on prices are the random Barten scales.

In this paper we first provide some identification theorems, showing that the joint distri-

bution of random coefficients can be nonparametrically identified in nonlinear, and in addi-

tive nonparametric, regression models. We then apply these results to identification of random

Barten scales in demand systems. This application includes proving a new theorem that non-

parametrically characterizes the preferences associated with demand functions having a certain

additive structure.

Based on these identification theorems, we estimate energy demand functions for a set of

Canadian consumers. To illustrate the importance of allowing for unobserved heterogeneity

in Barten scales, we evaluate the (partial equilibrium) impacts of a hypothetical tax on energy

goods, like a carbon tax. Among other results, we find that allowing for unobserved preference

heterogeneity has a large impact on the estimated distribution of the relative costs (consumer

surplus impacts) of the tax. For example, we find that this distribution across consumers has

a standard deviation that is more than twice as large in our model compared to an analogous

model that does not allow for such unobserved preference heterogeneity.

Consider first our proposed generalization of random coefficients models. Suppose an ob-

served variable Y depends on a vector of observed regressors X = (X1, ..., XK ), and on a set
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of unobserved errors U0,U1, ...,UK that are (possibly after conditioning on other covariates Z )

independent of X . We propose a generalized random coefficients model given by

Y = G (X1U1, ..., XK UK ) or Y = G (X1U1, ..., XK UK )+U0 (1)

for some function G. We focus mainly on results for the special case of equation (1) where G

takes the additive model form

Y =
∑K

k=1
Gk (XkUk)+U0 (2)

and the functions G1, ...,GK are unknown.

In these models the vector U = (U1, ...,UK ) represents unobserved heterogeneity in the

dependence of Y on X , while U0, if present, represents measurement error or other independent

variation in Y . We provide conditions under which the joint distribution of the vector U is

nonparametrically identified. If present, U0 is assumed independent of these other errors and

has a marginal distribution that is also nonparametrically identified.

In our empirical application, Y will be a measure of energy demanded by a consumer, G

will be a Marshallian demand function, each Xk will be the price of a good k divided by a

consumer’s total expenditures, and each Uk (other than U0) will be a random Barten scale.

All previous empirical implementations of Barten scales have exactly these forms, but with

every Uk other than U0 specified as deterministic functions of observable characteristics that

affect preferences, such as age or family size. In contrast, we allow the Barten scales to be

random, depending on both observable and unobservable characteristics. We show that the

joint distribution of these random Barten scales can be nonparametrically identified, under low

level regularity conditions.

One of our identification theorems shows that if G is known, then under some conditions

the joint distribution of the elements of U is nonparametrically identified. We also provide a

theorem giving conditions under which, in equation (2), each function Gk can be nonparametri-

cally identified. Combining both theorems then allows us to simultaneously nonparametrically

identify the joint distribution of U and nonparametrically identify each Gk function. Combining

both theorems also provides additional restrictions that we argue might be exploited to further

generalize the model (specifically, by possibly relaxing the additivity assumption with some

interaction terms).

Imposing the additivity of equation (2) directly on Marshallian demand functions yields

some implausible restrictions on preferences. However, we show that, when K = 2, these re-

strictions can be relaxed by suitably transforming Y . In particular, we prove a theorem showing

that when K = 2, if Y is defined as a logit transformed budget share, then demands will take

the additive form implied by equation (2) if and only if indirect utility has a correspondingly

additive form. This theorem also provides closed form expressions for the indirect utility func-

tion corresponding to nonparametrically specified demand functions that are additive in this

way. These closed form expressions greatly simplify our later consumer surplus and welfare

calculations.

We first provide a literature review on the econometric identification of models containing

random coefficients and on the modeling of preference heterogeneity in continuous demand
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systems. We then present our main identification theorems, followed by our theorem character-

izing the nonparametric connection between preferences and logit transformed demands. We

next provide our empirical implementation of the random Barten scales model, including con-

sumer surplus calculations on the hypothetical impacts of a large increase in the price of, or

taxes on, energy goods. We then list some conclusions. One important finding is that an energy

tax may impact inequality and welfare through a previously unrecognized channel, which is the

variation in consumer surplus effects for households that have the same observed budgets and

characteristics. We find that this variation is particularly large for poor households.

Following the conclusions is an appendix that contains proofs of Theorems. We also have

an online supplemental appendix. The online supplemental appendix contains an extensive

set of additional empirical analyses verifying the robustness of our estimated results to a wide

variety of alternative model specifications, including adding complexity to the utility function

specification, relaxing the parametric structure on preference and error distributions, and dealing

with potential endogeneity of regressors. The online supplemental appendix also includes a

Monte Carlo analysis of our estimated model, and contains some additional technical results of

lesser importance.

2 Literature Review

We use generalized random coefficients to represent price scales in consumer demand models.

There is a long history of using such scales to empirically model observed sources of preference

heterogeneity. See, e.g., Rothbarth (1943), Prais and Houthakker (1955), Barten (1964), Pollak

and Wales (1981) and Jorgenson, Lau, and Stoker (1982), and see Lewbel (1997) for a survey.

Barten (1964) type price scales (hereafter: Barten scales) take the form of multiplying each

price in a demand function by a preference heterogeneity parameter, as in equation (1). It is

therefore a natural extension of this literature to include unobserved preference heterogeneity

in Barten scales.

We apply estimated demand functions and estimated Barten scale distributions to do welfare

analyses. In particular, we use a Barten scaled energy demand function to perform consumer

surplus calculations for an energy price change (as in Hausman 1981). Our consumer surplus

calculations can be interpreted as a variant of Hoderlein and Vanhems (2011), who introduce

unobserved preference heterogeneity into the Hausman model. The first of these two papers

introduced scalar preference heterogeneity into the model nonparametrically, while the latter

incorporated heterogeneity in the form of ordinary linear random coefficients. As an alternative

to modeling unobserved heterogeneity, Hausman and Newey (2014) provide bounds on average

consumer surplus.

In contrast, our model follows the prior consumer demand literature by including preference

heterogeneity in the form of Barten scales, differing from the prior demand literature in that our

Barten scales include unobserved heterogeneity (a smaller additional difference is the way we

also include an additive measurement error). We also apply our empirical results to estimate

Atkinson (1970) type social welfare functions, and thereby analyze the extent to which allowing

for unobserved preference heterogeneity affects estimated tradeoffs between mean impacts and

inequality of impacts of a tax or price change in energy.
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Other papers that introduce nonseparable unobserved preference heterogeneity in continu-

ous demand systems include Brown and Walker (1989), McFadden and Richter (1991), Lew-

bel (2001), McFadden (2005), Beckert (2006), Matzkin (2007b), Beckert and Blundell (2008),

Hoderlein and Stoye, (2014), and Kitamura and Stoye (2014). Lewbel and Pendakur (2009)

propose a continuous demand system model in which the standard separable errors equal util-

ity parameters summarizing preference heterogeneity, and do welfare calculations showing that

accounting for this unobserved heterogeneity has a substantial impact on the results. Lew-

bel and De Nadai (2011) show how preference heterogeneity can be separately identified from

measurement errors. A related empirical model to ours is Comon and Calvet (2003), who use

repeated cross sections and deconvolution to identify a distribution of unobserved heterogeneity

in income effects.

Nonparametric identification and estimation of ordinary random coefficients models is con-

sidered by Beran and Hall (1992), Beran, Feuerverger, and Hall (1996) and Hoderlein, Kleme-

lae, and Mammen (2010). Recent generalizations include linear simultaneous systems of ran-

dom coefficients, including Masten (2015) and Hoderlein, Holzmann, and Meister (2015), ran-

dom coefficient linear index models in binary choice, e.g., Ichimura and Thompson (1998),

Gautier and Kitamura (2010), and semiparametric extensions of McFadden (1974) and Berry,

Levinsohn, and Pakes (1995) type models, e.g., Berry and Haile (2009).

Ordinary random coefficients are the special case of the additive model in equation (2)

in which each Gk is the identity function. Additive models are a common generalization of

linear models; see, Hastie and Tibshirani (1990), Linton (2000), and Wood (2006), and in the

particular applications of additivity to consumer demand systems include Gorman (1976) and

Blackorby, Primont, and Russell (1978).

This paper also contributes to the literature on estimation of models with nonseparable er-

rors, in particular where those errors arise from structural heterogeneity parameters such as

random utility parameters. Older examples of such models include Heckman and Singer (1984)

and Lewbel (2001). More recent work focusing on general identification and estimation results

include Chesher (2003), Altonji and Matzkin (2005), Hoderlein, and Mammen (2007), Matzkin

(2007a, 2008), and Imbens and Newey (2009).

Fox and Gandhi (2013) provide general conditions for identification of random utility para-

meters in multinomial choice problems, including linear index models with random coefficients,

and models analogous to Berry and Haile (2009) that exploit Lewbel (2000) type special re-

gressors. They note that the only general sufficient condition known for one of their identifying

assumptions is utility functions that are real analytic functions.

A related result to ours is Hoderlein, Nesheim, and Simoni (2011), who provide a high

level condition they call T -completeness that suffices for nonparametric identification of a vec-

tor of random parameters within a known function. They provide some examples where T -

completeness can be shown to hold, such as when error distributions are in the exponential

family, or are parameterizable by a single scalar. Our model when G is known is a special case

of their general setup, and so our theorem proving identification for this model provides a new

framework where T -completeness could be satisfied. More generally, one goal of our analysis

is to provide relatively low level conditions that serve to identify our model, instead of high

level, difficult to verify conditions as in Fox and Gandhi (2013), or like T -completeness.

Perhaps the result that comes closest to our identification theorem is Matzkin (2003), which

5



in an appendix describes sufficient conditions for identification of a general class of additive

models with unobserved heterogeneity. The biggest difference between our results and Matzkin

(2003) is that we identify the joint distribution of U , while Matzkin assumes the elements of U

are mutually independent. However, even our model when K = 1 (the case where there is no

joint distribution to be identified) does not satisfy her identification assumptions and so even in

that case our Theorem is new and cannot be derived from her results. Our online supplemental

appendix contains details regarding these differences.

3 Generalized Random Coefficient Model Identification

In this section we first provide, in Theorem 1, assumptions under which the joint distribution

of random coefficients can be identified in the general model of equation (1) when G is known.

We then provide, in Theorem 2, separate assumptions under which each function Gk (and the

marginal distributions of each random coefficient Uk) can be identified in additive models given

by equation (2). We then combine both theorems to nonparametrically identify both the joint

distribution of random coefficients and the functions Gk .

Later sections provide the connections between these theorems and our Barten scales model

of demand. However, we note upfront that in our empirical application X is positive (though

not bounded away from zero), so it is relevant that our identification theorems allow for zero

being on the boundary of the closure of the support of X .

3.1 Identification of the Distribution of Generalized Random Coefficients

Let Ỹ be a dependent variable, X is a vector of covariates (X1, ..., XK ) which will have ran-

dom coefficients (U1, ..., .UK ). Let Z be a vector of additional covariates that may affect the

distribution of these random coefficients. For now think of Ỹ as being observable along with X

and Z , although later we will generalize to having the dependent variable be Y = Ỹ +U0. For

any random vectors A and B let FA|B (a | b) and fA|B (a | b) denote the conditional cumulative

distribution function and conditional probability density function, respectively, of A given B.

ASSUMPTION A1: The conditional distribution FỸ |X,Z (ỹ | x, z) and the marginal distri-

bution FZ (z) are identified. Ỹ = G (X1U1, ..., XK UK ) for some continuous function G and

some unobserved random coefficients U = (U1, ..., .UK ), where U ⊥ X | Z .

Assumption A1 first assumes identification of the distributions of observables, which would

in general follow from a sample of observations of Ỹ , X, Z with sample size going to infin-

ity. We will first consider identification of FU |Z (U | Z), the joint distribution of the random

coefficients (conditional on Z ), assuming the function G is known. Later we will provide non-

parametric identification for a class of G functions. Standard random coefficients is the special

case in which the known function G is just the sum of the XkUk terms.

In our empirical application, the random coefficients Uk will represent unobserved taste

heterogeneity, and Z could then be a vector of observable characteristics that also affect tastes.

Another possible role for Z is to serve as control function residuals, which then allows the
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random coefficients Uk to be unconditionally correlated with X , so elements of X can be

endogenous. See, e.g., the correlated random coefficients model of Heckman and Vytlacil

(1998). This allows for Heckman and Robb (1986) control function type endogeneity, with

Z being control function residuals as in Blundell and Powell (2003, 2004). In particular, if

Xk = hk

(
X(k), Q

)
+ Zk for some observed instrument vector Q and some identified function

hk (typically hk would be E
(
Xk | X(k), Q

)
), then the conditional independence assumptions in

A1 correspond to standard control function assumptions.

The vector Z can be empty, so all the results we provide will hold if there is no Z , in

which case U is independent of X and so the regressors X are exogenous. The assumptions

also permit Z to be discrete, and place no restriction on the dimension of Z , although control

function residuals would generally be continuous and have dimension equal to the number of

endogenous elements of X .

ASSUMPTION A2: The distribution of
(
U−1

1 , ...,U−1
K | Z

)
is identified from its integer

moments. supp (X) is rectangular, supp (X | Z) = supp (X), and the closure of supp (X | Z)
equals the closure of supp (U1 X1, ...,UK XK | Z ,U )

We will identify FU |Z by identifying moments of the distribution of
(
U−1

1 , ...,U−1
K | Z

)
.

Necessary and sufficient conditions for integer moments to identify a distribution are known,

and are weaker than the conditions needed for existence of a moment generating function. See,

e.g., Assumption 7 of Fox, Kim, Ryan, and Bajari (2012). In our empirical application it will be

reasonable to assume that each Uk is bounded and bounded away from zero, which is sufficient

and stronger than necessary.

Given U ⊥ X | Z , the support condition in Assumption A2 could be satisfied in a few

different ways. In particular, the support condition holds if the closure of supp (X | Z) = RK
+

and supp (U | Z) ⊆ RK
+ , or if supp (X | Z) = RK and U has any support that excludes the

origin. In our application we satisfy the first of these conditions by assuming X (prices scaled

by total expenditures) can take on any positive value and by noting that Barten scales U must

be positive.

Let t = (t1, ..., tK ) denote a K vector of positive integers. For a given function h and vector

t , define κ t by

κ t =

∫
supp(X)

h [G (s1, ...sK ) , t] s
t1−1
1 s

t2−1
2 ...stK−1

K ds1ds2...dsK (3)

ASSUMPTION A3: Given G, for any K vector of positive integers t we can find a continu-

ous function h such that
∫

supp(X) |h [G (s1, ...sK ) , t] s
t1−1
1 s

t2−1
2 ...stK−1

K |ds1ds2...dsK exists, the

integral defining κ t is convergent, and κ t 6= 0.

Assumption A3 assumes integrability of the function being integrated in equation (3), and

requires that the integral is finite and nonzero. This assumption imposes restrictions on G,

but these restrictions are mitigated by the fact that the function h is freely chosen, based on

knowing both G and t . The classes of general G functions that satisfy Assumption A3 are

difficult to characterize, so Lemma 1 below provides a sufficient condition that is relevant for

our application.
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LEMMA 1: Assume supp (X) = RK
+ , G (X1, ...XK ) =

∑K
k=1 Gk (Xk), and there exist

positive constants c1, ..., cK such that Gk (Xk) ≥ ck Xk for k = 1, ..., K . Then Assumption A3

holds.

Proofs are in the appendix. Assumption A3 is most readily satisfied by taking h to be a

positive function that is thin tailed in its first argument, as in the proof of Lemma 1 where h

as a function of G is the exponential density function. As is also illustrated by Lemma 1, the

function h is not required to depend on t , but it is allowed to do so.

There are examples of G functions for which identification of the joint distribution of U1

and U2 is clearly not possible. An example is G (X1, X2) = ln (X1)+ ln (X2), since in this case

U1 and U2 appear only in the form ln (U1) + ln (U2) with no way to separately identify each.

Lemma 2 in the appendix proves that this function violates Assumption A3, so the assumed

existence of a function h does limit the class of allowable G functions.

THEOREM 1: Let Assumptions A1, A2, and A3 hold. If the function G is known or

identified, then the joint distribution function FU |Z (U1,...,UK | Z) is identified.

The proof is in the appendix. To provide an idea of how Theorem 1 works, consider the case

of K = 1 and observe that, by a change of variables argument, E
(∫

h (G (U X)) X t−1d X
)
=

E
(∫

h (G (s)) st−1U−tds
)
. The left side of this equation can be estimated, while the right

equals a known function times E
(
U−t

)
. We can in this way identify any moment of U−1 and

thereby identify the distribution of U .

Providing some more detail, define λt (Z) by

λt (Z) =

∫
X∈supp(X)

E
[
h
(
Ỹ , t

)
| X1, X2...XK , Z

]
X

t1−1
1 X

t2−1
2 ...X tK−1

K d X1d X2...d XK (4)

λt (Z) is an integral of a known conditional expectation, and so is identified. The proof of The-

orem 1 works by showing that the moment E

(
U
−t1
1 U

−t2
2 ...U−tK

K | Z

)
is identified by equaling

the ratio of identified objects λt (Z) /κ t . Identification of these moments for any K vector of

integers t then implies identification of the distribution of U−1
1 U−1

2 ...U−1
K | Z by Assumption

A2, and hence identification of FU |Z (U1,...,UK | Z). We could have instead tried to directly

identify FU |Z by working with negative values of t , but Assumption A3 would then be more

difficult to satisfy than with positive integers t . More speculatively, we might instead try to iden-

tify the characteristic function of FU |Z by replacing t with the square root of minus one times

t for real vectors t , but in that case dealing with boundary issues associated with the change of

variables step in the proof becomes more complicated.

A special case of Theorem 1 is when G (s1, ...sK ) = s1 + ... + sK , corresponding to the

standard linear random coefficients model. Nonparametric identification of the linear model

under varying conditions is established by Beran and Hall (1992), Beran and Millar (1994),

Beran, Feuerverger, and Hall (1996), and Hoderlein, Klemelae, and Mammen (2010), using

assumptions and methods that differ substantially from Theorem 1. The latter authors give

key sufficient identifying assumptions in the linear model as being U independent of X as we

assumed, and that the distribution of U have square integrable derivatives of sufficiently high

order. Generally, identification of the distribution linear random coefficients has been based on
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either assuming large support for X or assuming thin tails for U , (see, e.g., Masten 2013 for a

summary), while Theorem 1 for a general G function requires both support and tail restrictions

as in Assumption A2. The linear G model automatically satisfies our Assumption A3 by being

a special case of Lemma 1.

Although Theorem 1 imposes large support restrictions on the regressors, it does not depend

on identification at infinity or other types of "thin set" identification arguments (see Khan and

Tamer 2011). The support restrictions in Theorem 1 are only used to ensure that boundary terms

equal zero in the change of variables step in the proof of the Theorem.

3.2 Additive Model Identification

Theorem 1 identified the joint distribution FU |Z (U1,...,UK | Z), assuming the function G is

identified. We now provide a theorem that shows nonparametric identification for a class of G

functions. We will then combine both Theorems. Some assumptions of Theorem 2 duplicate

those of Theorem 1; we write the assumptions this way so that each Theorem can stand alone.

Let ek be the K vector containing a one in position k and zeros everywhere else. Let X(k) denote

the K − 1 vector that contains all the elements of X except for Xk .

ASSUMPTION A4: The conditional distribution FỸ |X,Z (y | x, z) and the marginal distrib-

ution FZ (z) are identified. Y =
∑K

k=1 Gk (XkUk) + U0 for some unknown functions Gk and

some unobserved random coefficients U0 and U = (U1, ..., .UK ), where (U0,U1, ...,UK ) ⊥
X | Z and U ⊥ U0 | Z . Either U0 has a nonvanishing characteristic function (conditional on

Z )1 or U0 is identically zero. supp (U0) ⊆ supp (Y ).

ASSUMPTION A5: For k ∈ {1, ..., K }, (Uk, Xk) | Z is continuously distributed, and for

every r ∈ supp (XkUk) there exists an xk ∈ supp (Xk) such that fUk

(
x−1

k r

)
6= 0. X has

rectangular support and {0, e1, ..., eK } is a subset of the closure of supp (X).

ASSUMPTION A6: For k ∈ {1, ..., K }, Gk is a strictly monotonically increasing, differen-

tiable function. The location and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some

known y0 ∈ supp (Y ) are imposed.

As before, Assumption A4 first assumes identification of FY |X,Z (y | x, z) and FZ (z), which

would in general follow from a sample of observations of Y, X, Z with sample size going to

infinity. Identification of FY |X,Z (y | x, z) is actually stronger than necessary for Theorem 1,

since only certain features of this distribution are used in the proof. For example, it would suffice

to only identify FY |X,Z (y | xkek, z) for k = 1, ..., K . Assumption A4 also imposes conditional

independence and support requirements on U , X and Z . These are standard assumptions for

random coefficients models, except for the assumption that the additive error U0 is conditionally

independent of the other random coefficients. Beran and Hall (1992) assumed independence of

U0, but later linear G models do not impose this restriction. Although independence of U0 is a

strong assumption, we show it’s plausible in our empirical application.

1Formally, the condition on U0 regarding a nonvanishing characteristic function required for the deconvolution

step of the proof is only that the set of t ∈ R for which E
(
ei tU0

)
6= 0 is dense in R. See, e.g., Meister (2005).
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Assumption A5 assumes that the regressors and random coefficients are continuously dis-

tributed. Assumption A5 also calls for some support restrictions, but these are all much milder

than the support restrictions that were required by Theorem 1. A key feature of this assumption

is that the closure of the support of each element of X includes zero.

Assumption A6 requires each Gk function to be smooth and monotonic. This facilitates

identifying the distribution of unobservables Uk that lie inside each Gk . In our application,

economic theory will imply this monotonicity. The normalizations in Assumption A6 are all

free normalizations, that is, they are made without loss of generality. This is because, first, if

Gk (0) 6= 0 then we can redefine Gk (r) as Gk (r) − Gk (0) and redefine U0 as U0 + Gk(0),
thereby making Gk (0) = 0. Next, given a nonzero y0 ∈ supp (Y ), there must exist a nonzero

r0 such that Gk (r0) = y0. We can then redefine Uk as r0Uk and redefine Gk (r) as Gk (r/r0),
thereby making Gk (1) = y0. These particular normalizations are most convenient for proving

Theorem 2 below, though in empirical applications alternative normalizations may be more

natural, e.g., choosing location to make E (U0) = 0.

THEOREM 2: Let Assumptions A4, A5, and A6 hold. Then the functions G1,G2,...,GK

and the distributions FU0|Z , FU1|Z ,...FUK |Z are all nonparametrically identified.2

The proof is in the appendix. As noted in the literature review, Theorem 2 is similar to, but

is not a direct corollary of, results in Matzkin (2003). In an online spplemental appendix, we

summarize the ways in which Theorem 2 differs from Matzkin (2003). One obvious (though

not the only) difference is that Matzkin assumes the elements of U are mutually independent,

either conditionally or unconditionally, and we do not.

The proof of Theorem 2 depends on an identification at zero argument, i.e., thin set iden-

tification (see Khan and Tamer 2011). This is undesirable because it means that most of the

observable population distribution is not used for identification, and as a result often implies

slow rates of convergence for corresponding nonparametric estimators. However, two argu-

ments help mitigate these concerns. First, additional pieces of information can be constructed

and used for estimation or testing. For example, given a Gk and FUk |Z function identified by

Theorem 1, an additional equality that these functions satisfy for all values of x (not just in the

neighborhood of zero) is

∂E (Y | X = x, Z = z)

∂xk

=

∫
u∈supp(Uk |Z=z)

[
∂Gk (xku) /∂xk

]
d FUk |Z (u | z) (5)

Equation (5) provides additional restrictions on the Gk and FUk |Z that might be exploited for es-

timation, testing, or alternative identification arguments. The restrictions provided by equation

(5) apply over the whole support of the data, not just on a thin set.

A small extension to Theorem 2 is the following.

2The proof of Theorem 2 involves evaluating the distribution of Y given X where either X = 0 or all but

one element of X equals zero. This means conditioning on a set of measure zero. Note, however, that issues of

nonuniqueness of the limiting argument (the Borel-Kolmogorov paradox) do not arise here, since the identification

proof depends only on transformations of smooth conditional density and expectation functions. It would be

possible to recast the proofs in terms of conditioning on sets ‖ X ‖ ≤ c and taking limits as c→ 0.
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COROLLARY 1: Let Y = G (X1U1, ..., XK UK ) + U0 for any function G that includes

XkUkek in its domain, for k = 1, ..., K . Then

i) There exists functions G1, ...,GK , and G̃ such that

Y = G̃ (X1U1, ..., XK UK )+
∑K

k=1
Gk (XkUk)+U0 (6)

where the function G̃ (X1U1, ..., XK UK ) equals zero when all but one of its elements equal

zero, and

ii). Theorem 2 holds replacing Y =
∑K

k=1 Gk (XkUk)+U0 in Assumption A4 with equation

(6).

In Corollary 1, the function G̃ is not identified, so the main points of this corollary are first

that any function G can be decomposed into an additive part
∑K

k=1 Gk and an interactions part

G̃, and second that the presence of the interaction function G̃ does not interfere with identifi-

cation of the Gk and FUk |Z functions using Theorem 2. Corollary 1 would then be useful in

contexts where G̃ is known or can be identified by other means.

3.3 Full Model Identification

Here we combine Theorems 1 and 2 to identify all the unknown functions in equation (2).

COROLLARY 2: Let Y =
∑K

k=1 Gk (XkUk)+U0 and let G (X1U1, ..., XK UK ) =
∑K

k=1 Gk (XkUk).
Let Assumptions A1, A2, A3, A4, A5, and A6 hold. Then the functions G1,G2, ...,GK and

the joint distribution function FU |Z (U1,...,UK | Z) are identified.

Corollary 2 shows identification of the model, but also may provide additional restrictions

implied by the model that might usable either for alternative identification strategies, or to ob-

tain identification under more general conditions. In particular, both Theorems 1 and 2 identify

the functions FUk |Z for k = 1, ..., K , and so restrictions on the functions G1,G2, ...,GK and

FU1|Z , ..., FUK |Z are obtained by equating the construction of the functions FUk |Z from each

of the two theorems for each k. Equation (5) provides more such restrictions. Still more re-

strictions might be obtained by applying Theorem 2 using different h functions, and it may be

possible to use that variation to identify the Gk functions without the use of Theorem 2 at all.

Similarly, the additional equations that are obtainable using multiple h functions might also be

used to identify richer models, such as those containing interaction terms like the function G̃ in

Corollary 1. We defer discussion of these conjectures to the online supplemental appendix.

Theorems 1 and 2, and hence our model identification result of Corollary 2, is constructive.

However, designing an estimator based on mimicing the steps of these identification arguments

would likely be both inefficient and difficult to implement. Inefficiency is likely because Theo-

rem 2 uses thin set identification, and Theorem 1 provides equations based on specific choices of

the function h, and it is hard to see how one might choose the function h to maximize efficiency.

Indeed, different h functions might be optimal for each moment and each function to be esti-

mated. Also, Theorem 1 identifies moments of U−1
1 , ...U−1

K , so an inversion would be needed

to directly obtain the distribution function of U . Finally, sequentially applying Theorem 2 to
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estimate G1,G2, ...,GK and Theorem 1 to estimate FU would ignore the additional identifying

information discussed in the previous paragraph. In our empirical application we parameterize

these unknown functions and use maximum likelihood estimation, though one could consider

extending our estimator to allow for nonparametric specification of these functions using sieve

maximum likelihood. To faciliate such an extension, we provide series expansions that could

serve as basis functions for a possible sieve estimator.

4 Barten Scales in Utility Functions

Let a "consumer" refer to an individual or household that maximizes a single well behaved

utility function. Let Qk denote the quantity purchased of a good k, and let S (Q,U ) denote

the direct utility function over the bundle of goods Q = (Q1, ..., QK ) of a consumer having

a vector of preference heterogeneity parameters U = (U1, ...,UK ). Assume S is continu-

ous, non-decreasing, twice differentiable in Q and quasi-concave in Q. Define the reference

consumer to be a consumer that has heterogeneity parameters U normalized to equal one,

and let S (Q1, ..., QK ) denote the direct utility function of a reference consumer. Each con-

sumer chooses quantities to maximize utility subject to the standard linear budget constraint∑K
k=1 Pk Qk = M where Pk is the price of good k and M is the total amount of money the con-

sumer spends on this bundle of goods. Let W ∗k = Qk Pk/M be the share of the money budget M

that is spent on good k (called the budget share of good k). Write the Marshallian budget share

functions that result from maximizing the reference utility function S subject to the budget con-

straint as W ∗k = ωk (P1/M, ..., PK /M). Let V (P1/M, ..., PK /M) denote the indirect utility

function corresponding to S, obtained by substituting Qk = ωk (P1/M, ..., PK /M)M/Pk into

S (Q1, ..., QK ) for k = 1, ..., K .

Our empirical application is based on Barten (1964) scales. Barten scales are a longstanding

method used to bring preference heterogeneity on the basis of observed variables into continu-

ous demand models. Barten scales are consequently a natural starting point for the incorporation

of random utility parameters representing unobserved preference heterogeneity. See, e.g., Lew-

bel (1997) for a survey of various types of equivalence scales in the consumer demand literature,

including Barten scales, and see Jorgenson, Lau, and Stoker (1982) for a prominent empirical

application of traditional Barten scales. Deaton and Muellbauer (1980) includes an extensive

discussion of parametric identification of Barten Scales.

Barten (1964) proposed the model in which consumers have utility functions of the form

S(Q1, .., QK ;αz1, ..., αzK ) = S (Q1/αz1, ..., QK /αzK ), where the Barten scales αz1, ..., αzK

are positive functions of observable household attributes z, such as age or family size, that

embody variation in preferences across consumers. For households with multiple members,

Barten scales can be interpreted as representing the degree to which each good is shared or

jointly consumed. The smaller the Barten scale αzk is, the greater the economies of scale to

consumption of good k within the household. This is then reflected in the demand functions,

where smaller Barten scales have the same effect on demands as lower prices. For example, if a

couple with one car rides together some of the time, then in terms of total distance each travels

by car, sharing has the same effect as making gasoline cheaper. The more they drive together

instead of alone, the lower is the effective cost of gasoline, and the smaller is the couple’s Barten

12



scale for gasoline.

More generally, Barten scales provide a measure of the degree to which different households

get utility from different goods. This is how we will employ them. Although Barten scales

have long been a popular method of modeling preference heterogeneity in empirical work, up

until now Barten scales have always been modeled as deterministic functions of observable

characteristics of consumers. Here we consider using Barten scales to embody unobserved

heterogeneity of preferences across consumers.

We propose random Barten scales, assuming that consumers have utility functions of the

form S(Q1, .., QK ;U1, ...,UK ) = S (Q1/U1, ..., QK /UK ), where U1, ...,UK are positive ran-

dom utility parameters embodying preference heterogeneity (both observed and unobserved)

across consumers. More formally, we could write each random Barten scale as Uzk (z), since

for each good k, the distribution function that Uzk is drawn from could depend on observable

household attributes z. Barten’s original model is then the special case where the distribution of

each Uzk is degenerate with a single mass point at αzk .

Define normalised prices Xk = Pk/M for each good k and rewrite the budget constraint

as
∑K

k=1 Xk Qk = 1. Now S (Q1, ..., QK ) and V (X1, ..., XK ) are the direct and indirect

utility functions of the reference consumer, and ωk (X1, ..., XK ) is the Marshallian budget

share demand function of the reference consumer. It can be immediately verified from the

first order conditions for utility maximization that a consumer will have Marshallian demand

functions of the form W ∗k = ωk (U1 X1, ...,UK XK ) for each good k if and only if the con-

sumer’s direct and indirect utility function equal, up to an arbitrary monotonic transformation,

S (Q1/U1, ..., QK /UK ) and V (U1 X1, ...,UK XK ), respectively. Also, given a specification of

reference indirect utility V (X1, ..., XK ), the corresponding Barten scaled demand functions

can be obtained by the logarithmic form of Roy’s identity:

W ∗k = ωk (U1 X1, ...,UK XK ) =
∂V (U1 X1, ...,UK XK )

∂ ln Xk

/

(∑K

`=1

∂V (U1 X1, ...,UK XK )

∂ ln X`

)
(7)

Notice that the functional form of each ωk only depends on the functional form of S or equiv-

alently of V , so U1, ...UK can vary independently of X1, ..., XK across consumers. These

derivations are exactly those given by Barten (1964) and by later authors who applied Barten

scales, e.g., Jorgenson, Lau, and Stoker (1982), except that we put unobserved random vari-

ables Uk in place of deterministic functions αhk of observed household characteristics. Random

Barten scaled Marshallian demand functions then have precisely the form of our generalized

random coefficients given in equation (1).

4.1 Indirectly Additively Separable Utility

In our empirical application, we let ω1 be the budget share of a single good of interest, energy,

and we let ω2 denote the budget share of all other goods, corresponding to the general Barten

scaled model with K = 2. This case only requires estimating a single equation for ω1, since the

equation for ω2 is automatically determined by construction as ω2 = 1−ω1. If we had K > 2,

then we would have K−1 separate equations to estimate, and we would have further restrictions

to impose because the same Barten scales, with the same joint distribution FU |Z (U1,...,UK | Z),
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would appear in each equation.

Matzkin, (2007a), (2007b), (2008) discusses identification of systems of equations where

the number of equations equals the number of random parameters, assuming it is possible to

invert the reduced form of the system to express the random parameters as functions of ob-

servables. Although our model has K Barten scales (U1, ...,UK ) and K demand equations,

Matzkin’s identification method for systems of equations cannot be applied here because there

are actually only K − 1 distinct demand functions ω1,...,ωK−1, with the remaining demand

function ωK determined by the adding up constraint that
∑K

k=1 ωk = 1. We therefore have

more random parameters than distinct equations in the system.

The decomposition of total consumption into K = 2 goods is often done in empirical work

when one wishes to focus on the welfare effects of a price change on a particular good, as we will

do empirically. See, e.g., Hausman (1981), Hausman and Newey (1995), Blundell, Horowitz,

and Parey (2010), and Hoderlein and Vanhems (2011). This construction is formally rational-

izable by assuming utility is separable into good 1 and a subutility function of all other goods.

See, e.g., Blackorby, Primont, and Russell (1978). Alternatively, Lewbel (1996) provides con-

ditions on the distribution of prices (stochastic hicksian aggregation) under which Marshallian

demand functions have the same properties with nonseparable utility as with separable utility.

With K = 2 goods, our model is W ∗1 = ω1 (U1 X1,U2 X2) and W ∗2 = 1 − W ∗1 , and with

K = 2 we can rewrite equation (7) as

λ
(
W ∗1

)
= ln

(
∂V (U1 X1,U2 X2)

∂ ln X1

)
− ln

(
∂V (U1 X1,U2 X2)

∂ ln X2

)
(8)

where λ
(
W ∗1

)
is the logit transformation function λ

(
W ∗1

)
= ln

[
W ∗1 /

(
1−W ∗1

)]
.

Due to the constraints of Slutsky symmetry, imposing additivity directly on the Marshal-

lian budget share function ω1 (X1, X2) would result in extreme restrictions on behavior. See,

e.g., Blackorby, Primont, and Russell (1978). So we instead impose additivity on the logit

transformation of ω1 (X1, X2) (later this will be relaxed to allow for interaction terms), thereby

assuming demands have the additive form

λ (W1) = λ [ω1 (U1 X1,U2 X2)]+U0 = g1 (U1 X1)+ g2 (U2 X2)+U0 (9)

Here the functions g1 and g2 are nonparametric and U0 is interpreted as measurement error

in the observed budget share W1 relative to the true budget share W ∗1 . This implies that the

underlying demand function for good 1 is given by

W ∗1 = ω1 (U1 X1,U2 X2) =
(

1+ e−g1(U1 X1)−g2(U2 X2)
)−1

(10)

Use of the logit transformation here, and assumed additivity in logit transformed budget

shares, has as far as we know not been considered before in the estimation of continuous demand

functions. However, this logit transformed model has a number of advantages. First, λ (W1) has

support on the whole real line, so the measurement error U0 has unrestricted support, instead

of a support that necessarily depends on covariates. Second, with this transform no constraints

need to be placed on the range of values the nonparametric functions g1 and g2 take on. Third,

unlike all other semiparametric or nonparametric applications of the Hausman (1981) consumer
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surplus type methodology (such as those cited above), a closed form expression for the indirect

utility function that gives rise Marshallian demands (10) and hence (9) exists, and is given by

Theorem 3.

THEOREM 3: The demand function ω1 satisfies λ [ω1 (U1 X1,U2 X2)] = g1 (U1 X1) +
g2 (U2 X2) for some functions g1 and g2 if and only if ω1 is derived from an indirect utility

function of the form

V (U1 X1,U2 X2) = H [h1 (U1 X1)+ h2 (U2 X2) ,U1,U2] .

for some montonic in its first element function H and some differentiable functions h1 and h2.

The functions g1, g2, h1, and h2 are related by

h1 (U1 X1)+ h2 (U2 X2) =

∫
eg1(U1x1)d ln x1 +

∫
e−g2(U2x2)d ln x2 (11)

and

g1 (U1 X1)+ g2 (U2 X2) = ln

(
∂h1 (U1 X1)

∂ ln X1

)
− ln

(
∂h2 (U2 X2)

∂ ln X2

)
(12)

Also, the functions h1 (U1 P1/M) and h2 (U2 P2/M) are each nonincreasing, and their sum is

strictly increasing in M and quasiconvex in P1,P2, and M .

The proof is in the Appendix. The function H in Theorem 3 has no observable implications

for individual consumer’s demand functions, and is present only because utility functions are

ordinal and therefore unchanged by monotonic transformations.3 We can therefore just write

the indirect utility function in Theorem 3 as

V (U1 X1,U2 X2)
−1 = h1 (U1 X1)+ h2 (U2 X2) . (13)

which takes H to be the reciprocal function (this is a convenient normalization since we later

take h1 and h2 to be increasing functions, and utility must be nondecreasing in total expendi-

tures).

Preferences V (X1, X2) are defined to be indirectly additively separable (see, e.g., Blacko-

rby, Primont, and Russell 1978) if, up to an arbitrary monotonic transformation H , V (X1, X2) =
H [h1 (X1)+ h2 (X2)] for some functions h1, h2. So an equivalent way to state the first part

of Theorem 3 is that ω1 satisfies equation (10) if and only if preferences are given by a Barten

scaled indirectly additively separable utility function. The second part of Theorem 3 then pro-

vides closed form expressions for the indirect utility function given the nonparametric (additive

in the logit transformation) demand function and vice versa.

4.2 Random Barten Scales: Identification

From equation (9) we have the demand model

λ (W1) = g1 (U1 X1)+ g2 (U2 X2)+U0 (14)

3Later we will reintroduce the function H to construct a money metric representation of utility for use in social

welfare calculations.
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Identification of this model can be obtained by Corollary 2, letting Y = λ (W1) and Gk = gk .

A condition that suffices to make the monotonicity of Assumption A6 hold is that the goods not

be Giffen goods.4 Having good 1 not be Giffen guarantees monotonicity of g1, and similarly

the restriction that good 2 is not Giffen means that ω2 is monotonic in X2, which by the adding

up constraint ω1 + ω2 = 1 implies monotonicity of g2. As discussed earlier, Assumption A3 is

satisfied for a wide range of possible gk functions, e.g., those satisfying Lemma 1.

Next consider Assumptions A1, A2, and A4. U0 is assumed to be measurement error in Y ,

not a taste parameter, and hence independent of the other variables. As discussed earlier, Barten

scales are traditionally modeled as deterministic functions of demographic characteristics and

other factors that affect demand, so in our extension to random Barten scales we take Z to be

demographic characteristics, and other taste shifters for energy such as weather. Continuity of

each Xk and Uk is straightforward. U1 and U2 are preference parameters, and it is common to

assume that tastes are determined independently of regressors in partial equilibrium analyses.

In our application W1 will be energy demand by Canadian households and the regressors Xk

are prices divided by budgets. One might therefore be concerned about correlations between Uk

and Xk caused by endogeneity of prices, however, Canadian households comprise a very small

fraction of world energy demand, and so the likely effect of Uk on energy prices should be

very small. In our online supplemental appendix, we verify that endogeneity, if any is present

due to this or other sources (such as potential measurement error in total expenditures), appears

too small empirically to significantly change our results. Economic theory also bounds the

support of U1 and U2 in the positive orthant, assuming maximizing utility does not imply zero

consumption of either energy or other goods.

Each Xk is by construction nonnegative so to satisfy Assumptions A2 and A5 we assume

the support of each Xk is (0,∞), the closure of which includes zero. We are therefore as-

suming that in theory prices can be very low and/or total expenditures can be arbitrarily large.

In our empirical application we observe a very wide range of total expenditure levels (from

poor to wealthy individuals), and substantial relative price variation. Further, in our empirical

specification we also exploit variation in other regressors Z to aid identification (see the next

subsection for details). An additional mitigating factor is that our identification results do not

depend solely on thin sets, given the additional restrictions that were discussed in section 3.3.

We also provide a Monte Carlo study (in the online supplemental appendix) with design given

by our actual estimated model and using our actual X1, X2 and Z data. This Monte Carlo shows

good performance of our estimator for sample sizes in the range of our empirical application.

4.3 Random Barten Scales: Specification and Estimation

In our main results, we present estimates of a parametric model wherein the demand function

(9) given by the difference in the logs of squared cubic functions of X1 and X2, the unobserved

preference heterogeneity parameters follow a truncated bivariate log-normal distribution, and

the normalized prices Xk are taken to be exogenous. We then consider consumer surplus and

4While possible in theory, very little empirical evidence has been found for the existence of Giffen goods, and

particularly not for the types of goods we consider in our application. A rare example is Jensen and Miller (2008),

who show that some grains may have been Giffen goods for extremely poor households in rural China.
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social welfare analysis with this parametric specification. In our online supplemental appendix,

we provide a variety of robustness checks and tests of model adequacy. In particular, we: (1)

allow for the demand function to depend on higher-order squared polynomials of Xk ; (2) allow

for interaction terms in Xk in the demand function; (3) allow for more general distributions of

unobserved preference heterogeneity and of measurement error; (4) allow for heteroskedasticity

of the measurement error term U0; (5) implement a Monte Carlo analysis with design based on

our actual estimated model and data; and (6) allow for possible endogeneity in prices (which are

the numerators of Xk) via estimation with control functions and exogenous supply shifters. The

results are that our major findings regarding demand, inference, consumer surplus, and social

welfare analysis survive these robustness checks.

Marshallian budget shares are commonly modeled as equal to, or proportional to, polyno-

mials, almost always of third or lower order in terms of flexibility. See, e.g., Lewbel (2008) and

references therein. We therefore specify the functions g1 and g2 in (9)as squared third-order

polynomials

g1(X1) = ln

[(
β10 + β11 X1 + β12 X2

1 + β13 X3
1

)2
]

(15)

g2(X2) = − ln

[(
β20 + β21 X2 + β22 X2

2 + β23 X3
2

)2
]

(16)

with constants βks for k = 1, 2 and s = 0, .., 3. We square these polynomials, analogous to Gal-

lant and Nychka (1987), to ensure that the resulting demand functions will not entail taking logs

of a negative number. This specification also has the advantage that we can analytically evaluate

the integrals that define the corresponding indirect utility function in Theorem 3. Specifically,

by equation (11) we get V−1 = h1(U1 X1)+ h2(U2 X2) where

hk (Xk) =

∫
ln Xk

(
βk0 + βk1er + βk2e2r + βk3e3r

)2

dr (17)

As noted earlier, it is both unusual and convenient to have closed form expressions for utility

functions corresponding to arbitrary demand function components like these.

We impose the normalizations β20 = 1 and E (U0) = 0, which are free normalizations

that take the place of the normalizations of the g functions described in Theorem 2. These

observationally equivalent normalizations are used in place of the ones used to prove Theorem

2, because they’re more natural and easier to impose in our particular application.

Applying Theorem 3 and substituting (15) and (16) into (9) gives:

λ (W1) = ln

[(
β10 + β11 X1 + β12 X2

1 + β13 X3
1

)2
]
−ln

[(
β20 + β21 X2 + β22 X2

2 + β23 X3
2

)2
]
+U0.

(18)

We next need to specify the distributions of U0,U1 and U2. The distribution of FU |Z (U1,U2 | Z)
for a vector of observed demographic characteristics Z is in theory nonparametrically identi-

fied. But to reduce the dimensionality of the model, instead of letting the dependence of U on

Z be entirely unrestricted, we assume each Barten scale takes the form

Uk = αk (Z) Ũk, (19)
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for k = 1, 2 and where each function αk (Z) is a traditional deterministic Barten scale, and the

remaining random variation given by Ũk in each Barten scale is assumed to be independent of

the covariates Xk, Z . We model ln [αk (Z)] as linear in a vector of demographic characteristics

Z . This index does not include a constant term, because the scaling of αk (Z) is freely absorbed

into the βks parameters. An additional advantage of this specification is that we now have the

support of each αk (Z) Xk instead of just the support of Xk to help identify the distribution of

Ũk . Thus, we exploit variation in Z to aid in the identification of the distribution of Ũk .
We specify f0, the density of U0, as a mean zero normal with variance σ 2

0. We specify

the joint distribution of the random component of the Barten scales, Ũ =
(
Ũ1, Ũ2

)
, to be a

truncated (trimmed) bivariate log-normal. Specifically, before truncation, the density of ln Ũ is

fln Ũ

(
Ũ1, Ũ2, σ 1, σ 2, ρ

)
=

1

2πσ 1σ 2

(
1− ρ2

)1/2 exp


(

ln Ũ1

σ 1

)2

− 2ρ
(

ln Ũ2

σ 2

) (
ln Ũ1

σ 1

)
+
(

ln Ũ2

σ 2

)2

−2
(
1− ρ2

)
 .

(20)

We truncate the distribution to make the support of ln Ũ equal the box defined by ±3σ 1, ±3σ 2.

Bounding the support of Ũ in this way satisfies the assumptions of Theorem 1 that Ũ and

hence U be bounded away from zero and ensures that a moment generating function exists.

Our estimation method uses numerical integration, and in our the empirical application we

implement this distribution by integrating ln Ũ over its bounded support with a stepsize of

0.06σ k , yielding a 10,000 point grid for the numerical integration.

For a given consumer with observed values x1, x2 and z, the conditional density function of

W1 is then given by

fW1|X1,X2,Z (w1 | x1, x2, z;α, β, σ , ρ) (21)

=

∫ ∞
0

∫ ∞
0

f0 [λ (W1)− λ [ω1 (α1 (z) ũ1x1, α2 (z) ũ2x2, β)] , σ 0] fŨ (̃u1, ũ2, σ 1, σ 2, ρ) ∂ ũ1∂ ũ2.

Substituting in the logit transformation λ, the demand function (18), the barten scale functions

(19), the joint log-normal distribution (20) (for U1,U2) and the normal distribution (for U0) into

the conditional density function (21) gives

fW1|X1,X2,Z (w1 | x1, x2, z;α, β, σ , ρ) =
(22)∫ ∞

−∞

∫ ∞
−∞

exp

 −1

2σ 2
0

ln

(
W1

1−W1

)
− ln

(∑3
s=0 β1s (̃u1α1 (z) x1)

s∑3
s=0 β2s (̃u2α2 (z) x2)

s

)2
2

 fln Ũ (̃u1, ũ2, σ 1, σ 2, ρ)

(2π)1/2 σ 0

∂ ln ũ1∂ ln ũ2.

Assuming N independently, identically distributed observationsw1i , x1i , x2i , zi of consumers i ,

estimation proceeds by searching over parameters α, β, σ , and ρ to maximize the log likelihood

function ∑N

i=1
ln fW1|X1,X2,Z (w1i | x1i , x2i , zi ;α, β, σ , ρ) . (23)
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5 Empirical Results

5.1 Data

We estimate a baseline parametric specification as above, and with it undertake Engel curve,

cost-of-living and social welfare analyses. We estimate the model using Canadian household

expenditure microdata from the 1997 to 2008 Surveys of Household Spending. We consider

households comprised of one adult (as of 31 Dec) aged 25-64 residing in cities of 30,000 or

more residents in provinces other than Prince Edward Island (due to data masking). We drop

observations whose expenditures on energy goods are zero, and eliminate a few extreme outliers

by removing those whose total nondurable expenditures are in the top or bottom percentile of

the total nondurable expenditure distribution. This leaves 9971 observations for estimation.

We consider the budget share of energy goods, W1, defined as the share of total nondurable

expenditures devoted to energy goods. Total nondurable expenditures are constructed as the

sum of household spending on food, clothing, health care, alcohol and tobacco, public trans-

portation, private transportation operation, and personal care, plus the energy goods defined

as fuel oil, electricity, natural gas and gasoline (reported in thousands of dollars). We include

eight demographic characteristics, comprising the vector Z , as observed preference shifters: a

dummy for female individuals; age of the individual (on an 8 unit integer scale for 5 year age

groups with age 40 to 44 coded as 0); calendar year minus 2002; a dummy for residence in the

francophone province of Quebec; Environment Canada ex poste records of the number of days

requiring heating and cooling in each province in each year (normalized as z-scores from the

full sample of all households in all provinces in all city sizes); an indicator that the household

is a renter (spending more than $100 on rent in the year); and an indicator that the household

received more than 10% of its gross income from government transfers. These demographic

characteristics equal zero for the reference consumer (whose utility function is S and indirect

utility function is V ): a single male aged 40-44 with less than 10% transfer income living in

owned accomodation outside Quebec in 2002 with average heating and cooling days.
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Table 1: Summary Statistics

9971 Observations mean std dev min max

logit energy share, Y -1.949 0.766 -7.140 1.005

energy share, W1 0.146 0.085 0.001 0.732

nondurable expenditure, M 15.661 7.104 2.064 41.245

energy price, P1 1.039 0.230 0.426 1.896

non-energy price, P2 0.965 0.075 0.755 1.284

energy normalized price, X1 0.082 0.049 0.015 0.570

non-energy normalized price, X2 0.077 0.045 0.020 0.476

female indicator 0.482 0.500 0.000 1.000

age group-4 0.549 2.262 -3.000 4.000

year-2002 0.363 3.339 -5.000 6.000

Quebec resident 0.168 0.374 0.000 1.000

heat days, normalized -0.102 0.990 -2.507 2.253

cooling days, normalized 0.014 1.007 -1.729 4.013

renter indicator 0.512 0.500 0.000 1.000

transfer income indicator 0.184 0.387 0.000 1.000

Prices vary by province (9 included) and year (12 years) yielding 108 distinct price vectors

for the underlying commodities comprising nondurable consumption. These underlying com-

modity prices are normalised to equal one (a free normalization) in Ontario in 2002. To account

for the impact on prices of individual variation in compositional differences of these aggregate

commodities, we follow the methodology of Lewbel (1989) and Hoderlein and Mihaleva (2008)

in constructing P1 as the Stone price index using within group household specific budget shares

of energy goods, and P2 is constructed similarly for non-energy goods. This construction has the

feature of further increasing relative price variation across households. The budget, M , is equal

to the total nondurable expenditures of the household. The normalized prices Xk are then given

by Xk = Pk/M . Finally, the regressand, Y , is the logit transformation of the energy budget

share, so Y = λ (W1). Table 1 gives summary statistics for these budget shares, expenditures,

prices, normalised prices and demographic preference (Barten scale) shifters.

5.2 Parameter Estimates

Our main analyses are based on two models. The first, Model 1, imposes the restriction that

Ũ1 = Ũ2 = 1 (so Ũ is degenerate), and simplifies equation (21) to

fW1|X1,X2,Z (w1 | x1, x2, z;α, β, σ 0) =

exp

 −1

2σ 2
0

[
ln
(

W1

1−W1

)
− ln

((∑3
s=0 β1s(α1(z)x1)

s∑3
s=0 β2s(α2(z)x2)

s

)2
)]2


(2π)1/2 σ 0

.

(24)

This is just a traditional deterministic Barten scale model, having Uk = αk (z), estimated using

our general functional form for energy demand. Model 1 is then compared to our real specifi-

cation, Model 2, which is equation (22) with the distribution of Ũ given by equation (20), and

20



therefore contains our random Barten scales Uk = αk (z) Ũk . Both models are estimated using

maximum likelihood in Stata, with likelihood functions given by substituting equation (24) or

(22) into equation (23). Estimated coefficients are given in Table 2 below.

As noted earlier, in our online supplemental appendix we provide an extensive set of analy-

ses to verify the robustness of our baseline empirical results (given in Table 2). A brief summary

of these results is that, while some departures from our baseline Model 2 are statistically signif-

icant, none result in big changes in our economic analyses or conclusions, indicating that our

results are robust to many different possible sources of misspecification and estimation impre-

cision.

Our model imposes the equality constraints of Slutsky symmetry and homogeneity. How-

ever, we do not impose the inequality constraints that the g functions be monotonic or that the

Slutsky matrix be negative semidefinite (concavity).5 Despite not imposing these conditions,

we find that our Model 1 estimates satisfy monotonicity throughout our observed data, and that

our Model 2 estimates satisfy monotonicity at 97.7% of the data points in our sample. Simi-

larly, our Model 1 estimates satisfy negative semidefiniteness at 99.6% of the data points in our

sample, and our Model 2 estimates satisfy it at 99.9% of the data points in our sample.

Model 2 has three more parameters than Model 1. They are σ 1, σ 2, ρ, the standard de-

viations and correlation coefficient of the bivariate normal distribution of ln U1, ln U2. The

likelihood ratio test statistic for the restriction that these parameters are all zero is 672, so the

parameters that allow for random Barten scales parameters are highly jointly significant. One

can see in Table 2 that they are also individually highly significant.

Figures 1 and 2 show the estimated joint distribution of lnα1(z) and lnα2(z) (logged deter-

ministic portion of the Barten scales) in Model 1 and Model 2, respectively. Summary statistics

for these distributions are provided in the bottom panel of Table 2. In both Models the estimated

distributions of lnα1(z), lnα2(z) are bimodal. The two modes are driven almost entirely by the

renter variable; conditioning on just renters or just owners produces unimodal distributions. In

Canada, most renters do not pay for their own home heating or electricity (this is included in

rents and doesn’t depend on usage), causing a ceteris paribus reduction in their energy shares

relative to home owners.

Looking at the bottom of Table 2, we see in both models that the standard deviation of

lnα2(z) is much larger than that of lnα1(z). This indicates that heterogeneity in preferences due

to observables is larger for non-energy than for energy goods. This is not surprising; it just says

that people vary more (based on observable characteristics) in their taste for non-energy goods

than in their taste for energy goods. Unconditionally, lnα1(z), lnα2(z) are slightly negatively

correlated in both models. However, conditional on rental tenure, the deterministic components

of Barten scales are strongly positively correlated.

5In a parametric setting like ours, failing to impose inequality constraints on estimation that are satisfied by the

true model does not affect standard limiting distribution theory, assuming that the true parameter values do not lie

on the boundary of the parameter space.
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Table 2: Estimated Parameters

Model 1 Model 2

llf=−10043.1 llf=−9706.9
Parameter Estimate Std Err Estimate Std Err

β10 0.145 0.010 0.185 0.007

β11 8.113 0.487 7.623 0.287

β12 -37.563 2.924 -32.871 2.147

β13 51.576 5.650 40.630 4.390

β21 2.484 0.568 1.805 0.266

β22 -1.743 0.663 1.053 0.314

β23 0.152 0.141 -0.996 0.139

α1 female -0.214 0.031 -0.228 0.015

agegp 0.002 0.009 0.013 0.004

time -0.013 0.004 -0.003 0.002

PQ 0.085 0.043 0.043 0.021

heat 0.036 0.016 0.026 0.008

cool -0.062 0.015 -0.035 0.007

renter -0.292 0.058 -0.440 0.026

social 0.034 0.038 0.054 0.020

α2 female -0.130 0.076 -0.117 0.010

agegp -0.068 0.023 -0.038 0.002

time 0.018 0.010 0.044 0.001

PQ 0.402 0.100 0.217 0.017

heat 0.015 0.040 -0.021 0.008

cool -0.077 0.043 -0.014 0.006

renter 0.943 0.155 0.605 0.008

social -0.085 0.091 -0.110 0.011

σ 0 0.663 0.005 0.469 0.009

σ 1 0.165 0.036

σ 2 1.336 0.011

ρ 0.883 0.100

std dev ln(α1) 0.197 0.252

ln(α2) 0.568 0.380

correlation ln(α1), ln(α2) -0.479 -0.700

(all obs) ln U1, ln U2 0.293

correlation ln(α1), ln(α2) 0.426 0.105

(renter=0) ln U1, ln U2 0.699

correlation ln(α1), ln(α2) 0.420 0.087

(renter=1) ln U1, ln U2 0.691

In Model 1 the log Barten scales equal lnαk(z), but in Model 2 the log Barten scales are

given by ln Uk = lnαk(z) + ln Ũk . The components lnαk(z) and ln Ũk are, respectively, the

observed deterministic and unobserved random components of these Barten scales. Thus the

variance and correlations of the ln Ũk terms in Model 2 are directly comparable to the corre-
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sponding statistics of the lnαk(z) terms. The estimated parameters of the distribution of ln Ũk

show some similar features to that of lnαk . The standard deviation ln Ũ2 (equal to σ 2) is much

larger than that of ln Ũ1 (equal to σ 1), so both observed and unobserved components of Barten

scales vary more across consumers for nonenergy goods than for energy goods. Likewise, ln Ũ1

and ln Ũ2 are positively correlated (like lnα1 and lnα2 after conditioning on the rental dummy).

That the estimated effects of the unobserved random components of Barten scales have similar

patterns to the estimated effects of observed preference shifters of Barten scales is a reasuring

indicator of the sensibility and reasonableness of our model.

Overall, we find that unobserved preference heterogeneity is about as important as observed

preference heterogeneity in driving variation in Barten scales. The estimated joint distribution

of ln U1, ln U2, summing the effects of lnαk(z) and ln Ũk , is shown in Figure 3. Comparing

Figures 1 and 3 shows that accounting for unobserved heterogeneity substantially increases the

estimated total heterogeneity in tastes across individuals.

The unobserved preference heterogeneity terms Ũk partly pick up unobserved variation that

would otherwise be subsumed by the non behavioral error term U0, making the estimated stan-

dard deviation of U0 fall from 0.666 in Model 1 to 0.469 in Model 2. But more significantly, U1

and U2 also pick up a substantial portion of what would otherwise be unexplained heteroskedas-

ticity in demand. In the online supplemental appendix, when we consider heteroskedastic U0,

we find that allowing for unobserved preference heterogeneity via our random Barten scales

accounts for a great deal of variation that would otherwise have been falsely attributed to het-

eroskedastic measurement error.

Accounting for unobserved heterogeneity appears to yield precision benefits as well. Appro-

priately modeling the heteroskedasticity driven by unobserved preference heterogeneity should

increase precision in parameter estimates, just as correctly specified generalized least squares

estimation usually reduces standard errors relative to ordinary least squares estimation in het-

eroskedastic regression models. Empirically, we do see an improvement in estimation precision,

comparing across the columns in Table 2. The parameter estimates in Model 2 generally have

standard errors about 20 per cent to 50 per cent smaller than those of Model 1.

Table 3 gives summary statistics on predicted values of the logit transformed budget share Y

and of the budget share itself, W1. We give estimates for Model 1 evaluated at the observed data

in the left panel, and for Model 2 evaluated at the observed data with unobserved preference

heterogeneity parameters "turned off" (Ũ1 = Ũ2 = 1) in the middle panel. In the rightmost

panel, we present estimates simulated at the observed data with the estimated distribution of

unobserved preference heterogeneity parameters Ũ1, Ũ2.

Since Model 1 has just a single additively separable error term, the average prediction from

Model 1 including variation from all regressors exactly equals the mean of the observed Y

(−1.949). The predicted average mean of Y in Model 2 is somewhat larger for the cases where

we don’t account for unobserved preference heterogeneity Ũk , with Y averaging about −1.78.

But, when we account for unobserved preference heterogeneity (in the rightmost panel), the

average prediction of Model 2 predicts is−1.997 which is very close to the mean of the observed

Y . The standard deviation of Model 1 predictions of W1 is 0.044, while that of Model 2 is 0.065.

Comparing these predictions to Table 1 shows that, for both Y and W1, Model 2 gives closer

predictions to the actual empirical standard deviation of these variables than does Model 1.
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Table 3: Estimated Energy Budget Shares

Model 1 Model 2 (Ũk = 1) Model 2

Mean Std Dev Mean Std Dev Mean Std Dev

Logit Budget Shares Y -1.949 0.387 -1.775 0.371 -1.997 0.896

Budget Shares W1 0.131 0.044 0.151 0.047 0.137 0.065

Figure 4 shows estimated Engel curves from the models, showing W1 as a function of ln M .

These are estimated demand functions evaluated at the Ontario 2002 prices P1 = P2 = 1 and at

average demographics αk . Model 2 implies a different Engel curve for every value that Ũ1 and

Ũ2 can take on. The single Engel curve for Model 1 is shown as a thick gray line, while that

for Model 2 evaluated at Ũk = 1 is shown as a thick black line. To illustrate the range of Engel

curves implied by our model, we also evaluate Model 2 at each quartile of the distribution of

Ũ1 paired with each quartile of the distribution of Ũ2, for a total of nine pairs of values. This

yields eight additional Engel curves, which are depicted by thin gray lines in Figure 4. Finally,

we show the estimated marginal density of ln M (divided by 10 to fit in the graph) as a thick

light gray line at the bottom of Figure 4.

On average, richer consumers tend to spend a smaller fraction of their budget on energy

goods than poorer consumers. This can be seen in the mostly downward slope of the Engel

curves in Figure 4. Comparing these curves to the depicted density function of ln M shows that

only a small fraction of all consumers, the poorest ones, are on the upward sloping parts of these

curves.

A striking feature of Figure 4 is that for each given value of M , there is substantial variation

in the level and slope of Engel curves, due entirely to variation in Ũk . To reduce clutter we did

not include standard error bars on this graph, but the differences between these estimated Engel

curves are statistically significant. For example, at the mean value of ln M (ln M = 2.64),

the top Engel curve displayed is that of the top quartile of both Ũ1 and Ũ2, and the bottom

Engel curve is that of the bottom quartile of both Ũ1 and Ũ2. The estimated levels of these

Engel curves at ln M = 2.64 are 0.166 and 0.104, respectively, with standard errors of 0.002

and 0.008, repectively. We find that variation in the random components Ũk of Barten scales,

corresponding to unobserved variation in tastes across consumers, yields significant differences

in both the levels and slopes of the estimated Engel curves.

Figure 4 showed the effects on W1 of just the random component of the Barten scales at

different budget levels M . In contrast, Figure 5 illustrates the total effect of Barten scales on

W1. Specifically, Figure 5 shows a contour plot of the joint distribution of W1 and M predicted

by Model 2, evaluated at Ontario 2002 prices P1 = P2 = 1 and observed demographics z.

The vertical variation in this graph therefore shows the estimated variation in W1 due to Barten

scales (both observed and unobserved components) at different M levels. This wide variation

in tastes will have important implications for welfare analyses below.

Taken together, all of the above results show that Model 2’s inclusion of random Barten

scales accounts for more and richer variation in observed behaviour than does Model 1. This

is due to the fact that budget shares are highly variable and heteroskedastic, and Model 1 treats

this variance and heteroskedasticity entirely as meaningless variation in a nonbehavioral error

term, while Model 2 captures much of this variation in a behaviorally sensible, structural way,

via random Barten scales.
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5.3 Consumer Surplus Effects of a Carbon Tax

We now apply our model to evaluate the partial equilibrium effects of a large change in the

price of energy, as might result from a carbon tax.6 Using equation (17), we have a closed form

expression for indirect utility.7 We can therefore numerically invert the indirect utility function

(17) to obtain the exact cost of living impact (consumer surplus) of a price change. Without

Theorem 3, we could instead use numerical approximation (instead of an exact solution) such

as in Vartia (1984), or we could numerically solve a differential equation as in Hausman and

Newey (1995), but such a solution would need to be calculated for every value on the continuum

of points that U1 and U2 can take on.

Recall the indirect utility function defined over normalized prices Xk and Barten scales Uk

is V (U1 X1,U2 X2) = V (U1 P1/M,U2 P2/M). For an individual facing initial prices P1, P2,

having total expenditures M , and having preferences indexed by Barten scales U1,U2, the cost-

of-living impact of moving to new prices P1, P2 is π
(
U1,U2,M, P1, P2, P1, P2

)
, defined as

the solution to

V

(
U1 P1

M
,

U2 P2

M

)
= V

(
U1 P1

πM
,

U2 P2

πM

)
.

Here π is the cost-of-living index giving the proportionate change in costs M needed to com-

pensate for the price change from P1, P2 to P1, P2.

To show price effects clearly, we consider a large price change: a 50% increase in the

price of energy. This price increase is chosen to approximate the effect of a $300 per ton

CO2 tax (see, e.g., Rhodes and Jaccard 2014)8. We solve for the π function given the initial

price vector P1 = P2 = 1 and the new price vector P1 = 1.5, P2 = 1. Figure 6 shows the

resulting estimated joint distribution (contour plot) of lnπ and ln M from Model 2 evaluated

at the observed demographics Z and budgets M . This plot is constructed by calculating π for

each observation in the data, with draws from the estimated distribution of Ũ1, Ũ2, and using

observed values of the preference shifters z.

Table 4 gives summary statistics (means and standard deviations) of these distributions for

Model 1 and Model 2. Analogous to Table 3, to assess the contribution of variation in π due

to observed and unobserved preference heterogeneity, we also calculate the π distribution im-

posing Ũk = 1 for Model 2. For ease of presentation this Table reports percent changes in cost

of living, that is, 100 (π − 1). Standard errors for these statistics that account for the sampling

variability of the parameter estimates (estimated via simulation) are provided in italics.

6Our model is not a general equilibrium model, so we are only estimating the consumer’s responses to a

change in energy prices. Moreover, these should only be interpreted as short run responses, since in the longer

run consumers could change their energy elasticities and demand by, e.g., buying more energy efficient cars and

appliances. Also, we just consider a change in the overall price of energy, and so do not consider impacts of

possible changes in the composition of energy goods.
7The integral in equation (17) is readily evaluated, e.g., for our squared cubic functions we have∫ (
βk0 + βk1er + βk2e2r + βk3e3r

)2
dr =

1
6
β2

k3e6r + 2
5
βk2βk3e5r + 1

4

(
2βk1βk3 + β

2
k2

)
e4r + 2

3

(
βk0βk3 + βk1βk2

)
e3r + 1

2

(
2βk0βk2 + β

2
k1

)
e2r +

2βk0βk1er + rβ2
k0. Each hk (Uk Xk) function is given by substituting r = ln (Uk Xk) into this expression.

8The Canadian province of British Columbia has a CO2 tax. It charges 6.7 cent/liter of gasoline for 30$/ton.

A 67 cent/liter CO2 tax is about half as large as the pump price of gasoline in 2002 (the base year for this analysis).
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Table 4: Cost of Living Impacts: 50% Energy Price Increase

Per Cent Increase Model 1 Model 2 (Ũk = 1) Model 2

π − 1, per cent Estimate Std Err Estimate Std Err Estimate Std Err

αk, Ũk = 1 Mean 5.31 0.24 5.64 0.17 5.37 0.20

Std Dev 1.85 0.21 1.69 0.08 4.31 0.46

It has long been known that first order approximations to the cost of living effects of mar-

ginal price changes can be evaluated without estimating demand functions, essentially by ig-

noring substitution effects (see, e.g., Stern 1987). These theoretical results have been used to

argue that demand function estimation is not required for marginal policy analyses. In our data,

the average value of the budget share for energy is 0.146, so if there were no substitution effects

in response to a price change, doubling the price of energy would increase the cost of living by

7.3 per cent. This would be the first order approximation based estimate of π .

The estimated cost-of-living impacts given in Table 4, averaging about 5.4 per cent, are

much smaller than 7.3 per cent, showing substantial responses to relative prices. This difference

of nearly 2 percentage points is very large relative to the standard error of estimated means in

Models 1 and 2 of about 0.20 percentage points, so the hypothesis that the model estimates have

a mean of 7.3 is strongly rejected at conventional levels. These results supports findings in, e.g.,

Banks, Blundell, and Lewbel (1996) that, contrary to the first order approximation theory, it is

empirically necessary to estimate demand functions and associated price elasticities to properly

evaluate the consumer surplus and welfare effects of large price changes. Moreover, one goal of

an energy tax would be to reduce energy consumption (a substitution effect), so it’s important

to account for the impact on welfare of this reduction.

Models 1 and 2, with or without variation in αk or Ũk , deliver similar estimates of the mean

effects of the energy tax on cost of living. However, the inclusion of the random Barten scale

components Ũk in Model 2 more than doubles the estimated standard deviation of π across

consumers. This difference is statistically significant as well as being economically large; the

z-test statistic for the hypothesis that these standard deviations are the same has value of 6.1.

Though less substantial economically, the difference in mean effects between the Model 2 esti-

mates without and with unobserved preference heterogeneity (5.64% and 5.37%, respectively)

is also statistically significant with a z-test statistic of 3.9.

The large estimated standard deviation of π in Model 2 (which is mostly due to unobserved

variation in tastes Ũk) has substantial welfare implications. The larger is the variation in π , the

larger is the variation in impacts of an energy tax. Although the average consumer would need

to have their budget M increased by 5.37% to compensate for the tax, some consumers (those

near the bottom of Figure 6) would only need a slight increase in their budget to be made whole,

while others (those near the top of Figure 6) would be greatly harmed by the tax, needing more

than a 10% increase in the budget M to compensate.

What makes this substantial variation in cost of living impacts particularly relevant econom-

ically is that it mostly impacts poorer consumers. As can be seen in Figure 6, both the mean

and the variation in cost of living impacts is larger at low values of M than at high values, so

those consumers who are hurt the most by the tax in percentage terms are also predominantly

the poorer consumers, who can least afford the increase in costs. Not only do richer consumers

spend a smaller fraction of their budget on energy goods (as seen in Figure 4), but they also
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appear to have a greater ability to substitute away from energy when the relative price of energy

increases.

5.4 Social Welfare Implications of a Carbon Tax

The above analysis showed the distribution across consumers of the cost of living effects of an

energy tax. We now evaluate the implications of these results for aggregate welfare, based on a

range of social welfare functions. To evaluate social welfare functions, we require interperson-

ally comparable, cardinalized measures of individual utility. We follow the standard procedure

in this literature of constructing money metric cardinalizations of utility. A money metric utility

cardinalization Ṽ of a given indirect utility function V is the monotonic transformation of V

having the property that, evaluated at base prices P1, P2, the function Ṽ = M . We therefore

define cardinalized utility Ṽ by

Ṽ (U1 P1/M,U2 P2/M) = H
[
V (U1 P1/M,U2 P2/M) ,U1,U2, P1, P2

]
where, by definition, the monotonic transformation function H is chosen so that

Ṽ
(
U1 P1/M,U2 P2/M

)
= M

for all values of M,U1,U2. We let base prices be P1 = P2 = 1.

The money-metric function Ṽ gives a utility level that may be interpreted as the number of

dollars that, at base prices, delivers the same level of utility that the consumer can achieve with

a budget of M dollars when facing prices P1, P2. Attained utility depends on U1,U2, so the

function H that yields Ṽ will likewise depend on these Barten scales.

The range of social welfare functions that we consider are in the Atkinson (1970) Mean-of-

Order-r class, defined by

Sr (Ṽ1...ṼN ) =

(
1

N

∑(
Ṽi

)r)1/r

for r 6= 0, and Sr (Ṽ1...ṼN ) = exp

(
1

N

∑
ln Ṽi

)
for r = 0.

We use r = −1, 0, 1 corresponding to the harmonic, geometric and arithmetic mean of individ-

ual money metric utility. The social welfare function S1 is inequality neutral, while S0 and S−1

are inequality averse. Since Ṽi is measured in dollars, so too are the welfare functions Sr .

We compute proportionate welfare losses4Sr equal to welfare at base prices minus welfare

at new prices divided by welfare at base prices. The money metric at base prices (P1 = P2 = 1)

equals the budget Mi of each consumer. Letting Ṽi be the money metric at Mi and new prices

P1 = 1.5, P2 = 1, we have

4Sr =
(
Sr (M1...MN )− Sr (Ṽ1...ṼN )

)
/Sr (M1...MN )

A first cut at welfare analysis is to employ a first-order approximation of the money metric.

A standard approximation of the individual money-metric utility associated with a given price

vector, which in our case is (1.5, 1), is given by Ṽi = Mi/(W1i ∗ 1.5+ (1− W1i ) ∗ 1). This is

the Laspeyres index approximation to the money metric for consumer i . The welfare loss asso-

ciated with this approximate money metric accounts for some heterogeneity across individuals

27



(because W1i differs across individuals) but does not account for substitution responses. The

arithmetic mean welfare index computed using this approximate money-metric utility shows a

welfare loss of 6.30 per cent. The inequality-averse geometric and harmonic mean welfare in-

dices show higher welfare losses of 6.74 and 7.18 per cent, respectively. This is because energy

budget shares W1i are negatively correlated with budgets Mi , so the welfare indices that up-

weight poorer households show a greater welfare loss associated with lower budgets and hence

with higher energy budget shares.

These approximate social welfare loss numbers can be compared with the estimates from

Models 1 and 2, provided in Table 5. Standard errors accounting for the sampling variability of

the estimated parameters were generated via simulation and are shown in italics. In Table 5 we

account for both substitution effects and heterogeneity using our models.

Table 5: Social Welfare Loss: 50% Energy Price Increase

Model 1 Model 2 (Ũk = 1) Model 2

Welfare Loss, Per Cent r Estimate Std Err Estimate Std Err Estimate Std Err

Arithmetic Mean 1 4.81 0.19 5.14 0.14 4.91 0.17

Geometric Mean 0 5.27 0.26 5.43 0.16 5.37 0.22

Harmonic Mean -1 6.14 0.54 5.48 0.17 5.85 0.30

Every estimate in Table 5 is lower than its corresponding first-order approximation. For

example, the welfare loss given the geometric mean welfare index is about 1.5 percentage points

lower (about one-fourth lower) than the first-order approximation. This shows that accounting

for substitution effects has a substantial effect on welfare. All the estimates also show welfare

losses increasing with the inequality aversion of the welfare index. As discussed above, this is

primarily due to the downward sloping Engel curves as seen in Figure 4.

Another feature seen in Table 5 is that the estimates based on Model 2, which account for

unobserved preference heterogeneity, have smaller standard errors. For the more inequality-

averse welfare measures, this improvement in precision is substantial, e.g., the estimated har-

monic mean welfare loss for Model 2 has about half the standard error of that for Model 1. This

is due to the fact that the Model 2 treatment of unobserved heterogeneity increases precision of

estimated parameters over model 1, as discussed earlier.

Further, we find that dealing with unobserved preference heterogeneity affects both the level

and pattern of estimated welfare losses. There are two ways in which the misspecification

of Model 1 compared to Model 2 matters for welfare analysis. First, Model 2 Engel Curves

are on average less downward sloping than those of Model 1. This means that, even without

accounting for unobserved preference heterogeneity, when we consider welfare functions that

are very inequality-averse, Model 1 will tend to overstate welfare losses. For example, in the

upper panel of Table 5, the harmonic mean index shows a welfare loss of 6.14 per cent for

Model 1 but only 5.48 per cent for Model 2.

A second difference is that Model 2 has greater variance in individual utility losses than

does Model 1, and inequality-averse welfare functions will tend to penalize such variance. This

effect can be seen by comparing the middle and right panels of Table 5. In the right panel we

account for unobserved preference heterogeneity, which modestly increases the welfare loss for

inequality-averse welfare functions (from 5.48 to 5.85 per cent).

The welfare loss in Model 2 not accounting for unobserved preference heterogeneity (middle
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panel) is 0.34 percentage points higher with the harmonic versus the arithmetic mean welfare

index. Because these welfare loss measures are highly positively correlated, this difference is

statistically significant, with a standard error of 0.05. In the right panel of Table 5, where we add

variation due to unobserved preference heterogeneity, the difference in estimated welfare loss

is 0.94 percentage points, with a standard error of the difference of 0.15. Thus, appropriately

accounting for unobserved preference heterogeneity dramatically increases the sensitivity of

estimated welfare loss to the inequality-aversion of the welfare index.

Overall, our energy tax experiment yields two major conclusions. First, accounting for unob-

served preference heterogeneity has a big impact on how much variation we find in the impacts

of price changes. In our example, the standard deviation of cost-of-living impacts due to a 50%

energy tax is more than doubled by accounting for unobserved preference heterogeneity by ran-

dom Barten scales. Second, we find that accounting for unobserved preference heterogeneity

changes welfare analyses in a variety of ways, and in particular decreases estimated welfare

loss when the welfare index is inequality-averse.

6 Conclusions

We show nonparametric identification of a generalized random coefficients model. We also

provide an empirical application in which the generalized random coefficient structure arises

naturally from extending an existing commonly used economic model of observed heterogene-

ity to a model allowing for unobserved heterogeneity. In this Barten scales application, we

allow for general forms of unobserved preference heterogeneity that are shown to be important

for empirically evaluating the welfare effects of potential policy interventions such a carbon tax.

For example, we find that accounting for unobserved preference heterogeneity more than dou-

bles the estimated variation in impacts of an energy tax (as measured by the standard deviation

across consumers of the cost of living impact of the tax).

Accounting for unobserved preference heterogeneity via Barten scales is economically im-

portant because, by including them, we discovered that the variance in the impacts of energy

prices is particularly large among poorer consumers. As a result, an energy tax may impact

inequality and welfare through a previously unrecognized channel, which is the variation in

energy price elasticities across households. We find that this variation in price responses is

particularly large for poorer households. This can be seen in Figure 6, where the variation in

cost of living impacts of an energy price increase is largest at low values of total expenditures.

This figure also confirms the previously known result that mean cost of living impacts of energy

price increases are also higher for the poor. Roughly, these results say that not only are energy

taxes regressive on average (the previously known result), but also the degree of regressivity

varies more among poorer consumers than among the rich.

This result has important implications for social welfare. Empirically, the unobserved pref-

erence heterogeneity revealed by our model strongly interacts with inequality aversion in social

welfare calculations, reversing conclusions that would have been made using almost all previous

demand models, which fail to account for such preference heterogeneity.

Useful areas for further work on the theory of generalized random coefficients would be

finding conditions under which Theorem 1 alone could be used to identify the model with-
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out the identification at zero assumptions used in Theorem 2, formalizing the extent to which

additional implications of the model like those discussed in section 3.3 might be used to iden-

tify more general structures. It would also be useful to investigate how the assumptions used

for identification might interact with assumptions needed for inference based on nonparametric

estimators such as sieve maximum likelihood.

Our application focuses on consumers with single utility functions, that is, unitary house-

holds. A possible extension would be to consider collective household models. For example,

Barten scales are used in the collective household models of Browning, Chiappori, and Lewbel

(2013). It would also be useful to extend our carbon tax analyses into a general equilibrium set-

ting, which would affect the conditional independence assumptions we used for identification

of the random Barten scales.

7 Appendix A: Proofs

PROOF of Lemma 1: We have Gk (Xk) ≥ ck Xk . Let h (G, t) = e−ρG for any ρ > 0. Then

κ t =
K∏

k=1

∫ ∞
0

e−ρGk(sk)s
tk−1
k dsk ≤

K∏
k=1

∫ ∞
0

e−ρcksk s
tk−1
k dsk =

K∏
k=1

(ρck)
−tk

∫ ∞
0

e−rkr
tk−1
k drk

which is finite, because the gamma function 0 (tk) =
∫∞

0
e−rkr

tk−1
k drk is finite. Also, κ t > 0

because the function being integrated is strictly positive everywhere in the interior of supp (X).

PROOF of Lemma 2: Let G (X1, X2) = ln (X1) + ln (X2). Start with any choice of the

function h. Do the change of variables replacing s1 and s2 with s1 and r = s1s2 to get

κ t =

∫ ∞
0

∫ ∞
0

h [ln (s1)+ ln (s2) , t] s
t1−1
1 s

t2−1
2 ds1ds2

=

∫ ∞
0

∫ ∞
0

h [ln (r) , t] s
t1−t2−1
1 r t2−1ds1dr(∫ ∞

0

h [ln (r) , t] r t2−1dr

)∫ ∞
0

s
t1−t2−1
1 ds1

and the second integral is not convergent for t1 > t2 − 1.

PROOF of Theorem 1:

Let �X = supp (X), �X |Z = supp (X | Z), etc. By the definition of λt (Z) we have

λt (Z) =∫
X∈s�X

∫
U∈�U |Z

h (G (X1U1, ..., XK UK ) , t) d FU |Z (U | Z) X
t1−1
1 X

t2−1
2 ...X tK−1

K d X1d X2...d XK

=

∫
U∈�U |Z

∫
X∈�X |Z

h (G (X1U1, ..., XK UK ) , t) X
t1−1
1 X

t2−1
2 ...X tK−1

K d X1d X2...d XK d FU |Z (U | Z)
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where the second equality follows from Fubini’s theorem and supp (X) = supp (X | Z). Do a

change of variables on the inner integral, letting sk = XkUk for k = 1, ..., K to get λt (Z) =∫
U∈s�U |Z

∫
s∈supp(X1U1,...,XK UK |Z ,U )

h (G (s1, ..., s) , t) s
t1−1
1 s

t2−1
2 ...stK−1

K U
−t1
1 U

−t2
2 ...U−tK

K

ds1ds2...dsK d FU |Z (U | Z)

=

∫
U∈�U |Z

∫
s∈�X

h (G (s1, ..., s) , t) s
t1−1
1 s

t2−1
2 ...stK−1

K U
−t1
1 U

−t2
2 ...U−tK

K ds1ds2...dsK d FU |Z (U | Z)

=

∫
U∈�U |Z

∫
s∈�X

h (G (s1, ..., s) , t) s
t1−1
1 s

t2−1
2 ...stK−1

K ds1ds2...dsK U
−t1
1 U

−t2
2 ...U−tK

K d FU |Z (U | Z)

=

∫
U∈�U |Z

κ tU
−t1
1 U

−t2
2 ...U−tK

K d FU |Z (U | Z)

= κ t

∫
U∈�U |Z

U
−t1
1 U

−t2
2 ...U−tK

K d FU |Z (U | Z) = κ t E

(
U
−t1
1 U

−t2
2 ...U−tK

K | Z

)
where the second equality above uses supp (U1 X1, ...,UK XK | Z ,U ) = supp (X). It therefore

follows that moments E

(
U
−t1
1 U

−t2
2 ...U−tK

K | Z

)
are identified for all positive integers t1,...,tk

by equalling the ratio of identified objects λt (Z) /κ t . To identify moments where tk = 0 for

one or more values of k, redefine λt (Z) and κ t setting the corresponding Xk terms equal to

zero. For example, to identify moments having t1 = 0, replacing equation (4) with

λt (Z) =

∫
(X2,...XK )∈supp(X2,...XK )

E
[
h
(
Ỹ , 0, t2, ..., tK

)
| X1 = 0, X2...XK , Z

]
X

t2−1
2 ...X tK−1

K d X2...d XK

and correspondingly redefining κ t as

κ t =

∫
(s2,...sK )∈supp(X2,...XK )

h [G (0, s2, ...sK ) , 0, ..., tK ] s
t2−1
2 ...stK−1

K ds2...dsK

gives λt (Z) /κ t equal to E

(
U
−t2
2 ...U−tK

K | Z

)
.

We have now shown that E

(
U
−t1
1 U

−t2
2 ...U−tK

K | Z

)
is identified for any nonnegative inte-

gers t1,...,tk . It then follows from Assumption A2 that the joint distribution of U−1
1 U−1

2 ...U−1
K |

Z is identified from these moments, and therefore that the joint distribution FU |Z (U1,...,UK | Z)
is identified.

Before proving Theorem 2, we prove a couple of lemmas.

LEMMA 3: Let Ỹk = Gk (XkUk) where Gk is a strictly monotonically increasing, function.

Assume Uk ⊥ X | Z . The marginal distributions of Uk and Xk are continuous. The support of

Xk includes zero, the support of Uk is a subset of the support of Ỹk , and for every r such that

Gk (r) is on the support of Ỹk there exist an xk 6= 0 on the support of Xk such that fUk

(
x−1

k r

)
6=

0. Assume the location and scale normalizations Gk (0) = 0 and Gk (1) = y0 for some known
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y0 in the support of Ỹk are imposed. Let r = Hk (ỹk) be inverse of the function Gk where

ỹk = Gk (r). Assume Hk is differentiable. Define X(k) to be the vector of all the elements of X

except for Xk . Define the function Sk (ỹk, x̃) by

Sk (ỹk, x̃) = E

[
FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, Z

)]
=

∫
supp(Z)

FỸk |Xk ,X(k),Z

(
ỹk | x̃

−1, 0, z
)

fz (z) dz.

Then, for all xk and ỹk such that xk 6= 0 and fUk

(
x−1

k Hk (ỹk)
)
6= 0,

Hk (ỹk) = sign

sign (xk)
∂Sk

(
ỹk, x−1

k

)
∂x−1

k

 exp

∫ ỹ

y0

xk∂Sk

(
ỹk, x−1

k

)
/∂ ỹ

∂Sk

(
ỹk, x−1

k

)
/∂x−1

k

d ỹk

 (25)

Note that if Z is discretely distributed, then the integral defining Sk becomes a sum. If Z is

empty (so Uk and X are unconditionally independent) then Sk (ỹk, x̃) = FỸk |Xk ,X(k)

(
ỹk | x̃−1, 0

)
.

The main implication of Lemma 3 is that if the distribution FỸk |X,Z
is identified, then the func-

tion Hk is identified by construction.

PROOF of Lemma 3: For any ỹk = Gk (xkUk) and any xk > 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≤ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= FUk |Xk ,X(k),Z

[
x−1

k Hk (ỹ) | xk, 0, z
]
= FUk |Z

[
x−1

k Hk (ỹ) | z
]

where the last equality uses Uk ⊥ X | Z . Similarly for any xk < 0 we have

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = Pr

(
Gk (xkUk) ≤ ỹ | Xk = xk, X(k) = 0, Z = z

)
= Pr

(
Uk ≥ x−1

k Hk (ỹ) | Xk = xk, X(k) = 0, Z = z

)
= 1− FUk |Z

[
x−1

k Hk (ỹ) | z
]

Together these equations say

FUk |Z

[
x−1

k Hk (ỹk) | z
]
= I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z) .

So

FUk

[
x−1

k Hk (ỹk)
]
=

∫
supp(Z)

[
I (xk < 0)+ sign (xk) FỸk |Xk ,X(k),Z

(ỹk | xk, 0, z)
]

f (z) dz.

= I (xk < 0)+ sign (xk) S

(
ỹk, x−1

k

)
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It follows that for any xk 6= 0,

∂S

(
ỹk, x−1

k

)
∂x−1

k

= sign (xk) fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)

and

∂S

(
ỹk, x−1

k

)
∂ ỹk

= sign (xk) fUk

[
x−1

k Hk (ỹk)
]

x−1
k

∂Hk (ỹk)

∂ ỹk

So for fUk

[
x−1

k Hk (ỹk)
]
6= 0 it follows that

xk∂S

(
ỹk, x−1

k

)
/∂ ỹk

∂S

(
ỹk, x−1

k

)
/∂x−1

k

=
∂Hk (ỹk) /∂ ỹk

Hk (ỹk)
=
∂ ln |Hk (ỹk) |

∂ ỹk

so

exp

∫ ỹk

ỹ0

xk∂S

(
ỹ, x−1

k

)
/∂ ỹ

∂S

(
ỹ, x−1

k

)
/∂x−1

k

d ỹ

 = exp

(∫ ỹk

ỹ0

∂ ln |Hk (ỹ) |

∂ ỹ
d ỹ

)
= exp (ln |Hk (ỹk) | - ln |Hk (ỹ0) |) = |Hk (ỹk) |

where Hk (ỹ0) = 1 follows from Gk (1) = ỹ0. Finally

sign

sign (xk)
∂S

(
ỹk, x−1

k

)
∂x−1

k

 = sign

(
sign (xk) sign (xk) fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)

= sign

(
fUk

[
x−1

k Hk (ỹk)
]

Hk (ỹk)
)
= sign (Hk (ỹk))

So the right side of equation (25) equals sign (Hk (ỹk)) |Hk (ỹk) | = Hk (ỹk) as claimed.

LEMMA 4: If Assumptions A4 and A5 hold, and the normalization Gk (0) = 0 for all

k holds, then FU0|Z and the distribution function FỸ |X,Z

(
Ỹ | x, z

)
are identified, where Ỹ =∑K

k=1 Gk (XkUk).

PROOF of Lemma 4:

FY |X,Z (y | 0, z) = Pr (G (0)+U0 ≤ y | X = 0, Z = z) = FU0|X,Z (y | 0, z) = FU0|Z (y | z)

identifies the distribution function FU0|Z on the support of Y , which contains the support of

U0. Next define Ỹ = Y − U0. Then since Y = Ỹ + U0 and the distributions of Y | X, Z

and U0 | X, Z are identified, for each value of X = x, Z = z apply a deconvolution (using

the nonvanishing characteristic function of U0) to identify the distribution of Ỹ | X, Z , where

Ỹ =
∑K

k=1 Gk (XkUk).

33



PROOF of Theorem 2: When X(k) = 0 (equivalently, when X = ekxk for some xk) we

get Ỹ = Gk (XkUk) +
∑

j 6=k G j (0) = Gk (XkUk). Define Ỹk = Gk (XkUk). It follows that

FỸk |Xk ,X(k),Z
(ỹk | xk, 0, z) = FỸ |X,Z (ỹk | xkek, z), so the distribution function on the left of

this identity is identified, given by Lemma 4 that FỸ |X,Z is identified. Let r = Hk (ỹk) denote

the inverse of the function Gk where ỹk = Gk (r). It follows by construction from Lemma 3

that Hk (ỹk) is identified for every value of ỹk on the support of Ỹk satisfying the property that,

for some xk on the support of Xk , fUk

[
x−1

k H (ỹk)
]
6= 0. This identification of Hk (ỹk) in turn

means that the function Gk (r) is identified for every r such that Gk (r) is on the support of

Ỹk and there exist an xk on the support of Xk such that fUk |Z

(
x−1

k r

)
6= 0. This then implies

identification of Gk on its support. Finally, given identification of FỸ |X,Z and of Hk (ỹk), the

distribution function FUk |Z is identified by FUk |Z
[
H (ỹ) /xk | z

]
= FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z)

for xk > 0 and FUk |Z
[
H (ỹ) /xk | z

]
= 1− FỸ |Xk ,X(k),Z

(ỹ | xk, 0, z) for xk < 0.

PROOF of Corollary 1: For part i), Given any function G, for k = 1, ..., K , define Gk (XkUk) =
G (XkUkek) = G (0, ..., 0, XkUk, 0, ..., 0) and define G̃ by G̃ (X1U1, ..., XK UK ) = G (X1U1, ..., XK UK )−∑K

k=1 Gk (XkUk). Then, by construction, part i) holds. For part ii), we have that the function

G̃ (X1U1, ..., XK UK ) is zero when evaluated at X = 0 or at X = Xkek for any k, so evaluated

at any such value of X , equation (6) is equivalent to equation (2). For equation (2), the proof of

Theorem 1 shows (for k = 1, ..., K ) identification of FUk |Z and of Gk only using X = 0 and

X = Xkek , so these functions are also identified for equation (6).

PROOF of Corollary 2: Theorem 2 identifies the functions G1,G2, ...,GK , and shows that

the distribution of Ỹ defined by Ỹ = G (X1U1, ..., XK UK ) is identified. Given that the distri-

bution of Ỹ is identified, Theorem 1 can be applied to identify the joint distribution function

FU |Z (U1,...,UK | Z).

PROOF of Theorem 3: As discussed in the text, a property of Barten scales (which can

be readily verified using Roys identity) is that, if V (X1, X2) is the indirect utility function

corresponding to the demand function ω1 (X1, X2), then up to an arbitrary monotonic trans-

formation H (V,U1,U2) of V , the indirect utility function corresponding to ω1 (U1 X1,U2 X2)
is V (U1 X1,U2 X2), and vice versa. It therefore suffices to prove that the theorem holds with

U1 = U2 = 1.

By equation (7), given any indirect utility function V , the corresponding demand function

ω1 is given by

ω1 (X1, X2) =
∂V (X1, X2) /∂ ln X1[

∂V (X1, X2) /∂ ln X1

]
+
[
∂V (X1, X2) /∂ ln X2

] (26)

This is just one way to write Roys identity in a demand system of two goods. Then by the

definition of λ, we have that for any demand function ω1, the corresponding indirect utility

function V satisfies

λ [ω1 (X1, X2)] = ln

(
∂V (X1, X2)

∂ ln X1

)
− ln

(
∂V (X1, X2)

∂ ln X2

)
(27)
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and similarly, given any V the corresponding ω1 satisfies equation (27).

It follows immediately that, given any differentiable functions h1 (X1) and h2 (X2), if V (X1, X2) =
h1 (X1)+ h2 (X2) then equation (27) equals

λ [ω1 (X1, X2)] = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
(28)

which is in the form of equation

λ [ω1 (X1, X2)] = g1 (X1)+ g2 (X2) , (29)

showing that any additive indirect utility function generates a demand equation in the form of

(29). Also, by equation (28) given the functions h1 and h2 we can define g1 and g2 by

g1 (X1)+ g2 (X2) = ln

(
∂h1 (X1)

∂ ln X1

)
− ln

(
∂h2 (X2)

∂ ln X2

)
. (30)

To go the other direction, start by supposing that equation (29) holds for some functions g1

and g2. We will apply the following two component special case of Lemma 4.1 in Blackorby,

Primont, and Russell (1978, p. 160): Assume a function F (r1, r2) is twice continuously dif-

ferentiable and strictly increasing in its elements. Then F (r1, r2) = F0 (F1 (r1)+ F2 (r2)) for

some functions F0, F1, and F2 if and only if

∂

∂r1

ln

(
∂F (r1, r2) /∂r2

∂F (r1, r2) /∂r1

)
= ψ (r1)

for some function ψ . Taking the derivative of equation (27) with respect to ln X1 and using

equation (29) gives

∂λ [ω1 (X1, X2)]

∂ ln X1

=
∂g1 (X1)

∂ ln X1

= ln

(
∂V (X1, X2) /∂ ln X2

∂V (X1, X2) /∂ ln X1

)
.

Apply the Lemma with rk = ln Xk , F (r1, r2) = V (X1, X2), ψ (r1) = ∂g1 (X1) /∂ ln X1, and

Fk (rk) = hk (Xk) to prove that V (X1, X2) must equal F0 (h1 (X1)+ h2 (X2)) for some func-

tion F0, which by the properties of indirect utility functions must be monotonically increasing

(recall also that twice differentiability was one of the assumed properties of our indirect utility

functions). Finally, applying equation (26) to this indirect utility function shows that equation

(30) holds, which we can integrate to obtain∫
eg1(x1)d ln x1 +

∫
e−g2(x2)d ln x2 = h1 (X1)+ h2 (X2) .

Together these results prove the first part Theorem 3. Adding back the Barten scales U1 and

U2 to the functions g1, g2, h1, and h2 proves equations (12) and (11). The properties of the

functions h1 and h2 given at the end of Theorem 2 follow from the fact that the indirect utility

function h1 (U1 P1/M)+h2 (U2 P2/M)must possess the standard properties of all indirect utility

functions, i.e., homogeneity and quaisconvexity in P1, P2, and M , nondecreasing in each price,

and increasing in M .
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1 Online Supplemental Appendix

This Appendix contains additional theoretical and empirical results that are not included in the

main text.

1.1 Additional Theoretical Results

1.1.1 Differences between Theorem 2 and Matzkin (2003)

In our notation, Matzkin (2003) considers, in an appendix, models of the form Y =
∑K

k=0 Mk (S, Xk,Uk)
where Mk are unknown functions and S are additional observed covariates. Our Theorem 2 fits

this general framework with Mk (S, Xk,Uk) = Gk (XkUk) and G0 (X0U0) = U0 with X0 = 1.

As we do, Matzkin assumes that Mk is monotonic in Uk and that U and X are continous and

conditionally independent.

It should first be noted that Matzkin assumes the random coefficients are conditionally or

unconditionally mutually independent, and we do not. See Assumption AA.5 and AA.5’ in

Matzkin (2003), or see the first paragraph of her Appendix where she writes, "Assume, further,

that the joint distribution of (ε1, ..., εK ), conditional on X0, is the multiplication of the marginal

distributions of the εk’s, conditional on X0."9 This already suffices to show that our Theorem 2 is

not just a corollary of Matzkin (2003), because Theorem 2 does not impose this constraint. This

also shows that nothing like our Theorem 1 is possible in her framework, since our Theorem

1 identifies the joint distribution of the random coefficients. The only remaining issues are

additional differences between her results and our Theorem 2.

Matzkin proposes a few different restrictions or normalizations that suffice to identify each

function Mk and each distribution FUk
, but none of her proposed restrictions exactly fit our

generalized random coefficients framework. As a result, even if we ignore her independence

assumption (or impose it unnecessarily as an additonal constraint on our model), our Theo-

rem 2 would still not be a corollary of her results. Matzkin’s closest result to our model is

the assumption that Mk (S, Xk,Uk) = Nk (S, Xk −Uk) for some function Nk . By redefining

Xk and Uk as ln Xk and ln Uk , we can replace our Gk (XkUk) with gk (Xk −Uk) for a suit-

ably redefined function gk . However, we still could not apply Matzkin’s results by equating

Nk (S, Xk −Uk) = gk (Xk −Uk), because for this specification Matzkin requires the presence

of at least one additional regressor S that has certain properties, and our model has no such

additional regressors inside the Gk functions.

9Each εk in her notation corresponds to each Uk in our notation.
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An alternative identifying restriction Matzkin proposes has S empty, which fits our frame-

work, but she then additionally requires that Mk (̃xk,Uk) = Uk for some known value x̃k .

However, in our model this would impose Gk (̃xkUk) = Uk , which can only hold when Gk is

proportional to the identity function. So this alternative identifying assumption can also not be

used for our model. Yet another alternative restriction Matzkin proposes for identification is

assuming that Mk is linearly homogeneous in Xk and Uk . Again this constraint cannot hold for

our general Gk .

In summary, Matzkin imposes an independence assumption among the random coefficients

that we do not impose, and even if one ignores this difference, Matzkin’s other identifying

assumptions do not apply to our model. Matzkin (2003) also contains nothing comparable to

our Theorem 1. Nevertheless, it is the case that both the statement of our Theorem 2 and our

method of proof of Theorem 2 are similar to Matzkin (2003).

1.1.2 Additional Overidentifying Information

It may be possible to obtain additional overidentifying information by applying Theorem 2 using

different h functions. Assume there exists a set of functions {hρ ρ ∈ P} where P denotes a

set such that, for any ρ ∈ P , Assumption A3 holds for the function h = hρ . Similarly, define

λρ,t (z) and κρ,t as λt (z) and κ t when h = hρ . It then follows immediately from the proof of

Theorem 2 that

λρ,t (z)

κρ,t
=
λρ̃,t (z)

κ ρ̃,t
for all t ∈ RK

+ , all ρ ∈ P , ρ̃ ∈ P , and all z on its support. (31)

Theorem 2 only needed and used positive integers t , but the same equations hold for reals t . For

a given choice of t , hρ , and hρ̃ , equation (31) depends only on conditional expectations of data

that can be readily estimated, and on the functions G1, ...GK . Equation (31) therefore provides

a continuum of identified equations in the unknown functions G1, ...GK for each pair ρ and ρ̃
in P . For example, based on Lemma 1 we might let hρ (G, t) = e−ρG and P could equal R+
providing an infinite number of such equations for an infinite number of choices of t .

If there exists only one set of functions G1, ...GK that jointly satisfies equation (31) for

all real vectors t and all ρ, ρ̃ ∈ P , (which is essentially a completeness assumption), then they

would suffice to identify G1, ...GK . In this case Theorem 2 would not be needed at all, since this

result combined with Theorem 1 would then identify the entire model. Currently the potential

usefulness of this construction is speculative, since we do not know of sufficient conditions to

ensure that the collection of equations (31) has a unique solution.

1.1.3 Models With Interaction Terms

The overidentifying information discussed in the previous subsection and in the main text sug-

gests that Theorems 1 and 2 might also be combined to potentially identify richer models than

Y =
∑K

k=1 Gk (XkUk)+U0. Suppose that

Y = G̃ (X1U1, ..., XK UK , ξ)+
∑K

k=1
Gk (XkUk)+U0 (32)
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where the function G̃ is known, but the vector of parameters ξ is unknown, and G̃ equals zero

whenever all but one of its first K elements equals zero. Then the functions G1,G2, ...,GK are

still identified by Corollary 1. We can then identify and construct the function κρ,t (ξ) defined

by

κρ,t (ξ) =

∫
supp(X)

hρ

[
G̃ (s1, ..., sK , ξ)+

∑K

k=1
Gk (sk) , t

]
s

t1−1
1 s

t2−1
2 ...stK−1

K ds1ds2...dsK

and it follows from equation (31) that

λρ,t (z)

κρ,t (ξ)
=
λρ̃,t (z)

κ ρ̃,t (ξ)
for all t ∈ RK

+ and all ρ ∈ P , ρ̃ ∈ P . (33)

This then provides infinitely many equations that might be potentially used to identify the finite

parameter vector ξ . If ξ can be identified from these equations, then we can then apply Theorem

1 to identify FU |Z (U1,...,UK | Z), and so the entire model will be identified.

To illustrate, consider the model

Y = G1 (X1U1)+ G2 (X2U2)+ ξ X1U1 X2U2 +U0 (34)

for some unknown scalar constant ξ , so in this example G̃ (s1, s2, ξ) = ξs1s2. Apply Theorem

1 to identify G1, G2, and FU0|Z (U0 | Z). Assume there exists a value of ρ, ρ̃, and t such

that κρ,t (ξ) /κ ρ̃,t (ξ) is strictly monotonic in the scalar ξ . This then would suffice to ensure

that equation (33) has a unique solution and hence that ξ is identified. Finally, apply Theorem

2 with G (s1s2) = ξs1s2 + G1 (s1) + G2 (s2) to identify FU |Z (U1,U2 | Z), and so the entire

model given by equation (34) would then identified.

1.2 Additional Empirical Results

In this appendix we provide an extensive set of analyses to verify the robustness of our empirical

results to a wide variety of alternative model specifications and data environments, including

a Monte Carlo to assess finite-sample performance, adding complexity to the utility function

specification, relaxing the parametric structure on preferences and on error distributions, allow-

ing for additional heteroskedasticity of errors, and dealing with potential endogeneity of prices

via control functions.

A brief summary of these results is that, while some departures from our baseline Model

2 are statistically significant, none substantially change our main economic findings or conclu-

sions, indicating that our results are robust to many different possible sources of misspecifica-

tion.

1.2.1 Monte Carlo Analysis

A number of possible concerns arise in bringing our identification results to data. Although

our estimates are parametric, recovering the distribution of the unobserved random components

from the empirical distribution of data may entail to an ill-posed inverse problem, especially

given identification at zero from Theorem 2 (concerns of this type date back at least to Heckman
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and Singer 1984). There is also the potential issue that the range of observed values of X1, X2

in the data may be too limited, given that identification assumes the distribution they are drawn

from has support equal to the entire positive orthant. Finally, our model has a moderately large

number of coefficients relative to the sample size, and is nonlinear. All of these features may

degrade the performance of our estimator in practice.

In this section, we conduct a small Monte Carlo to affirm that our estimator performs mod-

erately well with our data, and in particular can recover good estimates of the true distribution

of the random coefficients. We simulate data from our Model 2. Our actual data set is 9971

observations, so we perform the Monte Carlo with roughly the same sample size, N = 10, 000

observations, and with a much smaller sample size of N = 2, 500 observations.

The larger is σ 0 (the standard deviation of U0), the greater is the noise in the dependent

variable, and hence the more difficult the signal extraction problem becomes. We therefore vary

σ 0 between 0.1 and 0.5 (roughly our estimated value) in our Monte Carlo experiments. Another

factor that may greatly affect the difficulty of estimation is the correlation ρ between the random

coefficients U1 and U2, since the larger ρ is, the more difficult it becomes to separate the effects

of these two Barten scales. We therefore vary ρ across the experiments, considering values

ρ = 0, ρ = 0.5, and ρ = 0.9.

We implement the Monte Carlo by first taking independent draws from our actual observed

Xki and Zi data. We then draw observations from the (U0,U1,U2) distributions corresponding

to the experiment, and construct each associated Y , and estimate the model using these drawn

observations. We repeat this procedure B = 100 times for each experimental design. Summary

statistics across these B replications are reported in table A1, focusing on the estimates of

σ 0, σ 1 and ρ. We have six experiments corresponding to six combinations of values for N , σ 0

and ρ. For each Monte Carlo experiment, we report the mean of the estimates and their root

mean squared error (rmse) with respect to the true values in the experiment.

Our baseline estimates reported in Table 2 of the main text use a 10,000 point grid for the

numerical integration of the Model 2 likelihood function. The resulting estimation of Model

2 with our real data set took about two days to converge. So, to reduce the computation time

required for the Monte Carlo experiments, we used a courser grid of 400 points. This introduces

a small additional source of error in our reported Monte Carlo results, which may increase the

reported root mean squared errors relative to our baseline model. Note also that in both the

baseline estimator and the Monte Carlo estimates σ 1 and σ 2 are constrained to be positive (via

exponentiating underlying parameters) and that ρ is similarly constrained to lie in (−1, 1). So,

e.g., for ρ = 0.9, the root mean squared error is limited by the fact that ρ cannot exceed 1.
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Table A1: Monte Carlo Results

parameter baseline estimates Monte Carlo Experiments

σ 0 = 0.5,σ 1 =σ 2 = 0.5,N=10000

ρ = 0 ρ = 0.5 ρ = 0.9

coeff std err mean rmse mean rmse mean rmse

σ 0 0.469 0.009 0.495 0.035 0.503 0.031 0.495 0.027

σ 1 0.165 0.036 0.487 0.057 0.472 0.062 0.491 0.050

ρ 0.883 0.100 -0.154 0.358 0.397 0.294 0.901 0.112

σ 0 = 0.5, σ 1 = σ 2 = 0.5, N = 10000, ρ = 0

except: N = 2500 except: σ 0 = 0.1 except: σ 1 = σ 2 = 1

σ 0 0.485 0.060 0.084 0.037 0.485 0.040

σ 1 0.477 0.110 0.496 0.018 0.978 0.042

ρ -0.430 0.675 0.098 0.013 0.013 0.014

The results are reported in Table A1. The top panel of Table A1 shows the performance of

our estimator in the larger sample size, which is similar to the sample size of our actual data.

This panel is estimated with σ 0 = σ 1 = σ 2 = 0.5 and letting ρ vary across 0, 0.5 and 0.9. The

last column of this panel, where ρ = 0.9, is the closest simulation to our actual baseline model

empirical estimates. What is notable in this entire top panel, but particularly in the last column,

is that there is little mean bias in the estimates, and that the root mean squared errors are all of

the same order of magnitude as the estimated standard errors in our real data set. Moreover, the

largest difference between true data standard errors and monte carlo root mean squared errors is

for the noise parameter σ 0, while the match for the structural random coefficient parameters of

primary interest, ρ and σ 1, is better still. This suggests that the standard parametric asymptotic

theory we use to calculate standard errors is generating a reasonable approximation to the actual

estimator distribution.

In the bottom panel of Table A1 we analyze three other variations from the baseline. In

the first column of the lower panel, we consider a smaller sample size of 2500. One concern

regarding ill-posedness and identification at zero is that convergence might be much slower than

root N , despite our use of a parametric maximum likelihood estimator. The first column of the

lower panel addresses this concern, showing that root mean squared errors are roughly double

those of the upper panel, as would be expected by the standard parametric convergence rate.

In the middle columns of the lower panel, we consider a smaller value of σ 0. This results in

substantially reducing the root mean squared errors for σ 1 and ρ, as expected by this increase

in the signal to noise ratio. Increasing σ 1 and σ 2 in the last column of the lower panel has a

similar effect, as expected.

Overall, these results strongly suggest that potential issues associated with an ill-posed in-

verse, limited data support, and ordinary nonlinearity or multicollinearity, are not causing seri-

ous problems with the parametric estimation of our model.

1.2.2 Interactions in Utility

The indirect additive utility function V−1 = h1 (X1)+ h2 (X2) from Theorem 3 restricts price

interaction effects. To relax the restrictiveness (in terms of cross effects) of the resulting additive
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demand functions we here consider adding interaction terms to the model of Theorem 3, giving

an indirect utility function of the form

V−1 = h1 (X1)+ h2 (X2)+ S (X1, X2, ξ) (35)

where the interaction function S has a simple parametric form (with parameter vector ξ ), as in

equation (34).

By applying Roy’s identity to (35), then as before logit transforming the result, adding

Barten scales, and adding the error term U0 we obtain the demand model:

λ (W1) = ln
[
eg1(U1 X1) + M1 (U1 X1,U2 X2, ξ)

]
− ln

[
e−g2(U2 X2) + M2 (U1 X1,U2 X2, ξ)

]
+U0

(36)

where

Mk (U1 X1,U2 X2, ξ) =
∂S (U1 X1,U2 X2, ξ)

∂ ln (Uk Xk)
(37)

and, as in Theorem 3,

∂h1 (X1)

∂ ln X1

= eg1(X1) and
∂h2 (X1)

∂ ln X2

= e−g2(X2).

Keeping the same polynomial expansions for gk as before, namely, equations (15) and (16),

yields the same hk as before, equation (17), and when substituted into the above gives the

demand function

λ (W1) = ωS1 (U1 X1,U2 X2, β, ξ)+U0 (38)

= ln

[ (
β10 + β11 ln (U1 X1)+ β12 (ln (U1 X1))

2 + ...+ β1S (ln (U1 X1))
S
)2

+M1 (U1 X1,U2 X2, ξ)

]

− ln

[ (
β20 + β21 ln (U2 X2)+ β22 (ln (U2 X2))

2 + ...+ β2S (ln (U2 X2))
S
)2

+M2 (U1 X1,U2 X2, ξ)

]
+U0

The demand function given by equation (38) is the same as (18), except for the addition of the

Mk functions given by equation (37), which embody the desired price interaction terms.

We consider two models for S. One is the simple multiplicative interaction term

S = U1 X1U2 X2ξ11,

which has

M1 = M2 = U1 X1U2 X2ξ11.

This is the most obvious model for interactions, but it forces M1 = M2, pushing the g1 and g2

terms by the same amount. We therefore also consider

S = U1 X1U2 X2ξ11 + (U1 X1)
2 U2 X2ξ21 +U1 X1 (U2 X2)

2 ξ12

which allows M1 and M2 to differ:

M1 = U1 X1U2 X2 (ξ11 + 2U1 X1ξ21 +U2 X2ξ12) ,

M2 = U1 X1U2 X2 (ξ11 +U1 X1ξ21 + 2U2 X2ξ12) .

6



For both models, we restrict the parameters ξ to be weakly positive because negative values of

the parameters ξ induce violations of regularity (that is, budget shares outside 0, 1, or equiva-

lently, taking logs of negative numbers) for large values of Uk .10

Table A2 gives results for the model with the simple interaction S = U1 X1U2 X2ξ11 on the

right hand side, and for our baseline model on the left. We do not present estimates for the

more complicated interaction model because the estimated values of ξ21 and ξ12 in that case

were zero (that is, the positivity restrictions on those parameters were binding), reducing that

specification to the simple interaction model. Table A2 gives a subset of estimated coefficients,

summary statistics on budget shares and cost of living impacts, and social welfare analysis

analogous to those results in Tables 2, 3, 4 and 5 in the main text.

Looking at the top panel of Table A2, which shows the estimated parameters governing the

distributions of U0, Ũ1 and Ũ2, we see that the inclusion of the interaction term ξ11 does not

much affect the estimated variance of U0 or Ũ1, or the correlation of Ũ1 and Ũ2, but it does

seem to increase the estimated variance of Ũ2. Further, the inclusion of the interaction term

ξ11 reduces the precision of these parameter estimates. In particular, it doubles the estimated

standard error of ρ.

The magnitude of the estimated interaction term appears relatively large and significant.11

However, since we have no estimated difference between M1 and M2, the model becomes

λ (W1) = ln (eg1 + M1)−ln
(
e−g2 + M1

)
+U0, which approximately equals ln (eg1)−ln

(
e−g2

)
+

U0 using ln (eg1 + M1) ≈ ln (eg1) + ln (M1). As a result, the overall impact of the interaction

terms on behavior is rather small for most consumers. This can be seen by comparing the left

and right sides of the lower portions of Table A2. For the same reason, inclusion of interactions

generally reduces the precision with which objects like welfare losses are measured, while hav-

ing almost no impact on their estimated magnitude. For example, the bottom lines of Table A2

show that including the interaction term changes estimated welfare impacts by less than 3%,

and increases standard errors of the welfare effects by more than that amount.

10To allow for possible negative interactions, we also tried the model S = α/ (1+U1 X1U2 X2), the magnitude

of which is bounded by α ≥ 0. This specification has M1 = M2 = −U1 X1U2 X2α/ (1+U1 X1U2 X2). We then

estimate equation (38) imposing the same normalizations and using the same sieve maximum likelihood method

as before. Empirically, this did not yield any different results.
11The product Ũ1Ũ2 has a median of 1 and a right-skewed distribution, which makes the distribution of M1 =

M2 also right-skewed, with a mean of 0.047 but a median of 0.021 and an inter-decile range of (0.005, 0.098).

7



Table A2: Interactions Terms in Utility

Model 2 Model 2 w interaction

llf=-9706.9 llf=-9644.3

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.476 0.016

σ 1 0.165 0.036 0.229 0.044

σ 2 1.336 0.011 1.851 0.024

ρ 0.883 0.100 0.839 0.199

ξ11 0.671 0.093

std dev lnα1 0.252 0.261

lnα2 0.380 0.694

correlation lnα1, lnα2 -0.700 -0.540

(all obs) ln U1, ln U2 0.293 0.361

correlation lnα1, lnα2 0.105 0.434

(renter=0) ln U1, ln U2 0.699 0.729

correlation lnα1, lnα2 0.087 0.419

(renter=1) ln U1, ln U2 0.691 0.722

budget shares M, αk = αk, P = 1, Ũk = 1 0.147 0.030 0.155 0.036

(mean and std dev) M, αk, P = 1, Ũk = 1 0.148 0.048 0.153 0.049

M, αk, P, Ũk = 1 0.151 0.047 0.155 0.049

M, αk, P, Ũk 0.137 0.065 0.138 0.061

Cost-of-Living M, αk = αk, Ũk = 1 5.66 1.30 5.67 1.39

(mean and std dev) M, αk, Ũk = 1 5.64 1.69 5.55 1.61

M, αk, Ũk 5.37 4.31 5.35 4.87

Welfare Loss Arithmetic Mean 4.91 0.17 4.79 0.23

(estimate and std err) Geometric Mean 5.37 0.22 5.24 0.29

Harmonic Mean 5.85 0.30 5.70 0.41

Our overall conclusion is that possible interaction effects (and hence potential violations of

the additivity assumed by Theorem 3) may be present, but if so, they do not materially affect

our conclusions.

1.2.3 Higher Order Polynomials in Demand

Given nonparametric identification, we originally attempted to estimate the model using Sieve

Maximum Likelihood as in Chen (2007). However, we found that, given our sample size,

complexity of the model, and the dimensionality of our data, attempts to estimate more than

second or third order expansions for the unknown functions in the model yielded results that

were numerically unstable. We have therefore opted to follow a parametric Maximum Like-

lihood modeling strategy for our baseline results presented in the body of the paper, though

using functional forms based on series expansions. In this section, we consider higher-order

polynomials for the demand functions.

Our baseline model specifies demand functions using squared third-order polynomials for

functions g1 and g2. This is consistent with a large theoretical and empirical literature on
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demand estimation finding that three terms in total expenditures per demand equation are suffi-

cient to capture the shapes of various demand functions. See, e.g., Lewbel (2008) and references

therein. This specification yields a total of seven parameters (the beta’s) governing the shape of

the demand function for energy over X1, X2.

To check for adequacy of this specification we also estimated models with fourth and fifth

order polynomials. We find that the fourth and fifth order terms for energy goods (β14, β15)

are small, and are both individually and jointly insignificant. The estimated fourth and fifth-

order terms for nonenergy goods (β24, β25) are very large in magnitude but also have very large

standard errors, indicating numerical parameter instability, which is a common problem that in-

dicates overfitting when estimating high order polynomials with small data sets. To save space

we do not reproduce a full summary of alternative estimates as in Table A2, but simply note that

these high-magnitude high-variance parameters associated with higher order polynomials intro-

duce a large amount of noise into the fitted model. For example, this alternative specification

nearly triples the standard errors of estimated welfare losses. We therefore confine our empirical

analysis to the more stable squared third-order polynomials in our baseline specification.

1.2.4 Specification of the Distributions of Unobservables

Our estimated models assume that the measurement error term U0 is distributed normally, and

our baseline Model 2 assumes Ũ =
(
Ũ1, Ũ2

)
has a bivariate log-normal distribution. Here we

consider more general specifications for these distributions, based on hermite polynomial ex-

pansions of the type commonly used for sieve estimation. Denote the joint density of Ũ by fŨ J

and the density for U0 by f0J , where J indexes the order of our polynomial expansions. Specif-

ically, we let J = 0 index our baseline parameterizations where ln Ũ is a mean zero bivariate

normal and U0 is a mean zero normal. Higher values of J then correspond to richer distribution

specfications based on polynomial expansions that multiply the base normal distributions.

We employ the seminonparametric density models used by Gallant and Nychka (1987).

Ignoring trimming for now, the joint density of Ũ is specified as

fŨ J

(
Ũ1, Ũ2, γ , σ , ρ

)
=

(∑J
j1=0

∑J
j2=0 γ j1 j2

(
ln Ũ1

) j1
(
ln Ũ2

) j2
)2

Ũ1Ũ2C̃J (γ , σ , ρ)
· (39)

exp


(

ln Ũ1

σ 1

)2

− 2ρ
(

ln Ũ2

σ 2

) (
ln Ũ1

σ 1

)
+
(

ln Ũ2

σ 2

)2

−2
(
1− ρ2

)
 (40)

where γ is the vector of polynomial coefficients γ j1 j2
, σ = (σ 1, σ 2), and C̃J (γ , σ , ρ) is the

constant necessary to make fŨ J integrate to one. Because we scale by C̃J , we can without

loss of generality let γ 00 = 1. In the simplest model when J = 0 this reduces to our baseline

specification of a bivariate log normal Ũ with C̃J (γ , σ , ρ) = 2πσ 1σ 2

(
1− ρ2

)
, each ln Ũk

having mean zero and variance σ 2
k , and correlation coefficient ρ. Note that we don’t need to

explicitly model the mean of ln Ũ and hence the scaling of each Ũk , because the scaling of Ũk ,

like that of αk (Z), is freely absorbed into the βks parameters. As in our baseline specification,

we trim this distribution of ln Ũk at ±3 standard deviations. We trim to bound the support of
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Ũk away from zero and to ensure existence of a moment generating function, both as assumed

by Theorem 2. This trimming was found to have minimal numerical effects on our empirical

estimates.

We analogously model the density of U0 as

f0J (U0, δ, σ 0) =

(∑J
j=0 δ jU

j

0

)2

CJ (δ, σ 0)
exp

(
−1

2

(
U0

σ 0

)2
)

(41)

where δ0 = 1, and δ1 is set to ensure that the error term U0 has mean zero12.

Estimation then proceeds by replacing f0 and fŨ with f0J and fŨ J in equations (21) and

(23), including γ and δ as additional parameters to estimate. Table A3 summarizes results

with J = 3 for U0 and with J = 2 for ln Ũ1, ln Ũ2. Just like Table A2, Table A3 gives selected

estimates from this model on the right, along with the corresponding estimates from our baseline

model (J = 0) on the left for comparison, including summary statistics on estimated budget

shares, cost-of-living indices, and social welfare losses. J = 2 was the most flexible model we

could estimate for the joint distribution of ln Ũ1, ln Ũ2, in that attempts at estimating models

with J > 2 produced very large standard errors and numerical instability of the sort discussed

in the previous subsection.

Figures 7 and 8 show the estimated distributions of U0 and ln U based on these polynomial

expansions. Figure 7 shows only a very small departure from our baseline normal model for

the density of U0. The estimated joint distribution of ln Ũ differs from our baseline lognormal

estimate mainly in having a larger variance (particularly for ln Ũ1), and has a small second

mode. The resulting estimate of the joint density of ln U is shown in Figure 8. Comparing

Figures 3 and 8, the larger variance of ln Ũ results in the two modes of Figure 3 largely merging

into one, while the second mode in ln Ũ puts some extra mass at smaller values of U .

The estimates in these figures and in Table A3 show departures from the baseline model that

are statistically significant, but turn out to have numerically modest and insignificant affects on

our economic analyses. The estimates of every summary measure and welfare implication of

the model (see the bottom section of Table A3) are changed by less than than one standard error,

meaning that we could not reject the null hypothesis that any one of the economic implications

of the more richly specified model equal the values estimated from our baseline model.

12It is straightforward to verify that the function CJ needed for estimation is given by

CJ (δ, σ 0) = (2π)1/2
∑J

j=0

∑J
k=0 δ jδkσ

j+k+1

0 µ j+k where µ j+k = E(e j+k) for a standard nor-

mal e. Similarly, E (U0) = 0 if and only if ζ J (δ, σ 0) =
∑J

j=0

∑J
k=0 δ jδkσ

j+k

0 µ j+k+1 =
0, which we imposed on estimation by appropriately specifying δ1. For example, when

J = 3 we get C3 (δ, σ 0) = (2π)1/2
(
15δ2

3σ
7
0 +

(
6δ1δ3 + 3δ2

2

)
σ 5

0 +
(
2δ2 + δ2

1

)
σ 3

0 + σ 0

)
and

ζ 3 (δ, σ 0) = 2
(
δ1σ 0 + 3 (δ1δ2 + δ3) σ

3
0 + 15δ2δ3σ

5
0

)
, so E (U0) = 0 is imposed by setting δ1 =

−
(
3δ3σ

3
0 + 15δ2δ3σ

5
0

)
/ (σ 0 + 3δ2).
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Table A3: Non-Normal Unobserved Preference Heterogeneity

Model 2 Model 2 w squared poly

llf=-9706.88 llf=-9561.92

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.459 0.017

δ1 -0.946 0.074

δ2 0.563 0.110

σ 1 0.165 0.036 0.532 0.009

σ 2 1.336 0.011 1.401 0.062

γ 10 -2.431 0.404

γ 01 -0.109 0.113

γ 11 0.361 0.215

γ 20 -0.225 0.286

γ 21 1.299 0.260

γ 22 -0.236 0.070

γ 02 0.037 0.043

γ 1122 -0.133 0.063

ρ 0.883 0.100 0.691 0.034

std dev ln Ũ1 0.165 0.627

ln Ũ2 1.336 1.715

correlation ln Ũ1, ln Ũ2 0.883 0.740

std dev lnα1 0.252 0.190

lnα2 0.380 0.725

ln U1 0.298 0.631

ln U2 1.350 1.802

correlation lnα1, lnα2 -0.700 -0.488

(all obs) ln U1, ln U1 0.293 0.574

correlation lnα1, lnα2 0.105 0.397

(renter=0) ln U1, ln U1 0.699 0.707

correlation lnα1, lnα2 0.087 0.384

(renter=1) ln U1, ln U1 0.691 0.710

budget shares M, αk = αk, P = 1, Ũk = 1 0.147 0.030 0.152 0.027

(mean, sd) M, αk, P = 1, Ũk = 1 0.148 0.048 0.150 0.062

M, αk, P, Ũk = 1 0.151 0.047 0.154 0.063

M, αk, P, Ũk 0.137 0.065 0.130 0.068

Cost-of-Living M, αk = αk, Ũk = 1 5.66 1.30 6.10 1.75

(mean, sd) M, αk, Ũk = 1 5.64 1.69 5.83 2.44

M, αk, Ũk 5.37 4.31 6.06 5.98

Welfare Loss Arithmetic Mean 4.91 0.17 5.51 0.24

(est, std err) Geometric Mean 5.37 0.22 5.84 0.37

Harmonic Mean 5.85 0.30 6.35 0.51

Moreover, to the extent that the results from these more general specifications differ from
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baseline, they all strengthen rather than weaken our economic conclusions. For example, the

estimated variation in cost-of-living impacts due to a 50% increase in the price of energy is

larger in this model than in the baseline model, and the extent to which increasing inequality

aversion increases welfare losses is also somewhat larger.

1.2.5 Heteroskedasticity of U0

While the previous subsection considered possible non normality of U0, this subsection con-

siders potential heteroskesdasticity in U0. Heteroskedasticity of the Barten scales U1 and U2 is

already modeled by the deterministic components a1 (z) and a2 (z). As noted in the main text,

if our Barten scale model of taste variation is valid, then U1 and U2 should pick up a substan-

tial portion of what would otherwise be unexplained variation, including heteroskedasticity, in

demand. As a result, if our model is appropriate, then the nonbehavioral error term U0 should

be much smaller and more homoskedastic in Model 2 than in Model 1.

Table 2 in the main text showed that U0 is indeed much smaller in Model 2, with an estimated

standard deviation σ 0 falling from 0.666 in Model 1 to 0.469 in Model 2. To measure how much

of the heteroskedasticity that would end up in U0 is captured by the random coefficients Ũk , we

consider a maximum likelihood analog to the Breusch-Pagan test. Specifically, we reestimate

the models allowing the standard deviation of U0, σ 0, to depend on normalized prices and

demographics, and then examine the significance of these covariates in σ 0. For this test we

replace σ 0 with a function σ 0(X1, X2, Z) that is linear in the ten variables comprising, X1, X2,
and Z . We then examine the estimated size and significance of the function σ 0(X1, X2, Z) in

Models 1 and 2.

In Model 1, the sample value of the Wald test of the joint significance of the coefficients

comprising σ 0(X1, X2, Z) is 327, while in Model 2 the Wald test statistic drops by over 50%

to 145. So by this measure more than half of the heteroskedasticity in the residual U0 in Model

1 is captured (and hence explained by) the preference heterogeneity embodied by our random

Barten scale components Ũk . These Wald statistics remain above the critical values of the χ2
10

distribution at conventional levels, so although our model is big improvement over traditional

Barten scales in this dimension, there remains some residual systematic heterogeneity that our

model does not explain.13

Another way to measure how much heteroskedasticity is explained by random Barten scales

is to compare the estimated values of σ 0(X1, X2, Z) under the two models. In Model 1, the

mean and standard deviation of σ̂ 0i = σ̂ 0(X1i , X2i , Zi ) are 0.656 and 0.087, respectively. In

Model 2, the mean and standard deviation of σ̂ 0i are 0.472 and 0.068, respectively. This again

shows that random Barten scales explain a substantial portion of both the size and systematic

components of otherwise unexplained variability in demand, by making U0 both smaller and

more homoskedastic. As in Tables A2 and A3, attempting to generalize our baseline model

by modeling remaining heteroskedasticity in U0 results in almost no change in the resulting

economic analyses.

13An assumption of the model from Theorem 1 is that U0 is independent of X after conditioning on Z . In

Model 1, the coefficients of X1, X2 in σ 0(X1, X2, Z) are small in magnitude but highly statistically significant

with t statistics over 5. In contrast, the coefficients of X1, X2 in σ 0(X1, X2, Z) are even smaller and much less

significant in Model 2, with t statistics of 1.04 and 2.52, respectively.
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1.2.6 Endogeneity of Xk

All of our estimates treat normalized prices Xk as exogeneous regressors. Our model has no

constant term, and Xk does not enter Y linearly, so endogeneity with respect to the measure-

ment error U0 is difficult to motivate. In contrast, endogeneity of Xk with respect to the un-

observed preference heterogeneity parameters Ũ1 and Ũ2 is certainly possible. For example the

distribution of Ũ is assumed to be independent of regressors, so the presence of unobserved

characteristics that correlate with both Ũk and other regressors could induce bias, specifically

bias in the estimates of the ak functions (since the Ũk terms are specifically the unobserved

components of Barten scales and hence of preference heterogeneity, while the ak functions are

the observed components of Barten scales).

As discussed in the text, Canadian households are a small fraction of the world energy

market, and so are unlikely to have much effect on energy prices. However, Ũk could be cor-

related with Xk to the extent that the distribution of Canadian household preferences affects

total Canadian household demand, and such demand contributes to differences between local

(within Canada) energy prices and world energy prices. Similar arguments may apply to nonen-

ergy prices, and measurement error in M could similarly cause correlations between the errors

and regressors.

To test for the possibility that budgets M or prices P1 and P2 are endogenous, we try in-

strumenting these variables with gross annual income by source (for budgets), world oil price

(for energy prices) and the US residential Case-Shiller index (for nonenergy prices), all inter-

acted with observed demographics Z and a constant. The first stage for these regressions is

very strong, with F statistics in excess of 100 in all 3 cases, so the instruments are not weak.

We cannot test for exogeneity of these instruments, since we do not have observed residuals

analogous to Ũ1 and Ũ2 with which to construct an overidentification test. However, we note

that the use of income to instrument total expenditures M is standard in the consumer demand

literature. The world oil price ought to be a valid instrument for energy prices in Canada be-

cause Canadian residential demand is such a small component of the world energy market. It

is also a relatively strong instrument, especially since we interact it with Z which includes the

calendar year, thereby obtaining sufficient variation in the prediction (R2 is about 0.75 in this

first stage regression). The US residential price index is likewise to be a good instrument for

Canadian non-energy prices because Canadian residential prices are correlated with USA resi-

dential prices, but are not a big driver of them, and because local goods and service prices are

highly correlated with residential prices (see, e.g., Moretti 2012).

Given the nonlinearities and nonseparable errors in our model, we use control function

methods to test for endogeneity. As observed in, e.g., Wooldridge (2011), testing the signifi-

cance of the coefficients of control function residuals provides a valid test of endogeneity, even

when the resulting control function estimator does not satisfy all of the assumptions necessary

to completely cure the potential endogeneity problem. This is relevant because endogeneity

due to simultaneity of supply and demand does not in general lead to the triangular structures

necessary for validity of control function based estimation.
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Table A4: Estimates with Control Function Corrections

Model 2 Model 2 w ctrl fns

llf=-9706.88 llf=-9644.41

Parameter Estimate Std Err Estimate Std Err

σ 0 0.469 0.009 0.394 0.022

σ 1 0.165 0.036 0.288 0.030

σ 2 1.336 0.011 1.208 0.038

ρ 0.883 0.100 0.465 0.069

α1 vln M 0.234 0.037

vln P1
-0.187 0.064

vln P2
-0.100 0.169

α2 vln M 0.337 0.030

vln P1
-0.238 0.028

vln P2
1.249 0.084

std dev lnα1 0.252 0.244

lnα2 0.380 0.344

ln U1 0.298 0.372

ln U2 1.350 1.235

correlation lnα1, lnα2 -0.700 -0.444

ln U1, ln U2 0.293 0.258

correlation:renter=0 lnα1, lnα2 0.105 0.464

ln U1, ln U2 0.699 0.456

correlation: renter=1 lnα1, lnα2 0.087 0.459

ln U1, ln U2 0.691 0.444

budget shares M, αk = αk, P = 1, Ũk = 1 0.147 0.030 0.147 0.036

(mean, sd) M, αk, P = 1, Ũk = 1 0.148 0.048 0.148 0.051

M, αk, P, Ũk = 1 0.151 0.047 0.151 0.051

M, αk, P, Ũk 0.137 0.065 0.139 0.074

Cost-of-Living M, αk = αk, Ũk = 1 5.66 1.30 6.29 1.69

(mean, sd) M, αk, Ũk = 1 5.64 1.69 6.28 2.08

M, αk, Ũk 5.37 4.31 5.80 3.83

Welfare Loss Arithmetic Mean 4.91 0.17 5.20 0.18

(mean, std err) Geometric Mean 5.37 0.22 5.67 0.22

Harmonic Mean 5.85 0.30 6.12 0.31

We obtain control function residuals by regressing ln M , ln P1 and ln P2 on our instrument

vector and on demographic characteristics Z . We then include the residuals from these three

regressions as control function regressors inside the functions α1 and α2. The sample value of

the Wald test statistic for the hypothesis that all six control functions are zero is 713, and the

likelihood ratio test statistic for the hypothesis is 124, which are both above conventional chi

squared statistic critical values. We therefore cannot reject the hypothesis that no endogeneity is

present, however, as with our other robustness checks, we can examine whether including these

control function residuals materially affects our estimates, and hence verify whether attempting
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to correct for potential endogeneity would be economically relevant. Note, however, that these

estimates, which are provided in Table A4 in the same form as Tables A2 and A3, are only

consistent if endogeneity takes the specific control function form.

Most of the impact of the control function residuals is due to the log budget residual vln M .

This is consistent with our a priori belief that unobserved preference heterogeneity is unlikely to

have much correlation with prices, but might well be correlated with the budgets of households,

possibly due to measurement error in M . As in our previous robustness checks, the correction

for potential endogeneity does not change our economic analyses much. One difference is that

the estimated correlation between lnα1 and lnα2 is increased, but this is offset by an estimated

decrease in the correlation between ln Ũ1 and ln Ũ2, leaving the estimated correlation between

the Barten scales ln U1 and ln U2 little changed.

As with our experiments estimating more complicated error distributions, to the extent that

controlling for potential endogeneity differs from baseline, all of the results in this alternative

specification strengthen rather than weaken our economic conclusions. For example, the esti-

mated variation in cost-of-living impacts due to a 50% increase in the price of energy is larger

when including control function residual than in the baseline model, and the extent to which

increasing inequality aversion increases welfare losses is also increased a small amount.
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