Calculus Notes, Physics 346

If $y=f(x)$, the derivative is written as either $\frac{d y}{d x}$ or $f^{\prime}(x)$. Physicists usually prefer the form $\frac{d y}{d x}$ since it resembles the ratio $\frac{\Delta y}{\Delta x}$ which equals the derivative for the limit where Δx approaches zero. Below are some examples of simple differentiation relevant to this course:

1. Derivative of a polynomial: If $y=A x^{n}$ where n is an integer $\frac{d y}{d x}=(n-1) A x^{n-1}$

Example: If $y(x)=A x^{3}$ then $\frac{d y}{d x}=3 A x^{2}$
2. Note that the derivative of $y(x)=\frac{1}{x^{n}}$ can also be calculated using the above

Example: If $y(x)=\frac{A}{x^{3}}$ then $\frac{d y}{d x}=(-3) A x^{-4}=\frac{-3 A}{x^{4}}$
3. Derivative of the exponential function (special property)

If $y(x)=e^{x}$, then $\frac{d y}{d x}=e^{x}$
4. Chain rule: Sometimes we can calculate derivatives of a more complicated function by using the chain rule:
If $y(x)$ can be written in the form $y(x)=y(u(x))$ then the derivative is given by $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Example: $y=e^{-k x}$ can be written in the form $y(u)=e^{u}$ where $u(x)=-k x$
$\frac{d y}{d u}=e^{u}$ and $\frac{d u}{d x}=-k$
Therefore $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=e^{u} \times(-k)=-k e^{-k x}$
Example $y=\frac{1}{\left(A+B x^{3}\right)^{2}}$. In this case define $y=\frac{1}{u^{2}}$ where $u=\left(A+B x^{3}\right)$.
The chain rule says $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
$\frac{d y}{d u}=\frac{-2}{u^{3}}$
The derivative of $u=\left(A+B x^{3}\right)$ is $\frac{d u}{d x}=3 B x^{2}$
The complete answer is $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\frac{(-2)}{\left(A+B x^{3}\right)^{3}}\left(3 B x^{2}\right)$

