Electricity & Magnetism Lecture 9: Electric Current

Today's Concept:

Electric Current

How do you feel about circuits

- A)I completely understand them from high school
- B) Need Review
- C)Still hopeless
- D)Circuit? What's that?

Your stuff

- → so which way does DC current flow? -_-
- → "How many different things will sigma symbolize???"
- "Since R = ρL/A, the greater the cross sectional area, the smaller the resistance, but the greater the length the higher the resistance. Is that why long cables have to be very thick?"
- → "What if I put ammeter right between + and -?"
- "the part relating to the ohm's law and current density stuff makes no sense to me."

A Big Idea Review

Coulomb's Law

Force law between point charges

$$\vec{F}_{1,2} = \frac{kq_1q_2}{r_{1,2}^2} \hat{r}_{1,2}$$

Electric Field

Force per unit charge

$$\vec{E} \equiv \frac{\vec{F}}{q}$$

Electric Field

Property of Space Created by Charges Superposition

Gauss' Law

Flux through closed surface is always proportional to charge enclosed

$$\oint_{\text{surface}} \vec{E} \cdot \vec{A} = \frac{Q_{\text{enclosed}}}{\epsilon_0}$$

Gauss' Law

Can be used to determine F field

Electric Potential

Potential energy per unit charge

$$\Delta V_{a \to b} \equiv \frac{\Delta U_{a \to b}}{q} = -\int_{a}^{b} \vec{E} \cdot d\vec{k}$$

Capacitance

Relates charge and potential for two conductor system

$$C \equiv \frac{Q}{V}$$

Electric Potential

Scalar Function that can be used to determine E $\vec{E} = -\vec{\nabla} V$

A Note on Units

- ★ Force is newtons: N = kg•m/s²
- * Electric Field: newton/coulomb (N/C = V/m)
- * Electric potential: newton-meter/coulomb = volt
 - \rightarrow kg•m²/s²C = V
- * Capacitance: farad = coulomb/volt
 - representation for farad is big, we usually use
 - $\mu F = 10^{-6} F$
 - pF = 10^{-12} F (µµF in olden days, "puffs" now)
 - (nF = 10^{-9} not customary in N. America)

Applications of Big Ideas

Conductors

Charges free to move

They move until E = 0!

Spheres
Cylinders
Infinite Planes

Field Lines & Equipotentials

Work Done By E Field

Gauss'

Law

$$W_{a \to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

Change in Potential Energy

$$\Delta V_{a \to b} \equiv \frac{\Delta U_{a \to b}}{q} = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

Capacitor Networks

Key Concepts:

- 1) How resistance depends on A, L, σ , ρ σ is **conductivity** here (not surface charge density) ρ is **resistivity** here (not volume charge density).
- 2) How to combine resistors in series and parallel
- 3) Understanding resistors in circuits

Today's Plan:

- 1) Review of resistance & preflights
- 2) Work out a circuit problem in detail

Observables:

$$V = EL$$
 $I = JA$
 $I = V/(L/\sigma A)$
 $R = Resistance$
 $I = V/R$
 $I = V/R$
 $I = V/R$

 $\rho = 1/\sigma$

This is just like Plumbing!

I is like flow rate of water

V is like pressure

R is how hard it is for water to flow in a pipe

$$R = \frac{L}{\sigma A}$$

To make R big, make L long or A small

To make R small, make L short or A big

A)
$$V_1 > V_2$$
 B) $V_1 = V_2$ C $V_1 < V_2$

Two Resistors: Question 1 (N = 23)

$$A_2 = 4A_1 \Longrightarrow V_2 = \frac{1}{4}V_1$$

Same current through both resistors

Compare voltages across resistors

$$R \propto \frac{L}{A}$$

$$V = IR \propto \frac{L}{A}$$

Two Resistors: Question 3 (N = 23)

$$L_2 = 2L_1 \Longrightarrow V_2 = 2V_1$$

CheckPoint: Current Density

The SAME amount of current I passes through three different resistors. R₂ has twice the cross-sectional area and the same length as R₁, and R₃ is three times as long as R₁ but has the same cross-sectional area as R₁. In which case is the CURRENT DENSITY

2σ

Same Current

Resistor Summary

Series

Wiring

Each resistor on the same wire.

Voltage

<u>Different</u> for each resistor.

$$V_{total} = V_1 + V_2$$

Voltage Divider

Current

<u>Same</u> for each resistor

$$I_{total} = I_1 = I_2 \\$$

Resistance

 $\frac{\text{Increases}}{R_{eq} = R_1 + R_2}$

Parallel

Each resistor on a different wire.

<u>Same</u> for each resistor.

$$V_{total} = V_1 = V_2$$

<u>Different</u> for each resistor

$$I_{total} = I_1 + I_2$$
Current Divider

Decreases

$$1/R_{eq} = 1/R_1 + 1/R_2$$

Symbols

- Resistor symbol (ANSI)
 - N. America, Japan, China(?)

4.7 k = 4700 ohm
1.8
$$\Omega$$
 = 1.8 ohm

- * Alternate resistor symbol (DIN)
 - Europe, Middle East, Aus/NZ, Africa(?)

* Voltage Source

* Electrochemical Cell ("battery")

sometimes used for voltage source

Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the current through R_2 with the current through R_3 :

A.
$$I_2 > I_3$$

B.
$$I_2 = I_3$$

 $C. I_2 < I_3$

Resistor Network: Question 1 (N = 23)

 R_2 in series with R_3

Current through R_2 and R_3 is the same

$$I_{23} = \frac{V}{R_2 + R_3}$$

CheckPoint 2

Compare the current through R_1 with the current through R_2

$$I_1 \longrightarrow I_2$$

CheckPoint 3

Compare the voltage across R_2 with the voltage across R_3

$$V_2 \longrightarrow V_3$$

CheckPoint 4

Compare the voltage across R_1 with the voltage across R_2

$$V_1 \longleftrightarrow V_2$$

Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the current through R₁ with the current through R₂:

A.
$$I_1/I_{23}=1/2$$

B.
$$I_1/I_{23}=1/3$$

C.
$$I_1 = I_{23}$$

D.
$$I_1/I_{23}=2$$

E. $I_1/I_{23}=3$

E.
$$I_1/I_{23}$$
=3

We know:

 $I_{23} = \frac{V}{R_2 + R_3}$

$$I_1 = \frac{V}{R}$$

$$I_1 = I_{23} \frac{R_2 + R_3}{R_1}$$

$$\frac{I_1}{I_{23}} = \frac{R_2 + R_3}{R_1} = 2$$

Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the voltage across R₂ with the voltage across R₃:

A.
$$V_2 > V_3$$

B.
$$V_2 = V_3 = V$$

C.
$$V_2 = V_3 < V$$

D.
$$V_2 < V_3$$

$$V_{23} = V$$

$$V_{23} = V_2 + V_3$$
 $V_2 = V_3 = \frac{V}{2}$

$$R_2 = R_3 \Longrightarrow V_2 = V_3$$

Three resistors are connected to a battery with emf V as shown. The resistances of the resistors are all the same, i.e. $R_1 = R_2 = R_3 = R$.

Compare the voltage across R_1 with the voltage across R_2 .

A.
$$V_1 = V_2 = V$$

B.
$$V_1 = 1/2 V_2 = V$$

C.
$$V_1 = 2V_2 = V$$

D.
$$V_1 = 1/2 V_2 = 1/5 V$$

E.
$$V_1 = 1/2 V_2 = 1/2 V$$

 R_1 in parallel with series combination of R_2 and R_3

$$V_1 = V_{23}$$

$$R_2 = R_3 \Rightarrow V_2 = V_3 \longrightarrow V_1 = 2V_2 = V$$

$$V_{23} = V_2 + V_3 = 2V_2$$

In the circuit shown: V = 18V,

$$R_1 = 1\Omega, \ R_2 = 2\Omega, R_3 = 3\Omega, \text{ and } R_4 = 4\Omega.$$

What is V_2 , the voltage across R_2 ?

Conceptual Analysis:

Ohm's Law: when current I flows through resistance R, the potential drop V is given by: V = IR.

Resistances are combined in series and parallel combinations

$$\begin{split} R_{series} &= R_a + R_b \\ \left(1/R_{parallel} \right) &= \left(1/R_a \right) + \left(1/R_b \right) \end{split}$$

Strategic Analysis:

Combine resistances to form equivalent resistances

Evaluate voltages or currents from Ohm's Law

Expand circuit back using knowledge of voltages and currents

In the circuit shown: V = 18V,

$$R_1 = 1\Omega, \ R_2 = 2\Omega, R_3 = 3\Omega, \text{ and } R_4 = 4\Omega.$$

What is V_2 , the voltage across R_2 ?

Combine Resistances:

 R_1 and R_2 are connected:

- A) in series
- B) in parallel

C) neither in series nor in parallel

Parallel Combination

Parallel: Can make a loop that contains only those two resistors

Series Combination

Series: Every loop with resistor 1 also has resistor 2.

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

We first will combine resistances $R_2 + R_3 + R_4$:

Which of the following is true?

- A) R_2 , R_3 and R_4 are connected in series
- B) R_2 , R_3 , and R_4 are connected in parallel
- C) R_3 and R_4 are connected in series (R_{34}) which is connected in parallel with R_2
- D) R_2 and R_4 are connected in series (R_{24}) which is connected in parallel with R_3
- E) R_2 and R_4 are connected in parallel (R_{24}) which is connected in parallel with R_3

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

 R_2 and R_4 are connected in series (R_{24}) which is connected in parallel with R_3

Redraw the circuit using the equivalent resistor R_{24} = series combination of R_2 and R_4 .

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

What is V_2 , the voltage across R_2 ?

Combine Resistances:

 R_2 and R_4 are connected in series = R_{24} R_3 and R_{24} are connected in parallel = R_{234}

What is the value of R_{234} ?

A)
$$R_{234} = 1 \ \Omega$$
 B) $R_{234} = 2 \ \Omega$ C) $R_{234} = 4 \ \Omega$ D) $R_{234} = 6 \ \Omega$

$$R_2$$
 and R_4 in series $R_{24} = R_2 + R_4 = 2\Omega + 4\Omega = 6\Omega$

$$(1/R_{parallel}) = (1/R_a) + (1/R_b)$$
 \longrightarrow $1/R_{234} = (1/3) + (1/6) = (3/6) \Omega^{-1}$ \longrightarrow $R_{234} = 2 \Omega$

In the circuit shown: V = 18V,

$$R_1 = 1\Omega$$
, $R_2 = 2\Omega$, $R_3 = 3\Omega$, and $R_4 = 4\Omega$.

$$R_{24} = 6\Omega \qquad R_{234} = 2\Omega$$

What is V_2 , the voltage across R_2 ?

 R_1 and R_{234} are in series. $R_{1234} = 1 + 2 = 3 \Omega$

Our next task is to calculate the total current in the circuit

Ohm's Law tells us:
$$I_{1234} = V/R_{1234}$$

$$= 18 / 3$$

$$= 6 \text{ Amps}$$

In the circuit shown: V = 18V,

$$R_1$$
 = 1Ω , R_2 = 2Ω , R_3 = 3Ω , and R_4 = 4Ω .

$$R_{24} = 6\Omega$$
 $R_{234} = 2\Omega$ $I_{1234} = 6A$

What is V_2 , the voltage across R_2 ?

$$I_{234} = I_{1234}$$
 Since R_1 in series with R_{234}

$$V_{234} = I_{234} R_{234}$$

$$= 6 \times 2$$

What is V_{ab} , the voltage across R_{234} ?

$$A) V_{ab} = 1 V$$

B)
$$V_{ab} = 2 V$$

C)
$$V_{ab} = 9 \ V$$

A)
$$V_{ab} = 1 \ V$$
 B) $V_{ab} = 2 \ V$ C) $V_{ab} = 9 \ V$ D) $V_{ab} = 12 \ V$ E) $V_{ab} = 16 \ V$

E)
$$V_{ab} = 16 \ V$$

V = 18V

$$R_1 = 1\Omega$$

$$R_2 = 2\Omega$$

$$R_3 = 3\Omega$$

$$R_4=4\Omega$$

$$R_{24}=6\Omega$$

$$R_{234} = 2\Omega$$

$$I_{1234} = 6 \text{ Amps}$$

$$I_{234} = 6 \text{ Amps}$$

$$V_{234} = 12V$$

Which of the following are true?

A)
$$V_{234} = V_{24}$$

B)
$$I_{234} = I_{24}$$

 R_3 and R_{24} were combined in parallel to get R_{234}

Voltages are same! What is V_2 ?

Ohm's Law

$$I_{24} = V_{24} / R_{24}$$

$$= 12/6$$

= 2 Amps

V = 18V

$$R_1 = 1\Omega$$

$$R_2 = 2\Omega$$

$$R_3 = 3\Omega$$

$$R_4 = 4\Omega$$
.

$$R_{24} = 6\Omega$$

$$R_{234} = 2\Omega$$

$$I_{1234} = 6 \text{ Amps}$$

$$I_{234} = 6 \text{ Amps}$$

$$V_{234} = 12V$$

$$V_{24} = 12V$$

$$I_{24} = 2 \text{ Amps}$$

What is V_2 ?

Which of the following are true?

A)
$$V_{24} = V_2$$
 B) $I_{24} = I_2$

B)
$$I_{24} = I_2$$

 R_2 and R_4 where combined in series to get R_{24} \longrightarrow Currents are same!

The Problem Can Now Be Solved!

Ohm's Law

$$V_2 = I_2 R_2$$

$$= 2 \times 2$$

= 4 Volts!

Quick Follow-Ups

V = 18V $R_{234} = 2\Omega$

What is I_3 ?

A)
$$I_3 = 2 A$$
 B) $I_3 = 3 A$ C) $I_3 = 4 A$

B)
$$I_3 = 3 A$$

$$V_3 = V_{234} = 12V$$
 \longrightarrow $I_3 = V_3/R_3 = 12V/3\Omega = 4A$

What is
$$I_1$$
?

We know
$$I_1 = I_{1234} = 6 A$$

NOTE:
$$I_2 = V_2/R_2 = 4/2 = 2 A$$

$$\rightarrow$$

$$I_1 = I_2 + I_3$$

Make Sense?