Validity of Quasi-Static Approximation in Dark Energy / Modified Gravity Theories

16th CCGRRA

Alex Zucca July 7, 2016

Simon Fraser University

Work in Progress

Joint work with L.Pogosian, D.Steer, D.Langlois.

AstroParticule et Cosmologie Laboratoire in Paris (University Paris Diderot)

Why looking beyond the standard cosmological model ($\Lambda \text{CDM+GR}$)?

Why looking beyond the standard cosmological model ($\Lambda \text{CDM+GR}$)?

• Cosmological Constant Problem

Why looking beyond the standard cosmological model ($\Lambda CDM+GR$)?

- Cosmological Constant Problem
- Is there any viable alternative to GR at cosmological scales? (Test gravity at large scales).

Why looking beyond the standard cosmological model ($\Lambda CDM+GR$)?

- Cosmological Constant Problem
- Is there any viable alternative to GR at cosmological scales? (Test gravity at large scales).

Why looking beyond the standard cosmological model ($\Lambda CDM+GR$)?

- Cosmological Constant Problem
- Is there any viable alternative to GR at cosmological scales? (Test gravity at large scales).

Conference Advertisement!

Testing Gravity. 25-29 January, 2017, Vancouver.

Introduce an additional scalar degree of freedom ϕ in $S_g.$ ($S_{\rm tot} = S_g + S_m$).

4

Introduce an additional scalar degree of freedom ϕ in S_g . ($S_{\rm tot} = S_g + S_m$).

Implement your favorite model in a Boltzmann solver.

- ullet CAMB o MGCAMB, EFTCAMB
- CLASS → HiCLASS

Δ

Introduce an additional scalar degree of freedom ϕ in $S_g.$ ($S_{\rm tot} = S_g + S_m$).

Implement your favorite model in a Boltzmann solver.

- ullet CAMB o MGCAMB, EFTCAMB
- CLASS → HiCLASS

Compare theory with cosmological data.

- CMB
- Weak Lensing, Redshift Space Distorsion,
- ...

Introduce an additional scalar degree of freedom ϕ in S_g . ($S_{\text{tot}} = S_g + S_m$).

Implement your favorite model in a Boltzmann solver.

- CAMB → MGCAMB, EFTCAMB
- CLASS → HiCLASS

Compare theory with cosmological data.

- CMB
- Weak Lensing, Redshift Space Distorsion,
- ...

Explore parameter space of the model. For example Hu-Sawicki f(R) gravity: f_{R_0}, n

$$f(R) = R - 2\Lambda + \frac{f_{R_0}}{n} \frac{R_0^{n+1}}{R^n}$$

Δ

How to implement MG/DE in Boltzmann codes?

- 1. "From scratch": modify the action S. Solve all the equations.
- 2. Parametrize the deviations from GR (phenomenological).

How to implement MG/DE in Boltzmann codes?

- 1. "From scratch": modify the action S. Solve all the equations.
- 2. Parametrize the deviations from GR (phenomenological).

Phenomenological parametrization.

- $\mu(a,k)$: deviation from GR in the Poisson equation $k^2\Psi=-\tfrac{3}{2}\Omega_M\mu(a,k)\rho(a)\delta(a,k)$
- $\gamma(a,k)$: deviation from GR in the gravitational slip equation $\Phi/\Psi=\gamma(a,k)$

$$ds^{2} = -(1+2\Phi)dt^{2} + (1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$

For a specific model, the functions μ and γ are obtained using the Quasi-Static Approximation.

5

Scalar-Tensor theory:

$$S_{\text{tot}} = S_g(g_{\mu\nu}, \pi) + S_m(g_{\mu\nu}, \chi)$$

The variational principle gives us

- $\delta_{g_{\mu\nu}}S_g=0 o$ (Modified) Einstein equations.
- $\delta_{\pi}S_{\text{tot}} = 0 \rightarrow \text{Dynamical equation for } \pi.$
- $T^{\mu\nu}_{;\nu}=0$. (Minimally coupled matter)

Scalar-Tensor theory:

$$S_{\text{tot}} = S_g(g_{\mu\nu}, \pi) + S_m(g_{\mu\nu}, \chi)$$

The variational principle gives us

- $\delta_{g_{\mu\nu}}S_g=0 o$ (Modified) Einstein equations.
- $\delta_{\pi}S_{\text{tot}} = 0 \rightarrow \text{Dynamical equation for } \pi.$
- $T^{\mu\nu}_{;\nu}=0$. (Minimally coupled matter)

Combine above equations to get:

$$\ddot{\Psi} + A(k_H^2, t)\dot{\Psi} + B(k_H^2, t)\Psi = C(k_H^2, t)\delta + D(k_H^2, t)v$$

$$E(\Psi, \Phi) = 0$$

6

Consider sub-horizon scales $k_H^2 \gg 1$.

Quasi-Static Limit: assume $k_H^2\Psi\gg\ddot{\Psi},\dot{\Psi}.$ The equation for Ψ becomes

$$k^2\Psi = -\frac{3}{2}\Omega_M f(a,k)\delta$$

This is the reason why MG is often parametrized through $\mu(a,k), \gamma(a,k)$ functions.

7

Consider sub-horizon scales $k_H^2\gg 1$.

Quasi-Static Limit: assume $k_H^2\Psi\gg\ddot{\Psi},\dot{\Psi}.$ The equation for Ψ becomes

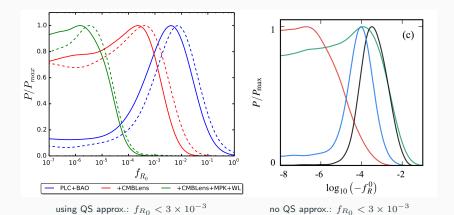
$$k^2\Psi = -\frac{3}{2}\Omega_M f(a,k)\delta$$

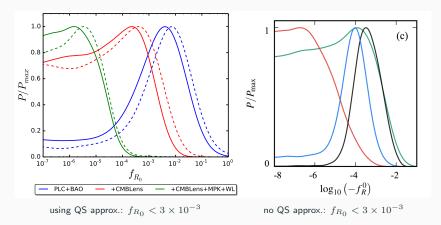
This is the reason why MG is often parametrized through $\mu(a,k), \gamma(a,k)$ functions.

Problem!

The scalar field π could induce oscillations in the potential Ψ endangering the quasi-static approximation validity.

People don't want to rely on the Quasi-Static Approximation.





- 1. What are the MG/DE theories for which the QS approximation works?
- 2. What is the range of validity of the QS approximation?
- 3. How sensitive is cosmological data to deviations from the QS approximation?

Validity of Quasi-Static Approximation

EFT of Dark Energy

Most general Lagrangian in the context of linear perturbations about FLRW.

Each MG/DE theory is specified by 5 time dependent functions:

$$\alpha_B, \alpha_T, \alpha_M, \alpha_K, \alpha_H.$$

EFT of Dark Energy

Most general Lagrangian in the context of linear perturbations about FLRW.

Each MG/DE theory is specified by 5 time dependent functions:

$$\alpha_B, \alpha_T, \alpha_M, \alpha_K, \alpha_H.$$

Starting Point:

Equation for Ψ :

$$\ddot{\Psi} + \frac{\beta_1 \beta_2 + \beta_1 \beta_3 k_H^2}{\beta_1 + \alpha_B^2 k_H^2} H \dot{\Psi} + \frac{\beta_1 \beta_4 + \beta_1 \beta_5 k_H^2 + c_s^2 \alpha_B^2 k_H^4}{\beta_1 + \alpha_B^2 k_H^2} H^2 \Psi
= -\frac{3}{2} \Omega_M H^2 \frac{\beta_1 \beta_6 + \beta_7 \alpha_B^2 k_H^2}{\beta_1 + \alpha_B^2 k_H^2} \delta - \frac{3}{2} \Omega_M H^2 \frac{\beta_1 \beta_8 + \beta_9 \alpha_B^2 k_H^2}{\beta_1 + \alpha_B^2 k_H^2} H v.$$
(1)

Gravitational "slip" equation:

$$\alpha_B^2 k_H^2 (\Phi - \Psi \frac{\xi}{\alpha_B}) + \beta_1 \left[\Phi - \Psi (1 + \alpha_T) \left(1 + \hat{\alpha} \frac{\alpha_T - \alpha_M}{2\beta_1} \right) \right]$$

$$= \frac{\alpha_T - \alpha_M}{2} \left\{ \hat{\alpha} \frac{\dot{\Psi}}{H} + 3\Omega_M \alpha_B \delta + 3\Omega_M \frac{\alpha_K - 6\alpha_B}{2} Hv \right\}$$
(2)

a

Sub-horizon scales $k_H^2\gg 1.$ Natural expansion in powers of $1/k_H^2.$

$$\ddot{\Psi} + \beta_3 H \dot{\Psi} + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + c_s^2 k_H^2 \right] H^2 \Psi$$

$$= -\frac{3}{2} \Omega_M H^2 \left[\beta_7 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_6 - \beta_7) \right] \delta - \frac{3}{2} \Omega_M H^2 \left[\beta_9 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_8 - \beta_1) \right] Hv.$$
(3)

Sub-horizon scales $k_H^2\gg 1$. Natural expansion in powers of $1/k_H^2$.

$$\ddot{\Psi} + \beta_3 H \dot{\Psi} + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + c_s^2 k_H^2 \right] H^2 \Psi$$

$$= -\frac{3}{2} \Omega_M H^2 \left[\beta_7 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_6 - \beta_7) \right] \delta - \frac{3}{2} \Omega_M H^2 \left[\beta_9 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_8 - \beta_5) \right] Hv.$$
(3)

Continuity and Euler equations:

$$\dot{\delta} = k_H^2 H^2 v + 3\dot{\Psi},\tag{4}$$

$$\dot{v} = -\Phi. \tag{5}$$

Hierarchy of variables:

$$H^2 v \sim \mathcal{O}\bigg(\frac{1}{k_H^2}\delta\bigg), \quad \Psi, \Phi \sim \mathcal{O}\bigg(\frac{1}{k_H^2}\delta\bigg).$$

Sub-horizon scales $k_H^2\gg 1$. Natural expansion in powers of $1/k_H^2$.

$$\ddot{\Psi} + \beta_3 H \dot{\Psi} + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + c_s^2 k_H^2 \right] H^2 \Psi$$

$$= -\frac{3}{2} \Omega_M H^2 \left[\beta_7 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_6 - \beta_7) \right] \delta - \frac{3}{2} \Omega_M H^2 \left[\beta_9 + \frac{1}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_8 - \beta_1) \right] Hv.$$
(3)

Continuity and Euler equations:

$$\dot{\delta} = k_H^2 H^2 v + 3\dot{\Psi},\tag{4}$$

$$\dot{v} = -\Phi. \tag{5}$$

Hierarchy of variables:

$$H^2 v \sim \mathcal{O}\bigg(\frac{1}{k_H^2}\delta\bigg), \quad \Psi, \Phi \sim \mathcal{O}\bigg(\frac{1}{k_H^2}\delta\bigg).$$

Define a parameter ϵ that counts the intrinsic dependence on $1/k_H^2$.

Splitting the potential

IDEA (Bellini, Sawicki (2015)): split the potential Ψ in

$$\Psi = \underbrace{\Psi_{QS}}_{\text{quasi-static part}} + \underbrace{\psi}_{\text{oscillation}}$$

Splitting the potential

IDEA (Bellini, Sawicki (2015)): split the potential Ψ in

$$\Psi = \underbrace{\Psi_{QS}}_{\text{quasi-static part}} + \underbrace{\psi}_{\text{oscillation}}$$

 ψ is the oscillatory part of Ψ if the resulting equation for ψ is of the form

$$\ddot{\psi} + (\dots)\dot{\psi} + (\dots)\psi = 0.$$

Splitting the potential

IDEA (Bellini, Sawicki (2015)): split the potential Ψ in

$$\Psi = \underbrace{\Psi_{QS}}_{\text{quasi-static part}} + \underbrace{\psi}_{\text{oscillation}}$$

 ψ is the oscillatory part of Ψ if the resulting equation for ψ is of the form

$$\ddot{\psi} + (\dots)\dot{\psi} + (\dots)\psi = 0.$$

We need an "ansatz" for Ψ_{QS} . Following the usual QS approximation we define (up to first order in ϵ)

$$c_s^2 k_H^2 \Psi_{QS} = -\frac{3}{2} \Omega_M \left[A_1 + \frac{\epsilon}{k_H^2} A_2 \right] \delta - \frac{3}{2} \Omega_M \epsilon B_1 H v.$$

11

Oscillation equation

Substitute in the QS ansatz in the equation for Ψ (up to first order in ϵ)

$$\epsilon(\ddot{\Psi}_{QS} + \ddot{\psi}) + \beta_3 H \epsilon(\dot{\Psi}_{QS} + \dot{\psi}) + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + c_s^2 \frac{k_H^2}{\epsilon}\right] H^2 \epsilon(\Psi_{QS} + \psi)$$

$$= -\frac{3}{2} \Omega_M H^2 \left[\beta_7 + \frac{\epsilon}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_6 - \beta_7)\right] \delta - \frac{3}{2} \Omega_M H^2 \beta_9 H \epsilon v + \mathcal{O}(\epsilon^2)$$

Oscillation equation

Substitute in the QS ansatz in the equation for Ψ (up to first order in ϵ)

$$\begin{split} \epsilon(\ddot{\Psi}_{QS} + \ddot{\psi}) + \beta_3 H \epsilon(\dot{\Psi}_{QS} + \dot{\psi}) + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + c_s^2 \frac{k_H^2}{\epsilon} \right] H^2 \epsilon(\Psi_{QS} + \psi) \\ = -\frac{3}{2} \Omega_M H^2 \left[\beta_7 + \frac{\epsilon}{k_H^2} \frac{\beta_1}{\alpha_B^2} (\beta_6 - \beta_7) \right] \delta - \frac{3}{2} \Omega_M H^2 \beta_9 H \epsilon v + \mathcal{O}(\epsilon^2) \end{split}$$

Take derivatives w.r.t. t of the QS ansatz.

Use continuity and Euler equations to eliminate the dependence on $\dot{\delta}$ and $\dot{v}.$

$$\epsilon \ddot{\psi} + \beta_3 H \epsilon \dot{\psi} + \left[\frac{\beta_1}{\alpha_B^2} (\beta_5 - c_s^2) + \frac{3}{2} \Omega_M \frac{A_1}{c_s^2} \frac{\xi}{\alpha_B} + c_s^2 \frac{k_H^2}{\epsilon} \right] H^2 \epsilon \psi
= -\frac{3}{2} H^2 \Omega_M \left[\left(\beta_7 - A_1 \right) + \frac{\epsilon}{k_H^2} \mathcal{G}_1 \right] \delta - \frac{3}{2} H^2 \Omega_M \left(\beta_9 - \mathcal{G}_2 \right) \epsilon H v + \mathcal{O}(\epsilon^2),$$

Gravitational Instability

How does ψ affect the growth of δ ?

$$\dot{\delta} = k_H^2 H^2 v + 3\Psi, \dot{v} = -\Phi.$$

$$\ddot{\delta} + \left(2H + \frac{\epsilon}{C_1}\right)\dot{\delta} - \left(\frac{3}{2}\Omega_M \frac{\beta_7}{c_s^2}H^2 + \frac{3}{2}\Omega_M \frac{\alpha_T - \alpha_M}{\alpha_B} - \frac{\epsilon}{k_H^2}C_2\right)\delta = S[\psi]$$
$$S[\psi] = -k_H^2 H^2 \psi + \epsilon C_3(k_H^2, \psi, \dot{\psi}, \ddot{\psi})$$

Work in Progress..

- \bullet Gravitational Collapse δ
- Lensing: Weyl Potential $\Phi_+ = (\Phi + \Psi)/2$
- Check the QS limit for specific models

Thank you!