
Data Representations  
and Transformations

Visual analytics is fueled by data. These data must be represented, combined, 
and transformed to enable users to detect the expected and discover the unexpected. 
The volume and complexity of data, combined with their dynamic nature, provide 
a strong motivation to create innovative and scalable approaches to transformation 
and representation.

What Are Data Representations  
and Transformations?

To permit visualization, analysis, and reporting, data must be transformed from 
their original raw state into a form, or representation, that is suitable for manipula-
tion. These data representations and transformations are the foundation on which 
visual analytics is built.

Data representations are structured forms suitable for computer-based transfor-
mations. These structures must exist in the original data or be derivable from the 
data themselves. They must retain the information and knowledge content and the 
related context within the original data to the greatest degree possible.

The structures of underlying data representations are generally neither accessible 
nor intuitive to the user of the visual analytics tool. They are frequently more com-
plex in nature than the original data and are not necessarily smaller in size than the 
original data. The structures of the data representations may contain hundreds or 
thousands of dimensions and be unintelligible to a person, but they must be trans-
formable into lower-dimensional representations for visualization and analysis.

 Data representations may illuminate key features in the data, rather than show-
ing every detail, so they are important to the process of data abstraction. The degree 
to which a visual analytics software tool can address the challenges of scale is also 
influenced by the data representation selected by the tool developer.

Data representations underlie the interactive visualizations described in Chapter 3. 
The creation of appropriate data representations is essential to producing meaningful 
visual representations. The data representation method must facilitate the analytical 
reasoning methods and capture the intermediate and final results of the reasoning 
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processes described in Chapter 2. These analytical results must be communicated via 
the production, presentation, and dissemination processes described in Chapter 5.

A data transformation is a mathematical procedure that converts data into different 
representations that may provide more insight for an analyst. Data transformations 
are required to convert data into structured forms that permit them to be visualized 
and analyzed. Data transformations are used to augment data by deriving additional 
data. For example, clustering is used to organize data into groups. Data transforma-
tions convert data into new and meaningful forms. For example, linguistic analysis 
can be used to assign meaning to the words in a text document. Data transforma-
tions make it possible to create more useful visual representations that support more 
sophisticated analyses. Data transformations can be applied iteratively, with each 
transformation producing a new representation and potentially leading to new insights. 
Data transformations may be used to find convenient layouts for displays, such as by 
creating a low-dimensional display space from a high-dimensional data space.

A major challenge of visual analytics is to find the most useful ways to couple 
data transformations with interactive visual representations and analytical reasoning 
techniques. Data representation and transformation techniques should not intro-
duce biases that would affect the analytic conclusions based on the data. At the same 
time, they should preserve the inherent biases, uncertainties, and other quality attri-
butes of the original data.

Currently, within visual analytics, the sources for data representation and trans-
formation are primarily within the areas of mathematics and statistics, modeling and 
simulation, and natural language processing (NLP). Generally, much of the knowl-
edge representation work going on in the area of information sciences and technology 
has some accompanying structure that can be leveraged for automatically generating 
visual representations and supporting analysis. Without this structure, analytical 
options are limited because computer processing is constrained.

Transformations to Support Visual Representation
To facilitate the analysis of large and intrinsically complex data repositories, 

data transformations can be used not only to generate raw analysis results but also 
to generate representations that can be mapped into spatial representations.

The task of creating representations and transformations to support visualiza-
tion builds on the foundational work of Euclid (325 to 265 BC, relative to his 
treatise, The Elements) and of Rene Descartes (AD 1596 to 1650, inventor of ana-
lytic geometry, i.e., the Cartesian coordinate system). For every point we represent 
as a pixel on the screen, we leverage Euclid’s and Descartes’ visions and creativity 
[Bell, 1965].

In combining geometry and analytics to generate a point on a screen, we must 
have a value on the horizontal axis (x) and a value on the vertical axis (y). For 
example, to represent an individual as a point on the screen, we must have some 
associated spatial structure, say weight, x = 165 pounds, and height, y = 71 inches, 
thus yielding a location on the screen, or a point in the appropriate visualization space.
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About This Chapter
The field of data representations and transformations is so large that it cannot be 

addressed completely here. Instead, we describe some representative examples and 
address the data representation and transformation topics that are most central to 
the advancement of visual analytics. We focus this chapter primarily on representa-
tions and transformations to support the creation of visual representations for 
analysis. The methods described in this chapter also address some of the needs for 
capturing and presenting the artifacts of the analytical reasoning process. These top-
ics are described in more depth in Chapters 2 and 5.

We identify the need for research in data representation and transformation to 
better facilitate visual analytics. We highlight areas that must be pursued to address 
the challenges of understanding complex, diverse, dynamic, and uncertain data.

We also describe the research needed to deal with the linguistic and culturally 
related structure associated with language data. These data must undergo transfor-
mation before they can be represented in a way that supports visualization and 
analysis. The levels of linguistic structure inform the representation of language data, 
and some text transformations enrich the semantics of the resulting visualization. 
Culture affects language data, which in turn affect the visualization of language data, 
but the community is only in the early stages of research into data transformations 
to account for these cultural effects.

Because the analytic process often involves the comprehensive consideration of 
data of multiple types and sources, we present a discussion of the need for synthesiz-
ing this diverse information into a single environment in which it can be analyzed. 
The goal is to allow the analyst to focus on understanding the meaning of the infor-
mation, rather than being burdened by artificial constraints associated with the form 
in which the information was originally packaged.

Data Representations
Data come in a variety of types, and each type must be represented in ways that 

facilitate computational transformations to yield analytical insight. Visualizations 
that combine multiple types of data are also needed to support comprehensive ana-
lytic reasoning in certain situations.

Analytic insights can hinge on the proper data representation underlying the 
visual representation. The data representation must faithfully preserve the inherent 
structure of the data as well as the data’s real-world context and meaning. In most 
cases, that inherent structure will be known for a given data source. For example, a 
given sensor will produce data in a consistent format. If it is unknown, then techni-
cal analysis must be done to choose the proper representation for the data. It is 
important for the data representation to portray the quality of the data as collected. 
If information is missing, purposefully hidden, or misleading, the analyst must be 
able to detect that.
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Data may be characterized from multiple perspectives, each of which has a bear-
ing on the data representation:

• Data type. Data may be numeric, non-numeric, or both. Numeric data often 
originate from sensors or computerized instruments, and the scientific com-
munity has developed a variety of techniques for representing these data. 
Non-numeric data can include anything from language data, such as textual 
news stories, to categorical, image, or video data. Although techniques and 
formats exist for representing individual elements of the raw data, techniques 
for representing the key features or content of the data are far less mature.

• Level of structure. Data may range from completely structured, such as cate-
gorical data, to semi-structured, such as an e-mail message containing information 
about sender and receiver along with free-form text, to completely unstruc-
tured, such as a narrative description on a web page. The term unstructured 
does not mean that the data are without pattern, but rather that they are 
expressed in such a way that only humans can meaningfully interpret their 
construct. Structure provides information that can be interpreted to deter-
mine data organization and meaning. It provides a consistent context for the 
information. The inherent structure in data can form a basis for data represen-
tation. Unstructured data lack the same clues for automatic interpretation for 
data. Any structure to be applied to the data must be derived in some way.

• Geospatial characteristics. When data are associated with a particular loca-
tion or region, this information must be represented. Any type of data, whether 
numeric data from a specific sensor, textual data, or image data from a specific 
satellite, may have a geospatial association.

• Temporal characteristics. Some data, such as reference data, are static and not 
presumed to change over time. However, data of all types may have a tempo-
ral association, and this association may be either discrete or continuous.

This section provides a high-level description of some of the considerations asso-
ciated with representing data of varying types, levels of structure, and temporal and 
geospatial characteristics. Note that none of these data characteristics can truly be 
considered independently of the others. All facets must be considered collectively, in 
conjunction with knowledge about the structure of the source and limitations of the 
data-gathering technology, to create an appropriate representation. Here, we address 
some of the elements of data representation that are most significant with respect to 
visual analytics, but this only scratches the surface of the work that has been done by 
the computer science community in data representation.

Numeric Data
Numeric data are those data that are quantitative and result from sensors or other 

instruments, including other computers. These data are unique because they are pro-
duced by instruments that automatically format their data and may also be accompanied 
by software that collects and stores the output as data are being produced. Depending 
on the analytic tools available, these data may or may not require additional manip-
ulation and re-representation before visually based analysis can begin.
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Numeric data have long been the focus of data representation methods, even for 
manual analysis. There are classical computer-based methods for numeric data rep-
resentation, many of which reduce the amount or complexity of the data. The current 
pervasiveness of massive collections of numeric data, such as high-energy physics data 
[Jacobsen, 2004] and data from the Earth Observation Satellites (EOS) [Braverman, 
2004], has spurred development of data representation techniques. These classical 
techniques provide a basis on which visual analytics can build.

Under normal operational conditions, numeric data would be scientifically ana-
lyzed using computational tools designed for the formatted input being received. 
Research efforts may include investigation of analytic techniques to determine the 
data structure, the quality of the data source, or predictive indicators. However, the 
research may also focus on the methods used to represent the data or to detect and 
mitigate formatting errors in the data.

In emergency conditions and other situations where speed is critical, data repre-
sentation may play a significant role in making massive data cognitively available to 
the analyst. Any methods used at this stage in the processing must make special 
effort to represent the original data content as faithfully as possible so as not to mis-
lead the analyst.

Representing or modeling numeric data appropriately is the key to solving prob-
lems. Appropriate numeric data representations and transformations allow the visual 
representations to speed the analytic process.

Language Data
Linguistically organized data encompass all data that represent human language. 

While language data are typically processed in textual form, they may also be derived 
from sound waves or images. Regardless of the original source, representation of the 
language data content presents many common challenges.

It is difficult to automatically interpret even well-edited English text as well as a 
native English-speaking reader would understand the text. However, there have 
been advances in NLP of printed, spoken, and scanned forms in multiple languages 
that can make a difference in the visual analysis of large amounts of data. In this 
section, we address the representation of language data. In a later section, the trans-
formation of these representations will be addressed to semantically enrich the 
resulting visual representation.

Language data can be processed without any acknowledgment of their linguistic 
structure because meaning is inherent in the communication of the originator. The 
originator intended to communicate a message to an audience, so the language can 
be presumed to be meaningful to the reader without automated linguistic analysis. 
So-called “bag of words” methods, in which a document is treated as a collection of 
words occurring with some frequency, work because they do not obscure this inher-
ent meaning when presented to the analyst. For many analytic purposes, these 
methods are ideal. The first mechanized methods were developed by Salton [1968] 
for information retrieval, and his work continues to be foundational to all language 
processing as well as other inherently meaning-bearing sources of data [Salton et al., 
1975]. His work on identifying salient terms in a corpus, indexing, and constructing 
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Figure 4.1. Major levels of linguistic structure

high-dimensional signature vectors that represent a corpus’ topics or articles remains 
key to most of the current effective tools for analyzing large volumes of text. High-
dimensional vectors can be projected into 2D to 3D representations to support 
visualizations that analysts can navigate.

In addition to Salton’s work, centuries of general linguistic study of language 
provide a foundation for the computer-based analysis of language. The general 
structure of language provides a framework for the eventual reduction of text to its 
meaningful logical form for computer-based analysis. While computer-based lin-
guistic analysis is not a solved problem, current capabilities provide some reliable 
results that add semantic richness to the “bag of words” approach.

Linguistics defines the levels of structure 
based on analysis across and within lan-
guages, and computational linguistics 
provides the methods for assign-
ing structure to textual data. 
As shown in Figure 4.1, the 
major levels of structure 
applicable here are phono-
logical, morphological, 
syntactic, semantic, and 
the pragmatic (or dis-
course) level.

The phonological level 
deals with the structure 
of the sounds that con-
vey linguistic content in  
a language. However, this 
level of structure applies to 
writing and sign language as 
well. It is basically the lowest 
level containing the elements 
that distinguish meaning and 
can be defined physically as a 
means of linguistic production. Each language has its own set of sounds that are 
used in words to convey meaning at any time in its history. These elements are not 
usually equivalent to the graphemic elements (the smallest elements of meaning) in 
the writing system. Instead, phonological elements are related to graphemic ele-
ments by rules, to a greater or lesser degree. The graphemic system can influence the 
phonological system. For example, in Mongolia, the Russians replaced the Mongo-
lian script with the Cyrillic alphabet, which caused a change in the vowel harmony 
rules of the spoken language because the full set of vowels in their verbal context 
could not be represented in Cyrillic. Usually, however, the phonological system is 
thought to dominate the written system.

The morphological level of a language is the level at which meaning can be assigned 
to parts of words and the level that describes how morphemes (the smallest meaning 
elements of words) are combined to make a word. Some written systems, such as 
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English and Chinese, are morphological in nature. For example, the morpheme 
“sign” is not always pronounced the same way in English words in which it appears 
(sign, signal, signature, resign, resignation). In highly agglutinative languages, words 
are built by affixing morphemes to one another, making word boundaries sparse 
within sentences. In such languages, such as Turkish and many Native American 
languages, an entire sentence can appear in one word. Obviously, this fact plays 
havoc with the “bag of words” approach because word boundaries are not easily 
identifiable using information within the corpus. Even in non-agglutinative lan-
guages, segmentation may be required because of the written system’s lack of word 
delimitation. Chinese is such a language.

The syntactic level of structure concerns the structure of the sentence, i.e., the 
categories of words and the order in which they are assembled to form a grammatical 
sentence. The categories used in syntax are known as parts of speech. The main parts 
of speech are nouns and verbs. Verbs govern the roles that the nouns in the sentence 
can play, and the ordering and/or case marking of nouns determine their roles. Roles 
can be characterized at various levels. Most commonly, the syntactic roles are those 
like subject and object. The roles can also be viewed with degrees of semantic content, 
such as agent, instrument, or location.

The predicate-argument structure of the sentence is used to represent the logical 
form of the sentence, which is a semantic representation. The semantic level of structure 
of the sentence is computationally defined to be the level of representation supporting 
inferencing and other logical operations. Within linguistic theory, Montague semantics 
was one of the bases for this approach [Montague, 1974].

Other representations important to the semantic level include, but are not limited 
to, the meanings of the words. Lexicology is as old as writing, perhaps older, but mod-
ern lexicology includes psycholinguistic knowledge concerning how the brain stores 
the words in memory. WordNet is the preeminent lexicon structured along psycholin-
guistic principles [Miller, 1998]. The utility of WordNet for computational linguistics 
has been immeasurable. It contains an ontology, or hierarchical structuring, of the 
words of English and allows the user to find synonyms, antonyms, hypernyms (more 
general terms), and hyponyms (more specific terms). It also distinguishes the sense 
of the words. Other languages have WordNets developed for them and the senses of 
the words have been linked cross-lingually for use in sense disambiguation within 
and across languages (see EuroWordNet at http://www.illc.uva.nl/EuroWordNet/).

The discourse structure of language is the level of structure of the exchange or 
presentation of information in a conversation or a written piece. It describes the 
principles and order of information in the exchange.

All of these levels of structure are opportunities for linguistic representation that 
could support visualization. Advances like the language-independent UNICODE 
encoding standard are important at a very basic level, because visual analytics data 
representations must support analysis of multilingual data. However, the problems 
of assigning a structure to text are not solved by any means. The real issue is how 
useful the available linguistic representations are in creating data representations to 
support visualization and analysis. Techniques, such as tokenization and segmenta-
tion, morphology/stemming, and part-of-speech tagging, are sufficiently advanced 
to provide value in the representation of textual data. None of these techniques are 
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perfect, but all can be leveraged for many languages of interest. Still other tech-
niques, such as automatic speech transcription, optical character recognition, and 
handwriting recognition, are currently adequate only under ideal conditions (high-
fidelity input equipment, rich contextual clues, and lack of noise in the original 
expression or signal).

Image and Video Data
The largest volume of data is generally agreed to come in the form of imagery. 

Images come from a large number of sources, including satellites, surveillance cam-
eras, professional and amateur photojournalism, microscopes, telescopes, and other 
visual instruments. In addition to the large volume, there is also the possibility of 
deception because of the tools widely available for editing digital imagery. There is a 
vast array of research underway in aspects of image and video analysis. Rather than 
cataloguing this work here, we focus on the particular areas of most significant con-
cern for visual analytics.

State-of-the-art image processing allows edge detection, identification of regions 
of interest [Glassner, 1995], and the reconstruction of 3D objects from a set of still 
pictures [Debevec, 1996]. The state of the art in automatic imagery analysis has 
largely been achieved for computer vision, especially in robotic applications.

The key challenge for visual analytics is to derive semantic content or meaning 
from images in real time. We must make the leap from the representation of the 
image itself to the representation of the information contained in the image. The 
exploding volume of available imagery will stretch data storage and processing limi-
tations. To realize value from these data, the potentially important content must be 
derived from the data rapidly and accurately so that unneeded data may be dis-
carded and the remaining data can be compressed and offloaded to less accessible 
storage hardware.

Thus far, good results have only been achieved when the general domain of the 
imagery is understood, such as face matching and identification of military objects. 
Inferring that a set of pixels is a particular object in a scene from an unknown source 
has not been adequately addressed. This is an area of active research. Novel tech-
niques used for massive textual data have shown promise in handling imagery. Ilgen 
et al. [2000] have applied their vector approach to imagery producing a pixel vector. 
The method may be useful for identification and verification of objects as well as 
corrupted images. The detection of hidden messages in imagery is in its infancy 
[Johnson et al., 2000]. Only under special internet transmission conditions has this 
been a problem up until now.

Video data are imagery sequences with an associated temporal dimension. 
Although not routinely exploited today, this temporal dimension can be useful in 
automated analysis of scenes and identification of objects and events. Research prog-
ress has been made in analyzing video content. Capabilities exist to search through 
and organize large video libraries (see the Virage website at http://www.virage.com/
products/). Work has been done to partition video into key sequences [Kasik, 2004], 
and several companies are working on techniques to index videos for quick retrieval 
and review.
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The proper representation of image and video for analysis is critical to homeland 
security. We must gain leverage from the extensive research and development efforts 
already underway in this field to advance the capability to represent not just the 
image or video itself but also the meaning it contains.

Structural Characteristics of Data
The level of structure within data directly affects their representation. In general, 

numeric data are well-structured. Imagery have their own unique structure, but  
the information content within the image is implicit and thus without inherent 
structure. Language data may exist in forms that range from highly structured to 
completely unstructured.

Often, metadata exist to describe a particular data element, such as information 
about the source of an image. These metadata are generally of a known structure. 
Categorical data, such as survey data, may contain a mix of language data and numeric 
data, but are also highly structured.

One important example of structured data is transaction data. Transaction data 
are highly structured records that document an individual event, such as a telephone 
call or a border crossing. Transaction data contain very small amounts of information 
in each record and generally do not have a clear context. However, transaction data are 
generally voluminous. Businesses use transaction data for many purposes, including 
tracking buying patterns and identifying potential credit card fraud. Security and 
privacy protection are especially important concerns for working with transaction data.

Many types of data lack the structure that is apparent in transaction data. When 
structure is not apparent within data, it must be identified through the use of inno-
vative data transformations. Data transformations are discussed in more detail in the 
remainder of this chapter. When structure exists within data or metadata, that struc-
ture must be preserved and represented. Structured data are generally formatted as a 
field name followed by one or more field values of a specific type. The classic repre-
sentation of structured data is a set of relations stored in a relational database 
management system (RDBMS). RDBMSs form the backbone of the commercial 
database industry. Significant investments have been made in relational databases, 
and large amounts of data are stored in such databases.

The selected data representation has significant influence over its range of pos-
sible analytic uses. In the case of a database, the schema describing field names and 
types is one such data representation. When possible, schema design should be done 
knowing the analytic uses to which the data will be put.

For example, the schemas for most databases are designed with transactional 
efficiency in mind. Names are normally replaced with unique numeric identifiers to 
avoid the issue of duplicate names. Databases are also normalized so that updates 
can be done efficiently. However, information shown to an analyst must be repre-
sented in the most meaningful way, using familiar names rather than obscure 
identifiers. There are tools that support the transformation or mapping of one 
schema into another. However, until recently, schema-mapping tools have not scaled 
well to large schemas or mappings [Robertson et al., 2005]. The size and complexity 
of databases for homeland security applications of visual analytics will grow so large 
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that new techniques will need to be developed to support schema mapping in the 
cases where analytic uses are not fully known at the time the database schemas are 
designed. Object-oriented database structures add flexibility but also are not easily 
changed after an analytic suite of tools is developed. Document metadata also suffer 
from the same representational limitations.

Another limitation of traditional RDBMSs is that their performance is optimized 
for transactions per second rather than analytical queries per second. The types of 
queries used for analysis are quite different. Rather than searching for and updating 
a single record, analysis usually requires scanning the entire database to find complex 
relationships of interest. During the scan, filters are applied, aggregations computed, 
and other calculations performed. In the commercial sector, this has led to a new class 
of database systems called online analytical processing (OLAP) systems that pre-
compute aggregates and support more complex calculations and data modeling.

Interactive analytic workloads are different from traditional queries for other 
reasons. For example, most analysis is incremental. A subsequent query is a refinement 
of a previous query. Data management and caching, as well as query optimizers, 
could be improved to support analysis. Major breakthroughs are needed in these 
areas to support analytics.

Geospatial Characteristics of Data
Geospatial phenomena have a number of distinguishing characteristics.
First, natural boundaries tend to be very convoluted and irregular, and as a result 

do not lend themselves to compact definition or mathematical prediction. Geospatial 
databases tend to quickly become large as a result because of the detailed coordinate 
data that must be stored.

Second, geospatial phenomena tend to be scale-specific, and phenomena at differ-
ent scales are interrelated. For example, global weather patterns affect the occurrence 
of excessive rain in California, which affects the risk of local landslides. Often, prob-
lems must be considered at multiple resolutions simultaneously. For example, in 
detection of a disease epidemic, information may need to be considered at the level 
of individual hospitals, at the city, state, and national levels in order to identify pock-
ets of illness and identify both localized and widespread outbreaks. Accommodating 
the multi-resolution nature of geospatial data is a research challenge.

Third, locational definitions of geospatial entities are often inexact and can be 
scale or context dependent. For example, the boundaries between specific vegetation 
types in any given area and the location of shorelines when examining at a very local 
scale are conceptually transition zones and not sharp boundaries. If viewing the 
same information from a state-wide or national scale, these boundaries would most 
often be viewed as discrete. City boundaries are also fuzzy transition zones if seen 
from the point of view of an economist, but cities do have sharply defined boundar-
ies for the purpose of political jurisdiction.

Fourth, locations are commonly recorded using specialized Cartesian, spherical, or 
other types of coordinate systems including latitude and longitude, Universal 
Transverse Mercator (UTM) grids, township and range, or street addresses. Location 
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expressed in some of these coordinate systems cannot be converted algorithmically 
into other systems with a predictable degree of accuracy, such as the conversion of 
street addresses into latitude and longitude. This often forces the storage of more than 
one type of coordinate for entities within the same database. Not only does this make 
the required storage volumes even larger but it also presents an additional level of com-
plexity in maintaining the integrity of the database as data are added and updated.

The combination of these properties makes representation of geospatial data 
particularly difficult. Boundaries are represented as sharp demarcations in currently 
used data models in part because of the discrete nature of computing hardware. An 
additional problem arises in the transformation of a space that is inherently multi-
dimensional into computer memory, which is normally one-dimensional in nature. 
Representation of geospatial phenomena in a way that retains their essential nature 
has proven to be a particularly challenging problem [Burrough & Frank, 1995; 
Mark et al., 1999; Peuquet, 2002; Yuan et al., 2004].

Although relational databases provide significant flexibility for representing 
many types of data, this does not extend into the geospatial realm, and we still lack 
representational techniques that are up to the task of modern requirements for visual 
or quantitative analysis of such data. It is a well-known principle that how the data 
are represented determines what can and cannot be done effectively with those 
data. Data representations can also suggest approaches for visual display. A classic 
example is the use of sequenced snapshots as a data model for storing space-time 
data; this model coincides with the visual representation of “digital movies”—a 
series of still images shown in quick succession to visually display movement and 
change through space-time.

The two basic representation schemes used currently for geospatial data (raster 
grids and vector) operate as independent and distinct representations within current 
geospatial data-handling systems. Most current commercial geographic information 
system (GIS) tools use a multi-representational database design and incorporate 
both raster- and vector-type representations for coordinate data, as well as links to 
an RDBMS for storing non-coordinate attribute data.

A fundamental theoretical framework has developed over the past 15 years or so 
that can serve as a robust basis for moving forward—the notion of the discrete versus 
the continuous view. These can be briefly defined as follows.

In the discrete view, or entity-based view, distinct entities, such as a lake, a road, 
or a parcel of land are the basis of the representation. Their spatial and temporal 
extents are denoted as attributes attached to these entities. Vector models fall within 
this category. In the continuous view, or field-based view, the basis of the representa-
tion is space and/or time. Individual objects are denoted as attributes attached to a 
given location in space and time. Using land ownership information as an example, 
the particular parcel number would be an attribute of the entire space it occupies, 
with locations denoted in some continuous coordinate field. Raster grids fall within 
this type of view.

For both discrete and continuous views, there may by attributes that are either 
absolute in nature (e.g., a lake may have associated with it measured values of specific 
pollutants, etc.), or relative in nature (e.g., entities adjacent to the lake), or both. 
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Object-oriented data modeling techniques seem particularly well-suited for specific 
implementations of this representational framework.

Although visual analytics can capitalize on the wealth of existing research, addi-
tional work is needed to address aspects of geospatial representation that are central 
to the homeland security challenge. Work is needed to address the representation of 
uncertainty in geospatial information, to address the challenges of information anal-
ysis at multiple resolutions, and to develop methods that permit integrated analysis 
of both geospatial and temporal aspects of data.

Temporal Characteristics of Data
Some phenomena can only be sensed through time. Seismic activity and sound 

are examples of numeric data that must have a temporal component to be of analytic 
value. Other non-numeric data, such as video, transportation data, and textual news 
reports, also have a temporal aspect. When an event generates the data as opposed 
to an object in stasis, then time must also be measured and associated with the data 
points or the sampling rates must be set.

The presence of a temporal component changes the types of analysis that may be 
done and consequently affects the data representation as well. Data must be stored 
in a structure that preserves metadata about the temporal characteristic of the data. 
It must also facilitate transformations that permit examination of data in temporal 
sequence, aggregation of data along temporal lines, and temporal alignment of data.

Just as discrete and continuous views can be applied to geospatial data, they can 
be applied to temporal data as well. A discrete view can be applied to entities in 
space-time (dynamic entities) or to events. Examples of purely temporal events 
would be a bankruptcy or an election. Events that occur in space and time would 
include an earthquake or a storm. Whether the temporal (or spatial) extent of any 
object is a point or some interval is dependent upon the temporal (or spatial) scale 
being used to record the data.

Data may have multiple temporal attributes. For example, a news story has mul-
tiple times associated with it: the time of the event it describes, the time at which it 
was written, and the time at which it was distributed. Any one of these times may 
be important, depending on the analytical need. When temporal attributes of data 
are represented explicitly, they can be harnessed to support analysis. However, fur-
ther research is needed to be able to reliably extract and exploit temporal features 
that are embedded in unstructured data such as narrative text.

Data Representation Research Needs
Research in data representations is needed to improve our capabilities to fully char-

acterize massive data volumes efficiently and enable effective visual representations.

Recommendation 4.1
Advance the science of data representation to create representations that faith-
fully preserve the information and knowledge content of the original data.
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Among the major breakthroughs needed are: 
• Automatic or semi-automatic approaches for identifying content of imagery 

and video data
• Improved approaches for extracting semantic content from unstructured lan-

guage data
• Approaches for consistent representation of mixed data-type collections
• Representation of complex space-time relationships within data at multiple 

levels of resolution
• Representation of dynamic data collections in ways that facilitate real-time 

analysis and discovery processes.

Textual Data Transformations
The key to making a difference in transforming incoming textual data for visu-

alization is determining the semantic units for the data and visualization method 
that will improve the analysis in speed, coverage, and/or accuracy. This key is essen-
tial even in the use of structured and semi-structured linguistic data, such as databases 
and tables, where the semantic units may seem to be preset.

This section describes a few representative examples of approaches to textual 
data transformation, including both statistical and linguistically based methods. An 
exhaustive survey is beyond the scope of this chapter.

Vector-Based Approaches
Among the widely used statistically based approaches to text transformation are 

vector-based approaches. In this class of approaches, the content of each document 
is represented in the form of a vector representing its content. There are many good 
examples of vector-based approaches. Here, we discuss three of them for illustration.

Latent Semantic Indexing
One example is Latent Semantic Indexing (LSI) [Deerwester, 1990]. LSI looks 

at patterns of word distribution, specifically, word co-occurrence, across a set  
of documents.

Natural language is full of redundancies, and not every word that appears in a 
document carries content. Articles such as “the” and “a” are obvious examples of 
words that do not carry content. These words are called stop-words and are ignored 
in LSI and other vector-based approaches. LSI condenses documents into sets of 
content-bearing words that are used to index the collection. A matrix of terms and 
documents is created using these content-bearing words. The value placed in a cell 
corresponding to document d and term t is some measure of the importance of term 
t in document d. There are several alternative approaches for calculating this mea-
sure of importance, ranging from simple binary approaches indicating the presence 
or absence of a term, to counts of word frequency, to derived measures. The resulting 
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matrix is transformed using singular value decomposition (SVD) [Forsythe et al., 
1997] to create a more compact representation of document content. This compact 
representation can support document grouping and retrieval based on content rather 
than on keywords.

System for Information Discovery
System for Information Discovery (SID) is an example of a statistically based 

system for computing high-dimensional knowledge vector representations. Devel-
oped at the Pacific Northwest National Laboratory, SID characterizes natural 
language documents as vector-based knowledge representations so that they may be 
organized, related, navigated, and retrieved based on content similarity. SID auton-
omously identifies the working vocabulary of terms that best differentiate and 
describe a collection of text documents, defines a tangible anchoring vocabulary that 
is represented in a measurement matrix, determines weighted probability distribu-
tions for the working vocabulary in terms of these tangible anchors, and uses these 
results to construct an interpretable, high-dimensional vector representation of each 
document. The use of compact probability distributions and a tangible anchoring 
vocabulary allows interactive steering of representation based on user need for mul-
tiple points of view and specialized knowledge understanding frameworks. SID 
offers the advantages of scalability and speed of computation. It requires no training 
by the user, so it offers great flexibility. It supports processing of dynamic data sets and 
permits efficient incremental addition of documents to existing data sets.

Visualization systems can render interactive representations of document collec-
tions with an underlying vector knowledge representation by applying clustering, 
self-organizing maps, and dimensionality reduction techniques to form low-dimensional 
visualizations of the high-dimensional knowledge space. In IN-SPIRE™, the document 
vectors produced by SID are used to generate Galaxy and ThemeView™ visualiza-
tions. These visualizations allow users to rapidly understand the relationship between 
documents and themes throughout the document space [Hetzler & Turner, 2004].

MatchPlus
Still another example of a vector-based approach is that used by the MatchPlus 

system [Caid & Onig, 1997; Caid & Carleton, 2003]. This approach uses an adap-
tive neural network-based approach to creation of document vectors. Relationships 
among terms are calculated with reference to the given data set. Unlike LSI and SID, 
MatchPlus uses a training set. However, while LSI and SID treat each document as 
a “bag of words,” MatchPlus considers the proximity of terms in a document, pro-
viding an increased sensitivity to uncovering the multiple meanings that a word can 
have within a document set. MatchPlus produces vector representations for words, 
documents, and clusters. This vector representation provides a structure that can be 
leveraged in the generation of visual representations of the type discussed in Chapter 
3 [Caid & Onig, 1997; Caid & Carleton, 2003].
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Probabilistic extensions to the vector space model approach
Several techniques are being developed that harness the combined power of vec-

tor space models and probability distribution approaches. A new class of research in 
generative models brings machine-learning techniques to the characterization of 
text data.

Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999] refines the LSI 
approach by grounding it in theoretical statistical foundations. It models topics as 
probabilistic combinations of terms; individual words are associated with a given 
topic. Blei et al. [2003] developed a generative probabilistic model known as latent 
Dirichlet allocation (LDA) to model documents as mixtures of topics. This topic- 
modeling approach has been further extended by Rosen-Zvi et al. [2004] to model 
both topic and author.

The Association Grounded Semantics (AGS) approach is based on the premise 
that an entity, such as a word or other object in an information space, is the totality 
of all that is associated with it. Using vector representations in combination with 
probability distributions, one can develop techniques for representing semantics and 
other aspects of meaning and knowing, such as unsupervised identification of enti-
ties (people, places, and other unsupervised activities) [Wang et al., 2005].

Natural Language Techniques
The techniques described above all derive their representation of a text collection 

without considering the semantic structure of the language. Natural language tech-
niques offer a different approach that considers the text from a meaning-centered 
approach. These techniques offer a good complement to the “bag of words” approaches 
described above.

Named entity recognition (NER) and multi-word expression detection algorithms 
are improving and offer potential value in visual analytics. NER is the automated 
identification and categorization of proper names, while multi-word expression 
detection involves the automatic identification of multi-word phrases used to 
describe a single thing. Despite the results of public evaluations (see http://www.itl.
nist.gov/iad/programs.html), NER is still not much more than 70% reliable on real-
istic data, even with extensive tuning by a computational linguist. This level could 
be inadequate for visual analytics if high recall—that is, the automatic identification 
of a high percentage of named entities present in the data—is critical to the analytic 
results. Techniques as simple as n-grams [Jurafsky & Martin, 2000], which involve 
examining sliding windows of n consecutive words, and as complex as full-fledged 
linguistic processing with co-reference resolution have been tried successfully for 
certain data sets under ideal conditions. Unsupervised learning has produced initial 
high-recall results above 80% with a handful of analyst examples. However, NER is 
not currently a solved problem for realistic, streaming data, let alone the volume of 
streaming data that must be analyzed rapidly and accurately in emergency situations.

Sense disambiguation, or the identification of the correct sense of meaning of a 
word in a particular context, currently relies on extensive lexical resources such as 
WordNet and EuroWordNet, but statistical methods show promise. Machine trans-
lation is only viable for data triage or the narrowing of a collection to the most 



120 Illuminating the Path

promising sets of documents. A linguist must be called in to translate crucial materi-
als. Topic detection, summarization, and question answering have been possible in 
English but work poorly across languages.

At this time, combinations of NLP techniques may quickly degrade the data 
because of the multiplicative nature of the error rates. More significantly, no normal-
ization of names or co-references across documents has been successful enough to 
support visual analytics; analysts must still assist in completing the pre-processing or 
finding workarounds. As reasoning capabilities are visualized, the current under-
standing of negation [Polanyi & Zaenan, 2004], affect (that is, the emotional 
content of an expression) and attitude, and modals (auxiliary verbs that change the 
logic of a sentence and have abnormal time references) will need to be integrated 
into data representation for computational visualization.

Semi-structured data in tables with labeled rows and columns or other formats 
in written language have proven to be more difficult to interpret semantically than 
first thought. The data are often put in these special formats because of their seman-
tic salience, so it is appropriate to find a data representation for semi-structured data 
that will support visual analytics. Semi-structured data have been worked on in 
speech recognition in the areas of air traffic control and air traffic information ser-
vices. Hidden Markov modeling lends itself well to semi-structured speech data 
because of the relative simplicity of the language models required. However, it is 
unclear that the same techniques would work in cases where the structure of the 
semi-structured data is unknown ahead of the transmission. Work needs to be done 
to detect semi-structured data and to exploit their inherent semantics.

Unstructured linguistic data are the most common linguistic data. The nuances 
of communication through language can only be generated and interpreted by 
humans. Automatic multilingual NLP has been attempted for decades. However, to 
determine the semantic units useful for visualization and analysis, much research is 
still needed. Such research would support applications well beyond the needs of 
homeland security.

Intercultural Analysis
Culture has a significant effect on the appropriate interpretation of textual data. 

The incorporation of cultural considerations into data transformations has not been 
systematic. Successful prevention of terrorist activities and response in the event of 
a homeland security emergency could hinge on knowledge of the subcultures.

Theories in fields such as ethnography are emerging to provide experience-
informed theories of how to understand and work across cultures. Hooker [2003] 
describes the dynamics of different cultures and theorizes that the best way to adapt 
to and be effective in another culture is to use that culture’s mechanisms for stress 
management. These mechanisms are the dynamics of the culture for a reason and 
one must adapt them to become aware of and be assisted by the culture in managing 
the stress of acclimatization and everyday life.

The concepts used in Hooker’s classifications of culture include relationship-
based and rule-based cultures, shame-based versus guilt-based cultures, and polychronic 
(multi-tasking) versus monochronic (serial) cultures. These concepts are important 
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to both the appropriate analytical interpretation of textual information and the 
communication of instructions to the community in the event of an emergency.

These culture-based concepts cannot be quickly identified or separated from 
incoming language data to make the language data culture-neutral. Instead, new 
methods of data transformation are needed that build upon ethnographic theories 
to identify and understand the dynamics of the cultures that are evident in the data 
and to appropriately reflect effects of cultural differences in analyses and models.

Text Transformation Research Needs
Much work has been done in the transformation of textual data for analysis, but 

the problem remains a difficult one. Technology advancements are necessary to 
advance the state of the art in statistically based representations. In addition, there 
are technology needs in all areas of NLP in dealing with unstructured, semi-struc-
tured, and structured linguistic data whether they come in as text, sounds, or images. 
Structured data perhaps require the least research. Normalization of names, loca-
tions, dates, and times within and across languages must be fully addressed if we are 
to equip the analyst to cope with multi-source information in circumstances ranging 
from emergency operations to long-range reporting to planners and policymakers.

Recommendation 4.2
Advance the state of the art for statistical transformation of textual data collec-
tions so that the resulting representations restructure the data into forms 
suitable for computer manipulation without compromising the information 
and knowledge content of that data.

Research is needed to develop new statistically grounded transformations that 
can support:

• Real-time characterization of documents as they are added to a dynamic col-
lection. New approaches are needed that can handle massive data volumes in 
a computationally efficient manner.

• Multi-resolution characterization of document content. Techniques are nec-
essary for characterizing documents at a finer level of detail than a “bag of 
words.” Additional techniques are needed for characterizing documents at the 
sentence and paragraph level, and the section level, in addition to the overall 
document level. 

Recommendation 4.3
Invest in the synergistic combinations of NLP and “bag of words” data trans-
formation techniques to create higher-fidelity, more meaningful data 
representations.

Current successes in NLP and limits of “bag of words” approaches allow for 
synergistic combinations that have not yet been explored extensively. The combina-
tion of these techniques has the potential to dramatically transform the volume 
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problem by maximizing the use of human cognitive channels through the presenta-
tion of only semantically salient data in normalized form. Integration of NER 
techniques, sense disambiguation algorithms, and multi-word phrase identification 
are all feasible augmentations of vector-based approaches.

Recommendation 4.4
Extend NLP to infuse visual analytics data representations with semantic richness.

The current state of the art of NLP is not adequate for the needs of visual analytics. 
Important research areas include:

• Pre-processing multilingual text, speech, and written or printed input
• Normalizing names, locations, dates, and times
• Using and developing intermediate representations from computational lin-

guistics processing to support cognitive absorption
• Developing co-reference techniques to tie information from different languages, 

files, and databases to the correct topics, events, and entities
• Developing logical models of modals, negation, attitude, and affect to sup-

port reasoning.

Recommendation 4.5
Leverage work done in ethnography and computational linguistics to develop data 
transformations that can capture the cultural context inherent in textual data.

The need to incorporate culture within visual analytics systems is largely unaddressed 
today. This represents a significant challenge and a major opportunity for research.

Additional Approaches to Data Transformation
The challenge of data transformation is central to the success of visual analytics 

tools. Earlier, we outlined approaches for transformation of language data. While 
some of those approaches may be used for non-language data, they are most com-
monly used with textual data. Here, we consider more general data transformation 
approaches that are broadly applicable to a variety of data. These represent only a 
subset of the data transformation techniques that hold promise for visual analytics.

We describe three classes of data transformations: dimensionality reduction 
approaches that simplify data collections; discrete mathematics techniques that rep-
resent discrete objects through a combination of data and models; and modeling- and 
simulation-based approaches.
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Dimensionality Reduction
Dimensionality reduction techniques provide generalized methods for data 

simplification. The ability to transform large, high-dimensional structured data 
sets into lower-dimensional representations is important for the generation of the 
visual representations.

Dimensionality reduction may be accomplished in two ways: by reducing the 
number of observations that must be managed or by reducing the number of variables 
that must be considered. Dimensionality reduction methods can be linear or nonlinear. 
The more straightforward linear methods identify global homogeneities to collapse 
while the more complex nonlinear methods search for local homogeneities.

For reduction of the number of variables, we consider two example techniques. 
Principal components analysis (PCA) is an example of a linear variable reduction 
technique in which new variables are produced by creating linear combinations of 
the original variables. A second approach to reduction of variables is automatic fea-
ture selection. The set of variables to be considered is identified through automated 
means such as statistical or machine-learning algorithms, or in simple cases they can 
be identified directly by users exercising their expert judgment.

Multi-Dimensional Scaling (MDS) techniques are an example of a well-estab-
lished approach to dimensionality reduction. MDS techniques may be either linear 
or nonlinear. MDS techniques create smaller pseudovectors that approximate the 
high-dimensional structure of data in a lower-dimensionality representation that 
attempts to preserve the proximity characteristics of the high-dimensionality struc-
ture. Because there are many different ways to analyze proximity, and because of the 
nonlinear nature of the algorithm, it is difficult to interpret the results of this algo-
rithm. One of the major challenges is to preserve the information and knowledge 
content of the original data set that was used to generate the original high-dimen-
sional set. It is at least important to preserve the information and knowledge of 
interest to the visualization’s user [Steyvers, 2002].

Newer, nonlinear techniques are also being pursued in the area of manifold 
learning for reducing the number of variables. An example is Tennebaum et al.’s 
[2000] Isometric Mapping (ISOMAP) procedure, which combines graph theoretic 
approaches and MDS methods to approximate the structure of the interpoint dis-
tance matrix in a lower-dimensional space. Roweis and Saul [2000] suggested Local 
Linear Embeddings (LLE). This method solves for the manifold using local linear 
patches. An alternate approach to the manifold learning problem is based on the 
eigenvalues/eigenvectors solutions that characterize the behavior of an operator on 
the manifold. Belkin and Niyogi [2003] and Lafon [2004] studied this problem 
from the context of a machine-learning problem.

Clustering of homogeneous data is a common method for reducing the number 
of observations to be managed. With large data sets, statistical sampling is often 
proposed as a means of obtaining computable data sets. The merit of the approach 
depends, to some extent, upon whether the task is to find subtle hidden evidence, in 
which case the information exists only in trace amounts that are unlikely to be dis-
covered through sampling, or more widespread trends, in which case sampling is 
likely to suffice. There are challenges in producing random and stratified samples 
from databases and from streaming data. For example, there are numerous ways to 
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pick half a million items from a billion items and it is non-trivial to guarantee that 
all possible combinations of one-half million have an equal chance of being selected. 
In general, it is much better to represent all data rather than to statistically sample 
the collection to reduce data volume.

Recursive partitioning methods are examples of nonlinear methods that can also 
be used to simplify data. These methods provide models that span categorical, 
ordered, and different kinds of numerical data. While not always obvious, many of 
the modern modeling methods developed in recent years are based on a combina-
tion of data partitioning followed by local parametric modeling.

Both established and new data structures have the potential to enable calculation 
of previously expensive statistics on large amounts of data [Moore, 2004]. The cur-
rent trend is to use fast, cheap statistics to emulate more computationally expensive 
statistics. Applications include the fast calculation of likelihoods. Another current 
research topic is the scaling of algorithms to accommodate massive data volumes. 
New approaches take advantage of fast approximation methods to accomplish less 
important computations quickly, so that more of the computation time can be 
focused on tasks for which accuracy is more critical.

Another paradigm for analysis of large information spaces is to analyze the statis-
tics of scattered data in very-high-dimensional (VHD) spaces, consisting of hundreds 
or thousands of variables. Sparse data also affect much lower-dimensional data sets, 
if the ratio of the number of observations to the number of dimensions being mea-
sured is small.

Analysis of sparse data is difficult for two reasons. First, the emptiness of these 
sparse spaces (“curse of dimensionality”) [Bellman, 1961] makes it difficult to reliably 
establish neighborhood relationships. As noted in Chapter 3, interesting structures in 
these spaces may be non-planar (nonlinear), meaning that they cannot be represented 
easily in very low dimensions. Thus, analysis of sparse data requires more sophisti-
cated tools than those used for linear analysis.

Fundamental developments in several fields suggest opportunities for new strat-
egies and tools for sparse data. For instance, statisticians have found that the curse 
of dimensionality is not as dire as the theory predicts [Scott, 1992] and that many 
naturally occurring data sets fall on low-dimensional manifolds within VHD spaces. 
Newer, better tools in nonparametric density estimation, based on information theory, 
promise to be a good foundation for exploring such data [Haykin, 2000]. Another 
area of development is in computational topology, where researchers have proposed 
new methods for robustly parameterizing such manifolds and characterizing their 
structure, dimensionality, and topology.

Discrete Mathematics
Whereas continuous objects can be characterized by a formula, discrete objects 

are characterized by a method and require a mathematical model or abstraction 
[Maurer & Ralston, 2004]. These models or abstractions transform the data in ways 
that aid in analytical reasoning. Discrete mathematics provides mathematical mod-
els for a large number of discrete objects: induction, graphs, trees, counting methods, 
difference equations, discrete probabilities, algorithms, and n-order logics. Once 
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discrete mathematical methods have provided the model, the data must be trans-
formed into a form that fits the model.

One example of such a model is a semantic graph. A graph consists of entities as 
nodes and relationships as links. The entities and the relationships often have attri-
butes associated with them in the graph. These entities may be extracted from the 
source data through a combination of semantic, statistical, and mathematical tech-
niques. A relational data model is normally used as the representation for a graph.

A semantic graph is a type of graph that encodes semantic meaning about enti-
ties and relationships. Examples include relationships between people, places, and 
events. The transformations that produce a semantic graph are generally natural-
language-based and, as discussed previously, are not without error. Consequently, 
measures of data integrity must be represented if analytics is to be served. Other 
government programs dealing with knowledge representation and data filtering have 
created sophisticated approaches to such noisy data and will continue to provide 
technology to transform the graphs and provide probabilistic query functions. How-
ever, research is needed to address the challenge of creating meaningful visual 
representations for the voluminous, complex semantic graph structure.

Modeling and Simulation
Modeling and simulation are useful in gaining understanding of the interaction 

of large numbers of variables and a dynamic situation in which there are many pos-
sible outcomes. Modeling and simulation transform data into sophisticated 
representations that depict the evolution of a situation over time. These outputs can 
be challenging to analyze, but they offer rich insights into complex systems. Visual 
analytics provides distinct advantages for analyzing these outputs because it can help 
the analyst clearly understand the phenomena these outputs depict through a com-
bination of visualization and analytical reasoning tools. 

Many modeling and simulation techniques are relevant to visual analytics. We con-
sider agent-based modeling, neural networks, and genetic algorithms as examples here.

An agent-based model is a specific, individual-based computational model for 
computer simulation extensively related to themes in complex systems, emergence, com-
putational sociology, multi-agent systems, and evolutionary programming. The idea is 
to construct the computational devices, known as agents, with some properties, and then 
simulate them in parallel to model the real phenomena. Because of the interactions 
that take place over time, new patterns and properties emerge [Axelrod, 1997].

A neural network is a processing device, either an algorithm or actual hardware, 
whose design was inspired by computer simulation of the design and functioning of 
human brains and components thereof. An artificial neural network (ANN) is a 
network of usually simple processors, units, or neurons. The units may have local 
memory and are tied together by unidirectional communication connections, which 
carry numeric data. The units operate only on their local data and on the inputs they 
receive via the connections. Most neural networks have some sort of training rule 
whereby the weights of connections are adjusted based on presented patterns. In 
other words, neural networks learn from examples, just as the brain learns to recog-
nize things from examples, and exhibit some structural capability for generalization. 
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Neurons are often elementary nonlinear processors. Another feature of ANNs that 
distinguishes them from other computing devices is a high degree of interconnection 
that allows a high degree of parallelism. Further, there is no idle memory containing 
data and programs, but rather each neuron is pre-programmed and continuously 
active [Fausett, 1994].

Genetic algorithms use simple representations (bit strings) to encode complex 
structures and simple transformations to improve those structures [Davis, 1987; 
Holland, 1975]. The transformations are inspired by the computer simulation of 
natural genetics to evolve a population of bit strings in a way analogous to the way 
populations of animals evolve. Genetic algorithms have many of the characteristics 
of neural networks, in that they are parallel and can learn from examples to detect 
extremely complex patterns. Genetic algorithms are also the basis of evolutionary 
programming mentioned earlier.

These and other modeling and simulation techniques transform data into new 
representations that offer the opportunity for insight into complex situations. We 
need to conduct research to identify the additional transformations and representa-
tions necessary to effectively present this information to analysts for understanding 
and action in urgent situations.

Data Transformation Research Needs
Data transformation is central to the success of analysis of massive and dynamic 

data sets. The visual analytics community must stay abreast of the advancements 
being made by the thriving research community that is already addressing many of 
these topics. We must take advantage of new capabilities as they are discovered.

There are a few areas of special interest to the visual analytics community that are 
of lesser focus in the data transformation community as a whole. The visual analytics 
community must help drive the development of new transformation methods in 
these areas.

Recommendation 4.6
Pursue research in data transformations that improve our understanding and 
reaction to new and unexpected situations.

Research is needed to develop data transformations that facilitate characterization 
of current situations through the real-time identification of relationships, categories, 
and classifications. Specifically, new transformations must be created to facilitate the 
dynamic identification of new and emerging events and situations that were not 
previously identified or anticipated. Techniques that rely on a priori knowledge or 
training sets for characterization must be augmented with approaches that recognize 
novelty or detect surprise. Multi-resolution techniques are needed to allow the detec-
tion of both broad, emerging characteristics and very subtle, trace-level characteristics.
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Recommendation 4.7
Develop a theoretical basis to represent and transform discrete data sets of 
varying scale and complexity.

Continuous mathematical theory has been successfully applied to natural science 
and engineering. However, discrete mathematical techniques require an additional theo-
retical base, especially when applied to massive data. Existing techniques are ad hoc and 
often break down as the amount of input data increases. Huge gains appear to be pos-
sible in the scale of data for which routine analyses can be pragmatically accomplished.

Discrete mathematical models show real promise in addressing the challenges of 
analysis of massive and dynamic data sets. Visual analytics must support the trans-
formation of these models and associated data into a form that can be visually 
represented for analysis.

Information Synthesis
The techniques described thus far in this chapter address the challenges of repre-

senting and transforming data that are all relatively homogeneous in form and 
format. Similarly, most current commercial tools and research techniques focus on 
the representation of the unique characteristics of static collections containing a 
single type of data. Consequently, many existing visual analytics systems are data-
type-centric. That is, they focus on a particular type of data or, in some cases, provide 
separate but linked environments for analysis of different types of information, such 
as textual data, structured data, and geospatial data.

Information synthesis will extend beyond the current data-type-centric modes 
of analysis to permit the analyst to consider dynamic information of all types in a 
seamless environment. The user should not have to be concerned with, or restricted 
by, the original form or data type, but should instead be able to consider the relevant 
elements of the content of that data in concert with data of other types. We must 
eliminate the artificial analytical constraints imposed by data type so that we can aid 
the analyst in reaching deeper analytical insight. As with all data transformations, 
the resulting data representations must preserve, to the best degree possible, the 
information and knowledge content of the original data, but these representations 
must also integrate the information content across multiple data types and sources. 
By giving the analyst the ability to assemble facts and examine alternatives without 
imposing artificial barriers on data, information synthesis will help the analyst gain 
rich insights.

To achieve the desired information synthesis, data transformations must permit 
the combination of data of multiple types into integrated collections via unifying 
mathematical representations. Because of the dynamic nature of the data, we must 
develop techniques to identify and represent significant changes in data. Methods 
for coping with missing, sparse, and inconsistent data are important in all visual 
analytics data representations and transformations but take on special significance in 
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synthesized information spaces where the heterogeneous nature of the data adds 
complexity to the analytical challenge. Furthermore, methods for preserving and 
representing data quality, pedigree, and uncertainty must also be considered in order 
to produce a more powerful, information-rich structure to support visual analytics. 
Each of these subjects is considered in more detail below.

Combining Multiple Sources
Synthesizing data across sources allows an analyst to form a semantic model. 

This, in turn, leads to discovery of previously unknown or unsuspected behavior. 
Because the data streams are so large, contain multiple data representations and 
transformations, and represent multiple domains, data synthesis provides techniques 
to facilitate the cognitive merge that may not take place otherwise. A person’s visual 
channel alone cannot overcome the limitations of formulating a model or set of 
viable models. Data synthesis addresses both the quantitative and qualitative aspects 
of the task and helps the analyst identify what is interesting and what is not. Other-
wise, an analyst would have to sort through a huge set of mappings and views in 
disparate data forms to be able to gain a similar level of understanding [Hetzler & 
Turner, 2004].

One example of rapidly evolving scientific endeavors that parallels the homeland 
security need for information synthesis is the analysis of genomics and proteomic 
data in bioinformatics. The field increasingly uses the exponentially growing body of 
metadata to provide both broader knowledge and more focused analysis of new 
quantitative data. The metadata include gene ontologies (GO), the mapping of 
genes to GO, measures of the mapping quality, and the corpora of abstracts, papers, 
and data related to the genes and gene products of interest. These metadata provide 
a structure for a global information space that lends context to support multi-type 
analysis [Gentleman, 2004].

Combining data of multiple sources and formats, also called multiple media, 
into a single data representation constitutes an important research challenge for 
visual analytics. We envision creation of cross-media representational techniques 
such as a modified use of the context vectors discussed above. In a cross-media ana-
lytical environment, the vectors themselves may represent data content and context 
in a universal information space. This universal information space is the product of 
multiple data types and multiple data sets. The vectors contain sub-vectors that 
contain common cross-media content and context, while other sub-vectors contain 
specific, within-media content and context. This combination of a unified informa-
tion space and a data-type-specific representation allows for maximum flexibility so 
that data of all types may be analyzed together or within homogeneous collections 
as needed for a particular task.

Identifying Change
Common data transformation techniques are oriented toward transformation of 

a single data snapshot. However, data are dynamic, making the detection of change 
in data fundamental to analysis. Changes in monitored data are often good early 
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warning signs about emerging events of interest, even if the change is only partly or 
poorly understood. The quantity, variety, and complexity of data relevant to home-
land security require novel approaches to change detection.

Change detection arose from research in industrial quality control during the 
1950s. Today, change detection is used in a variety of applications, including 
machinery diagnostics, computer network failure detection, authorship change 
detection in text documents, and scene change detection in video. A common view-
point in change detection is to consider a sequence of random measurements that 
are to be monitored for a possible change. The goal is to discover a specific time such 
that a sequence of measurements before that time differs statistically from a sequence 
of measurements after that time. The objective is to find the first such time while 
minimizing the rate of false positives.

A basic algorithm for change detection is the cumulative sum, or CUSUM, 
algorithm. CUSUM monitors a recursively defined quantity defined from the set of 
measurements and represents the log-odds ratio that any specific measurement is a 
post-change measurement [Poor, 2004]. Over the past couple of decades, a number 
of approaches for change detection have been developed that extend the CUSUM 
algorithm in different ways.

However, detecting change within homeland security data sources is more com-
plex than the original industrial quality-control applications. First, the much larger 
scale of the data and the multi-source, multi-type nature of the data demand new 
approaches. Furthermore, data in the homeland security context are driven by dis-
crete events. As a result, new methods for change detection are needed.

Accommodating Incomplete, Uncertain,  
and Contradictory Data

It is important that data representations preserve all of the quality attributes of 
the original data that they represent. In the case of visual analytics, data are often 
incomplete, uncertain, and contradictory. The data representation and transforma-
tion techniques used in visual analytics must both accommodate these data 
characteristics and facilitate management of them in an analytical context.

In dealing with the uncertainty associated with data, one must consider: 1) identi-
fication of uncertainty, which is frequently treated as a given but usually is actually 
well hidden and fuzzy, 2) representation of uncertainty, 3) aggregation of uncer-
tainty, and 4) communication of uncertainties. Gaps, uncertainty, contradiction, 
and deception are characteristics of homeland security data requiring special consid-
eration. For example, the internet, as is the case with many data sources, is rife with 
misinformation [Mintz, 2002]. Providing some automatic assistance for identifying, 
or even hypothesizing, that information is missing or incorrect is of substantial ben-
efit to analysts.

Information can be missing for a variety of reasons, ranging from failure to have 
an observer or instrument in place to obtain the information to the inability to 
retrieve the information in a sufficiently timely manner. Examples of contradictory 
information and misinformation are readily available in financial, political, and 
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social settings. Missing, incorrect, and contradictory data are conditions that fre-
quently occur in scientific and business data processing, and practitioners have 
several years’ experience managing these conditions. Dasu and Johnson [2003], among 
others, comprehensively review data preparation, quality, and exploration issues. 
Pattern analysis for contradictory data is also explored in the literature [Leser & Freytag, 
2004]. Intentional deception is not typically considered in these domains, although 
it does occur in situations such as competitive intelligence [Mintz, 2002]. There is 
general, established theory for addressing the missing data in specific domains (e.g., 
financial, political, and social settings) [Little & Rubin, 1987; Allison, 2002].

For the purposes of visual analytics, a different slant on these data conditions 
must be taken [Berkowitz & Goodman, 1989]. Analysts deal with a combination of 
known facts that can be verified with a high degree of confidence and data with 
known gaps and ambiguities. Problems arise because analysts are required to make a 
best estimate using available data. They bring forward assumptions to help drive 
their evaluations. This can result in disagreements among different analysts review-
ing the same data.

Situations in which different hypotheses are strongly supported by facts and in 
which gap-filling assumptions drive different interpretations must be made known to 
those outside the analysis community. Information consumers and decision makers 
would like definitive answers, but often the best product contains areas of uncer-
tainty, unclear meaning, and suspect origins. When estimates and evaluations are 
made, descriptive yet subjective terms, such as “highly likely” or “unlikely” appear. 
Confidence levels are affected by specific factors that Donald Rumsfeld recently 
(and Sherman Kent, earlier; see http://www.cia.gov/cia/publications/Kent_Papers/
vol2no3.htm) referred to as “known unknowns” [Rumsfeld, 2002]—items known 
to be important, yet unable to be estimated with a sufficient level of confidence.

Deceptive data or disinformation is provided by adversaries to attempt to deceive 
or mislead analysts. Deception and disinformation can cause intelligence assessments 
to go awry, distort confidence levels in intelligence channels, and cause broad question-
ing of related assessments even to the level of creating discomfort about the overall 
quality of intelligence processes and products. The typical approach to detecting decep-
tion in information, other than by directly identifying it, is through examination of 
patterns of anomalies. This is a difficult process because of the enormous amounts of 
information that need to be processed.

Automated identification of cues used in deception in text-based communications 
is preliminary but promising [Zhou et al., 2003]. Current theory for dealing with 
contradictory information applies in a focused technical area, in which the pattern 
of missing information does not carry information about the underlying model or 
phenomena. This theory and methodology are typically applied in settings, such as 
surveys (product warranty information, opinion polls, etc.), in which a template for 
all the possible information is available. This technical approach does not apply here; 
however, the theory might provide some cues or approaches for this technical area. 
Additional, less mathematical, reference areas include information on internet 
hoaxes and library science perspectives on evaluating internet references and using 
peer reviews (e.g., Wikipedia, http://www.wikipedia.org/).
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Two aspects of uncertainty representation must be considered. One is the repre-
sentation of uncertainty attributes that are known or can be identified. The other 
aspect is the identification, representation, or propagation of the uncertainty attri-
butes that are not necessarily known and quite likely not intuitively obvious to the 
user. In the transformation of data to support visual analytics, it is important to 
transform the original uncertainty attributes in a way that they can be presented 
within the visualization for exploitation by the user consciously or subconsciously. 
The uncertainty can be made available to the user’s mental processing capabilities 
independent of the uncertainty attribute ever being specifically identified for pro-
cessing by the relevant algorithm.

Confidence Assessment
To ensure the appropriate use and interpretation of data, confidence levels must 

be represented. This confidence has its origins in the value and uncertainties associ-
ated with the data or lack thereof, with the source of the data, in the analytical 
methods used in an assessment, and in the perceptual aspects of the end user of the 
assessment. The identification and communication of confidence values are not easy 
tasks. Therefore, it is important that transformation of the original data preserves all 
uncertainty attributes that influence the confidence assessment.

We need to facilitate both the assessment of confidence and its subsequent com-
munication so that that the user can understand both the information being 
conveyed and the level of confidence that should be placed in that information.

Information Synthesis Research Needs
Information synthesis is central to the major goal of visual analytics. To achieve 

this vision, several important research objectives must be achieved.

Recommendation 4.8
Pursue mathematical and statistical research in the creation of data represen-
tations and transformations to permit unified representation of dynamic data 
of multiple types and sources. 

These techniques are central to achieving the goal of information synthesis. These 
techniques must produce high-fidelity representations of the original data. The represen-
tations must be versatile enough to not only permit cross-media analysis but also allow 
for more detailed analysis of data-type-specific attributes in homogeneous collections.

We must identify transformations that combine different data representations 
into more meaningful supersets to improve an analyst’s ability to comprehend com-
plexity. Current transformations offer solutions for a single data type and rely on a 
user’s ability to look at and integrate the separate data streams. Extracting common 
threads in a more automated fashion will allow an analyst to derive clear mental 
models of the situation.
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We need to explore other areas of scientific endeavor in which multi-type data 
analysis is emerging as a challenge, such as the biological sciences, and consider 
opportunities to adapt methodologies.

Recommendation 4.9
Develop new approaches to identify changes in multi-source, multi-type, and 
massive data collections.

Change detection is essential to identifying emerging trends and events. In 
emergency situations, rapid change detection is central to effective response. Change-
detection methods are required for novel structures, such as those arising from 
discrete events, graphs, or spatial-temporal representations.

Recommendation 4.10
Develop new methods and technologies for capturing and representing infor-
mation quality and uncertainty.

Quality and uncertainty measures must be preserved throughout the data trans-
formation process and must be represented in a form that will permit their incorporation 
into visual representations. Accurate understanding of uncertainties is essential to 
the analytical process.

Recommendation 4.11
Determine the applicability of confidence assessment in the identification, 
representation, aggregation, and communication of uncertainties in both the 
information and the analytical methods used in their assessment.

The focus should be on leveraging the visual and spatial ability of the human 
brain in dealing with uncertain dynamic information. Any assistance in assessing the 
confidence of an analysis is of direct benefit to an analyst.

Summary
Data representation and transformation provide the mathematical foundations 

for visual analytics. They are essential to the success of visual analytics approaches.
Advancing the state of the art in data representation and transformation will 

facilitate computer processing and communicating the information and knowledge 
content of large, complex, dynamic, and diverse data repositories. Crosscutting 
research in information and knowledge representation approaches and into methods 
for transformation of these representational sets is essential to provide the underly-
ing structure to support visualization.

Analysts need a complete set of tools to help them understand massive amounts 
of data assembled from numerous sources. We strongly believe that the techniques 
and recommendations in this chapter will expand even further. It is much too early 
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in the evolution of visual analytics to know what data representation and transfor-
mation techniques will work best in a given situation. We will explore individual 
techniques and document the results to build long-term selection guidelines that 
will be based on the value of particular transformation techniques.

Summary Recommendations
The following high-level recommendations summarize the detailed recommen-

dations from this chapter. These represent the path forward for continued research 
and development to provide the data representations and transformations needed 
for use in generation of the visual forms necessary for visual analytics.

Recommendation
Develop both theory and practice for transforming data into new scalable 
representations that faithfully represent the content of the underlying data.

From the standpoint of the analyst, border guard, or first responder, informa-
tion provides guidance, insight, and support for assessments and decisions. Our 
goal is to illuminate the potentially interesting content within the data so that users 
may discover important and unexpected information buried within massive vol-
umes of data. Each type of data presents its own challenges for data representation 
and transformation. In most cases, data representations are not meant to replace the 
original data but to augment them by highlighting relevant nuggets of information 
to facilitate analysis.

We must develop mathematical transformations and representations that can 
scale to deal with vast amounts of data in a timely manner. These approaches must 
provide a high-fidelity representation of the true information content of the under-
lying data. They must support the need to analyze a problem at varying levels of 
abstraction and consider the same data from multiple viewpoints.

Data are dynamic and may be found in ever-growing collections or in streams 
that may never be stored. New representation methods are needed to accommodate 
the dynamic and sometimes transient nature of data. Transformation methods must 
include techniques to detect changes, anomalies, and emerging trends.

Methods exist at varying levels of maturity for transforming data. For example, 
there are a variety of methods for transforming the content of textual documents 
using either statistical or semantic approaches. Combining the strengths of these 
two approaches may greatly improve the results of the transformation.

Recommendation
Create methods to synthesize information of different types and from differ-
ent sources into a unified data representation so that analysts, first responders, 
and border personnel may focus on the meaning of the data.
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Complex analytical tasks require the user to bring together evidence from a 
variety of data types and sources, including text sources in multiple languages, 
audio, video, and sensor data. Today’s analytical tools generally require that the user 
consider data of different types separately. However, users need to be able to under-
stand the meaning of their information and to consider all the evidence together, 
without being restricted by the type of data that the evidence originally came in. 
Furthermore, they need to be able to consider their information at different levels 
of abstraction.

Synthesis is essential to the analysis process. While it is related to the concept of 
data fusion, it entails much more than placing information of different types on a 
map display. The analytical insight required to meet homeland security missions 
requires the integration of relationships, transactions, images, and video at the true 
meaning level. While spatial elements may be displayed on a map, the non-spatial 
information must be synthesized at the meaning level with that spatial information 
and presented to the user in a unified representation.

Recommendation
Develop methods and principles for representing data quality, reliability, and cer-
tainty measures throughout the data transformation and analysis process.

By nature, data are of varying quality, and most data have levels of uncertainty 
associated with them. Furthermore, the reliability of data may differ based on a 
number of factors, including the data source. As data are combined and trans-
formed, the uncertainties may become magnified. These uncertainties may have 
profound effects on the analytical process and must be portrayed to users to inform 
their thinking. They will also make their own judgments of data quality, uncer-
tainty, and reliability, based upon their expertise. These judgments must be captured 
and incorporated as well. Furthermore, in this environment of constant change, 
assessments of data quality or uncertainty may be called into question at any time 
based on the existence of new and conflicting information.

The complexity of this problem will require algorithmic advances to address 
the establishment and maintenance of uncertainty measures at varying levels of 
data abstraction.
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