
Visual Representations and 
Interaction Technologies

The use of visual representations and interactions to accelerate rapid insight into 
complex data is what distinguishes visual analytics software from other types of 
analytical tools. Visual representations translate data into a visible form that high-
lights important features, including commonalities and anomalies. These visual 
representations make it easy for users to perceive salient aspects of their data quickly. 
Augmenting the cognitive reasoning process with perceptual reasoning through 
visual representations permits the analytical reasoning process to become faster and 
more focused.

It is a challenge to create well-constructed visual representations. In the field of 
scientific visualization, data often correspond to real-world objects and phenomena, 
meaning that there are natural visual representations. In scientific visualization, the 
goal is to mimic these real-world representations as faithfully as computationally 
feasible. However, most visual analytics problems deal with abstract information so 
the researcher is left to select the best representation for the information.

Visual representations invite the user to explore his or her data. This exploration 
requires that the user be able to interact with the data to understand trends and 
anomalies, isolate and reorganize information as appropriate, and engage in the ana-
lytical reasoning process described in Chapter 2. It is through these interactions that 
the analyst achieves insight.

This chapter discusses important aspects of visual representations and interac-
tion techniques necessary to support visual analytics. It covers five primary topics. 
First, it addresses the need for scientific principles for depicting information. Next, 
it focuses on methods for interacting with visualizations and considers the opportu-
nities available given recent developments in input and display technologies. Third, 
it addresses the research and technology needed to develop new visual paradigms 
that support analytical reasoning. Then, it discusses the impact of scale issues on the 
creation of effective visual representations and interactions. Finally, it considers 
alternative ways to construct visualization systems more efficiently.

Visual analytics tools can support people working under great time pressure, 
whether they are analysts, emergency management and response staff, or border 
personnel. Well-crafted visual representations can play a critical role in making 
information clear. The visual representations and interactions we develop must readily 

“Discovery consists of seeing what everybody has seen  
and thinking what nobody has thought.” 
—Albert von Szent-Gyorgyi (1893–1986) 3
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support users of varying backgrounds and expertise. In an emergency situation, for 
example, personnel may need to use unfamiliar systems to gain the insight that they 
need to respond. Visual representations and interactions must be developed with the 
full range of users in mind, from the experienced user to the novice working under 
intense time pressure, so that visual analytics tools can achieve their promise.

Developing Principles for Depicting Information
The design of visual representations of information has been ongoing for centu-

ries. Over the past 20 years, driven by the ever-increasing speed and availability of 
computers, information visualization researchers have invented dynamic and inter-
active computer-mediated visual metaphors for representing abstract information.  
A new discipline is rapidly emerging around the creation of computer-mediated 
visual representations to support display and analysis of information. 

Some of these new techniques work well and have generated great excitement. 
However, the number of successful new computer-mediated visual representations 
today is small compared to the number of highly evolved and widely used meta-
phors created by human information designers. Human-designed visualizations are 
still much better than those created by our information visualization systems.

State of the Art
The creation of computer-mediated visual representations has much in common 

with other emerging disciplines. An emerging discipline progresses through four 
stages. It starts as a craft and is practiced by skilled artisans using heuristic methods. 
Later, researchers formulate scientific principles and theories to gain insights about 
the processes. Eventually, engineers refine these principles and insights to determine 
production rules. Finally, the technology becomes widely available. The challenge is 
to move from craft to science to engineering to systems that can be widely deployed.

Today, we are still in the early stages of development of the discipline. We lack 
fundamental understanding of the basic principles for effectively conveying infor-
mation using graphical techniques. Without fundamental knowledge of what makes 
certain representations effective, it is not possible to efficiently construct new repre-
sentations for new classes of information or to know that the new representations 
will work as designed. Poorly designed visualizations may lead to an incorrect deci-
sion and great harm. (A famous example is the poor visualizations of the O-ring data 
produced before the disastrous launch of the Challenger space shuttle, as discussed 
more fully in Tufte [1997] and Chapter 5.) Thus, we need to develop scientific prin-
ciples for effectively conveying information.

Cognitive scientists have studied visual representations and the larger class of 
external aids to cognition. An external aid to cognition is an artifact that helps us 
reason about the world. In the physical world, we build and use power tools to 
extend our physical abilities. In the same way, in the world of information, we build 
cognitive tools to extend our reasoning abilities. Visual representations are the 
equivalent of power tools for analytical reasoning.
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A first step in developing principles for visual representations is to understand how 
they enable cognition [Card, 1999; Norman, 1993]. Some basic principles for devel-
oping effective depictions include the following (adapted from [Norman, 1993]):

• Appropriateness Principle – The visual representation should provide neither 
more nor less information than that needed for the task at hand. Additional 
information may be distracting and makes the task more difficult.

• Naturalness Principle – Experiential cognition is most effective when the 
properties of the visual representation most closely match the information 
being represented. This principle supports the idea that new visual metaphors 
are only useful for representing information when they match the user’s cog-
nitive model of the information. Purely artificial visual metaphors can actually 
hinder understanding.

• Matching Principle – Representations of information are most effective 
when they match the task to be performed by the user. Effective visual repre-
sentations should present affordances suggestive of the appropriate action.

Another prominent cognitive scientist has suggested the following two basic prin-
ciples [Tversky et al., 2002]:

• Principle of Congruence – The structure and content of a visualization 
should correspond to the structure and content of the desired mental repre-
sentation. In other words, the visual representation should represent the 
important concepts in the domain of interest.

• Principle of Apprehension - The structure and content of a visualization 
should be readily and accurately perceived and comprehended.

The subjects of mental representations and reasoning are the main focus of cog-
nitive science, so the principles for depicting information must be based on research 
in cognitive science. The apprehension principle underlies the importance of research 
in perception. These meta-principles underscore that the biggest challenge in choos-
ing a visual representation is to find the right one (not just any one) for the reasoning 
task at hand.

The next step to take in developing a set of design principles is to formally define 
the different types of visualizations. The French cartographer Bertin has developed a 
system for characterizing representations of charts, maps, and networks [Bertin, 
1981]. Bertin considered the space of possible visual representations as a visual lan-
guage. The spatial and visual attributes of the image encode the information using 
the rules of the language. Bertin’s system has since been used to define a design space 
of information visualizations. Examples of extensions are Mackinlay [1986], Roth et 
al. [1991], MacEachren [1995], Card et al. [1999], and Stolte [2002]. Wilkinson 
[1999] has developed an extensive grammar for graphics. Others have tried to 
develop taxonomies of visual techniques [Shneiderman, 1996; Spence, 2000; Ware, 
2000]. The most notable is Shneiderman’s taxonomy, which breaks down visualiza-
tion by the characteristics of the data (1D, 2D, nD, network, etc.). Although these 
design spaces and taxonomies are very promising, we are far from having a complete, 
formally developed theory of visual representations.
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After defining the space of visualizations, Bertin developed design principles for 
choosing among the possibilities. He argued that the properties of the visual repre-
sentation should match the properties of the data representation. For example, color 
represents nominal data well because hue is not naturally ordered. Although Bertin 
provides a set of principles loosely based on perception, it is important to realize that 
his system is not based on rigorous experiments involving human subjects. Bertin also 
did not emphasize the importance of the task when choosing a visual representation.

Another notable attempt to provide design principles for statistical graphics is 
the work of Cleveland [1985]. Some of Cleveland’s recommendations are based on 
experiments in graphical perception [Cleveland & McGill, 1984]. Perceptual design 
principles have also been developed for color [Rogowitz & Treinish, 1993] and 
motion [Bartram & Ware, 2002]. However, scientific principles are rare, and most 
recommendations are based on general principles of graphic design. Tufte’s three 
outstanding books on information presentation [1983, 1990, 1997] also stress  
the importance of using principles regularly practiced by graphic designers. Best 
practices have also been developed for different domains such as statistical graph-
ics [Cleveland, 1985] and cartography [MacEachren, 1995]. Tukey [1977] was also 
a strong advocate of using graphics in data analysis and developed many visual  
representations that are now common in statistics. To move the field of visual analyt-
ics forward, we need to perform more research in developing scientifically tested 
design principles.

Recent work in the information visualization community has attempted to sys-
tematically apply design principles to the automatic generation of visualizations. 
Mackinlay [1986] developed Automated Presentation Tool (APT) that automati-
cally designed charts based on Bertin’s and Cleveland’s ideas. APT searches over a 
space of possible visual representations, evaluates them based on expressiveness and 
effectiveness criteria, and chooses the best one. This work has been extended by 
Roth and colleagues [Roth, 1991; Zhou, 1999]. There has also been recent work on 
using cognitive design principles for automatically producing route maps [Agrawala 
et al., 2003] and assembly instructions [Heiser et al., 2004]. In the future, most 
visualizations will be generated by machines as users interact with the information, 
so automating the presentation of information will become increasingly important.

Technology Needs
The systems described here are only initial steps toward solving the major prob-

lems in creating a complete set of cognitive, perceptual, and graphic design principles. 
The creation of analysis systems that are based on cognitive, perceptual, and graphic 
design principles will dramatically improve the efficiency, effectiveness, and capa-
bilities of analysts, decision makers, scientists, and engineers.

Recommendation 3.1
Conduct research to formally define the design spaces that capture different 
classes of visualizations.
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We must both characterize the taxonomy of visual representations that must be 
considered and describe the range of design parameters associated with these repre-
sentations. While there is a body of work available to draw upon, as described above, 
this work has not been targeted specifically at visual representations in support of 
analysis. We must build upon and extend this work to create a formal definition of 
the range of available visual representations.

Recommendation 3.2
Develop a set of scientifically based cognitive, perceptual, and graphic design 
principles for mapping information to visual representations. 

Using the taxonomy created above, we must define the set of principles for select-
ing the most promising visual representations to support a specific combination of 
analytic task and data characteristics. These principles must be verified through user 
testing. In addition, we must develop and test principles for selection of the specific 
visualization properties to support specific tasks and data characteristics.

The use of design patterns has become an accepted and useful technique in  
areas such as object-oriented design and software engineering [Gamma, 1994]. We 
must investigate whether we can develop a set of visual design patterns for both 
designing new visualizations and determining the types of visualizations most useful 
for particular analytic tasks. One potential approach is to develop a library of com-
mon visualization design patterns from which developers could draw to build  
new visualizations. 

A Science of Interaction
Visual analytics is not simply about presenting information. Rather, an analysis 

session is more of a dialogue between the analyst and the data, where the visual 
representation is simply the interface or view into the data. In an analysis dialogue, 
the analyst observes the current data representation, interprets and makes sense of 
what he or she sees, and then thinks of the next question to ask, essentially formulat-
ing a strategy for how to proceed [Card et al., 1999; Spence, 2000]. Undoubtedly, 
new questions occur to the analyst and new factors must be considered. Thus, a dif-
ferent perspective on the data will be needed and new variables will need to be 
considered. The manifestation of this dialogue is the analyst’s interactions with the 
data representation. How does the analyst request other perspectives on the data? 
How does the analyst filter out unwanted details? How does the analyst request new 
visual representations of the data?

State of the Art
Too often in the visual analytic process, researchers tend to focus on visual rep-

resentations of the data but interaction design is not given equal priority. We need 
to develop a “science of interaction” rooted in a deep understanding of the different 
forms of interaction and their respective benefits. The mantra by Shneiderman 
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[1996] of “Overview first, zoom and filter, details on demand” is well-accepted, but 
what are the next steps, or additional different steps?

There are at least three ways to look at the science of interaction. First, we can 
look at interaction from the point of view of human time constants. This is an 
important viewpoint because all interaction is constrained and driven by what the 
user is cognitively and perceptually capable of doing. Second, we can look at how 
interaction is used to accomplish tasks such as data manipulation, manipulation of 
visual mappings, navigation, and dialogue. Third, we can look at the nature of the 
interaction itself, including the differences between interactions in 2-dimensional 
(2D) and 3-dimensional (3D) environments and the effects of the devices used for 
interaction. Each of these viewpoints yields different insights into the current state 
of the art, as described below.

Levels of interaction: human time constants
Analysis of human time constants for human-computer interaction was initially 

discussed by Card et al. [1983], considered from a cognitive science point of view by 
Newell [1990], and discussed from an information visualization point of view by Card 
et al. [1999]. Newell describes four bands of time scales for human action (biologi-
cal, cognitive, rational, and social) ranging from 100 microseconds to months. For 
purposes of a science of interaction for analytical reasoning, the two bands of greatest 
focus are Newell’s cognitive (100 milliseconds to 10 seconds) and rational (minutes 
to hours) bands. Card describes three distinct bands within Newell’s cognitive band. 
Note that these time constants represent approximate time ranges. That is, when we 
say ~100 milliseconds, we mean somewhere in the range of 50 to 300 milliseconds.

~100 milliseconds. Card refers to this as the perceptual fusion time constant, while 
Newell refers to it as the deliberate act time constant. This time constant is the rate 
necessary to produce the perception of a smooth animation. In animation, 10 frames 
per second equates to 100 milliseconds per frame. In interaction design, this time 
constant is the rate necessary to create the perception of an immediate response. 
Users expect to see an immediate response when they move a dynamic query slider 
[Ahlberg, 1994]. Likewise, as users brush over items of interest, they expect to see 
immediate corresponding highlighting of the linked items [Cleveland, 1999]. This 
time constant is also important because minimum human motor response time is 
around 250 milliseconds.

~1 second. Card refers to this as the unprepared response time, while Newell refers 
to it as the operation time. For our purposes, this constant represents the necessary rate 
of response to simple user actions. For example, clicking a web link should produce 
the display of the next web page within 1 second to be effective. If the response might 
take more time, it is important to provide some kind of feedback in the 1-second 
timeframe to reassure the user that something is happening. This time constant is also 
important for interactive animation, like user-initiated transition animations (tran-
sitions from one complex structure to another or one viewpoint to another). It has 
been demonstrated that providing a 1-second transition animation can reduce user 
task performance time compared to providing no transition animation [Robertson 
et al., 2002].
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~10 seconds. Both Card and Newell refer to this as the unit task time. This is 
the time within which users expect more complex user-initiated activities to com-
plete (e.g., a complex search). Again, if an activity of this kind will take more than 
10 seconds to complete, it is important to provide the user with feedback within this 
10-second timeframe.

~100 seconds (minutes to hours). This is referred to as the rational band. Higher-
level reasoning processes, including the analytic reasoning and human-information 
discourse processes described in Chapter 2, take place in this band. Interaction tech-
niques in this timeframe rely heavily on complex cognitive processing and are greatly 
affected by attentional resource demands such as interruptions and shifts in focus. 
These techniques are the least well understood and developed.

Uses of interaction
Card et al. [1999] identify three primary uses of interaction for information 

visualization: to modify data transformation (filtering), to modify visual mappings, 
and to modify view transformation (i.e., navigation). For visual analytics, we add a 
fourth use, which is for human-information discourse, a higher-level user dialogue 
with the information.

Interactions for modifying data transformation (filtering). Several common techniques 
are in use today, including direct manipulation, dynamic queries [Ahlberg, 1994], 
brushing [Cleveland & McGill, 1984], and details-on-demand.

Interactions for modifying visual mappings. Dataflow systems [Haeberli, 1988] 
and Pivot Tables are two examples of techniques that allow the user to interactively 
change mappings between the data and their visual representations.

Interactions for modifying view transformation (navigation). Interaction techniques 
range from simple approaches like direct selection for selecting and highlighting 
objects of interest, to more complex camera control techniques in 3D environments. 
They also include techniques for panning and zooming [Bederson et al., 1996] as well 
as for achieving a balance between overview and detail [Plaisant et al., 1995].

Interaction for human-information discourse. The least well understood use of inter-
action is to support a true human-information discourse in which the mechanics of 
interaction vanish into a seamless flow of problem solving. Interactions are needed 
to support processes such as comparing and categorizing data, extracting and recom-
bining data, creating and testing hypotheses, and annotating data. 

To date, there has been no foundational work to characterize the design space of 
these interaction techniques. We really do not know if the techniques that have been 
created thus far are the best or most appropriate techniques.

Nature of interactions
The nature of an interaction is affected by whether it takes place in a 2D or 3D envi-

ronment. The best developed interaction techniques have been for 2D visualizations 
and 2D graphical user interfaces. While a lot of work has been devoted to interaction 
techniques for 3D virtual environments, they are not nearly as well developed as the 
2D techniques. 3D manipulation and navigation techniques tend to be harder to 
use and harder to learn. One promising approach for simplifying interaction in 3D 
environments has been to identify cases where 3D visual representations are used, 
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but the interactions are constrained so that 2D interaction techniques can be used. 
An example of this is the Data Mountain [Robertson et al., 1998], where a 3D visual 
representation is used but object manipulation takes place on a tilted plane.

Interaction can also be greatly affected by the display and interaction devices 
used for visual analytics tasks. A wide range of display configurations will be used to 
support visual analytics; hence, interaction techniques should be designed so that 
they are similar across different devices ranging from large shared displays to desktop 
environments to field-portable devices. While this is technically challenging to do, 
it has been done in at least one case. DateLens [Bederson et al., 2004] is a scalable 
calendar system that works on everything from a personal digital assistant (PDA) 
display to a wall-sized display, scaling the visual representation to the appropriate 
size for the device and using the same interaction technique at all scales.

While most interaction techniques use a single modality (or human sense), there 
is work that suggests that multimodal interfaces can overcome problems that any 
one modality may have. For example, voice and deictic (e.g., pointing) gestures can 
complement each other and make it easier for the user to accomplish certain tasks 
[Oviatt, 1999]. Sonification can be used to enhance visualization either by redun-
dant encoding of visual information in the auditory channel [Robertson, 1998] or 
by use of sound to represent data values [Smith et al., 1990].

Technology Needs
Although a lot of isolated design work has been done in specific aspects of inter-

action science, little systematic examination of the design space has been done. As a 
field, we are in a transition phase in which researchers are beginning the founda-
tional work to understand that design space. Creating a science of interaction is 
critical because the large-scale nature of the analytic problem and the compressed 
timeframe for analysis require that we identify and develop the correct interaction tech-
niques for any given human timeframe, interaction use, or interaction environment.

Basic interaction techniques
To achieve successful adoption, visual analytics software must support both basic 

interactions and highly sophisticated interactions that support the analytic reason-
ing process. Before these more sophisticated interactions can be addressed 
systematically, work is needed to create a scientific understanding about the basic 
interactions that are used to support simpler operations. This understanding will 
form the foundation for research into more sophisticated interactions.

Recommendation 3.3
Create a new science of interaction to support visual analytics.

The grand challenge of interaction is to develop a taxonomy to describe the 
design space of interaction techniques that supports the science of analytical reason-
ing. We must characterize this design space and identify under-explored areas that 
are relevant to visual analytics. Then, R&D should be focused on expanding the 
repertoire of interaction techniques that can fill those gaps in the design space.
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Interaction techniques for human-information discourse
Existing work on interaction techniques for human-computer interaction and 

information visualization has focused on cognitive time bands, interaction for data 
manipulation, visual mapping manipulation, and navigation. The discussion on 
analytic discourse and sense-making in Chapter 2 makes it clear the higher-level 
dialogue between analyst and information, or human-information discourse, is of 
vital importance. This discourse involves the rational time band and higher-level 
uses of interaction, but neither has been sufficiently explored.

Recommendation 3.4
Expand the science of interaction to support the human-information dis-
course needed for analytical reasoning. In particular, identify and develop 
interaction techniques that support higher-level reasoning and that address 
the rational human timeframe.

Human beings are very skilled at analyzing complex situations using a combina-
tion of their available information and their combined knowledge and experience. 
However, there are inherent human tendencies that analysts must recognize and 
overcome. Interaction techniques must be developed that support an analytic dis-
course and help compensate for human limitations, including:

• Information overload in complex situations. Techniques are needed to 
help analysts simplify their cognitive load without compromising the analyst’s 
effectiveness and to help compensate for faulty memory.

• Overcoming biases. Biases affect the way data are interpreted. Biases about 
the reliability of different sources may lead people to discount information 
from sources that aren’t considered reliable. People often see what they expect 
to see and tend to ignore evidence that is contradictory to a preferred theory. 
If they form a preliminary judgment too early in the analytical process, they 
may hold firm to it long after the evidence invalidates it [Heuer, 1999].

• Satisficing. People settle for a “good enough” answer, sometimes stopping 
their analytical process before they identify critical information that would 
lead them to a different conclusion [Heuer, 1999].

New interaction techniques are needed to support the user in evaluating evidence, 
challenging assumptions, and finding alternatives. Analytical environments should 
support the user in identifying and understanding all relevant information to reach 
a solid conclusion rapidly. The tools we create need to establish a correct balance 
between structure and intuition.

Leveraging New Media to Support Interaction
While it is not expected that the visual analytics research community will need 

to focus on inventing new display technologies, the ability to harness the power of 
new display and interaction technologies invented by others will be one key to suc-
cess. Advances in the past decade have led to new discoveries in terms of the capacity 
and manner in which visualizations can be displayed and interacted with. Traditional 
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desktop displays, which appeared stuck for several years with Cathode Ray Tube 
(CRT) technology at resolutions below a mega-pixel, are now rapidly changing in 
terms of resolution and form factor. As these and even more dramatic changes 
occur, it will be important for visual analytic researchers to remain abreast of these 
changes and to use new techniques for expressing data with the new media.

Harnessing new display technologies
On the desktop, a variety of technologies exist to enable display and interaction 

with visualizations. These range from the traditional single-mega-pixel CRT com-
puter monitors to 3D Liquid Crystal Displays (LCDs) to multi-mega-pixel LCDs. 

While stereovision has been available on the desktop for many years, displays that 
free the user from goggles are recent introductions to the marketplace and poten-
tially will have a greater penetration and therefore more availability to users of visual 
analytics. As these displays merge with traditional 2D displays and the prices normal-
ize, an opportunity exists for researchers to use this technology in their applications.

While stereo on the desktop has been available for years, this technology is still 
relatively unexplored. However, users quickly adopt improvements in screen resolu-
tion and size. Multi-mega-pixel displays are offered by most monitor vendors and 
are being rapidly adopted at both homes and offices. Improvements in LCD tech-
nologies are providing displays of up to 60 inches while resolutions have approached 
nearly 10 mega-pixels (although not at such extreme display sizes). Other technolo-
gies like Liquid Crystal on Silicon (LCOS) are expected to take such improvements 
to LCDs to the next level. These improvements are only expected to increase and 
should be considered by those developing visual analytic techniques.

Form factor and resolution are only a few of the expected improvements in the 
coming years to display technologies. We believe that new technologies like the Organic 
Light-Emitting Diode (OLED) displays will improve viewing angle, weigh less, and 
be more cost effective, brighter, and power efficient [Tang & Van Slyke, 1987].

Recommendation 3.5
Develop visual representations and interaction techniques that exploit new 
display devices for visual analytics.

Mobile technologies will play a role in visual analytics, especially to users that are 
on the front line of homeland security. First responders now use technologies like 
cell phones and PDAs; in the future, they will use new technologies like foldable 
displays, electronic inks, or virtual retinal displays [Wang et al., 1999; Kollin, 1993]. 
These technologies, which allow flexible, lightweight, and wearable options for users, 
will allow information to rapidly be disseminated to users in field. Researchers must 
devise new methods to best employ these technologies and provide a means to allow 
data to scale between high-resolution displays in command and control centers to 
field-deployable displays.
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Scaling to multiple devices and device configurations
To support homeland security missions, visual analytics applications must sup-

port applications ranging from an operations center using shared large-screen 
displays or potentially augmented reality displays, to the individual analyst working 
at a desktop computer to first responders and border personnel using handheld, 
field-portable devices. Users need to have a consistent set of interactions that they 
can count on regardless of the device they are using. This is especially true in emer-
gency situations, when users’ attention is directed toward the immediate situation 
and mechanics of the computer system must be second nature to the user.

Recommendation 3.6
Develop interaction techniques that scale across different devices and are used 
in the same way on platforms ranging from handheld, field-portable devices to 
wall-sized displays.

Many common desktop computing interaction methods are not currently por-
table to other devices. Research is needed to develop interaction techniques that 
both optimize the opportunities offered by new devices and provide consistency of 
operation across devices.

For large and multiple displays, there is a benefit to seeing more information for 
more people and to enabling interactive group collaboration. Furthermore, increased 
screen real estate enables new research efforts into peripheral awareness of information 
[Greenberg & Rounding, 2001; Cadiz et al., 2002; Stasko, 2004]. Extra displays could 
be used to help analysts stay aware of information and might facilitate “noticing” 
important facts. The availability of added display space may foster the development 
of new information representations, ones that simply were not practical on traditional, 
single-monitor systems. Multiple or distributed display environments, however, 
present a whole new set of challenges for interaction and navigation. Navigating with 
a mouse over a large display area can become slow and tiresome, for example. Thus, 
new interaction techniques for these environments are needed [Baudisch et al., 2003; 
Hutchings, 2004; Robertson et al., 2004].

Multimodal interaction
Voice and gesture complement each other and, when used together, can create 

an interface more powerful than either modality alone. Oviatt [1999] shows how 
natural language interaction is suited for descriptive techniques, while gestural inter-
action is ideal for direct manipulation of objects. Unlike gestural or mouse input, 
voice is not tied to a spatial metaphor. Voice can interact with objects regardless of 
degree of visual exposure, particularly valuable in a graphical environment where 
objects may be hidden inside each other or occluded by other objects.
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Users prefer using combined voice and gestural communication over either modal-
ity alone when attempting graphics manipulation. Hauptman and MacAvinney 
[1993] used a simulated speech and gesture recognizer in an experiment to judge the 
range of vocabulary and gestures used in a typical graphics task. Three different 
modes were tested: gesture only, voice only, and gesture and voice recognition. Users 
overwhelmingly preferred combined voice and gestural recognition because of the 
greater expressiveness possible. Users were also able to express commands with great-
est sufficiency using combined input.

Some tasks are inherently graphical; others are verbal; and yet others require both 
vocal and gestural input to be completed. Allowing both types of input maximizes 
the usefulness of the environment by broadening the range of tasks that can be done 
intuitively. Also, allowing both types of input would enable analysts to vocally anno-
tate how discoveries were made and replay sequences to others.

There are also psychological reasons for integrating speech and gesture recogni-
tion into a virtual environment. Experiments in cognitive psychology have shown 
that a person’s ability to perform multiple tasks is affected by whether these tasks use 
the same or different sensory modes, for example visuo-spatial or verbal modes. Accord-
ing to the multiple resource theory of attention [Kinsbourne & Hicks, 1978; Wickens, 
1980], the brain modularizes the processing of different types of information—
when different tasks tap different resources, much of the processing can go on in 
parallel. Such is the case with speech and visuo-spatial modalities. Thus, by adding 
speech input to the visual environment, users should be able to perform visuo-spatial 
tasks at the same time as giving verbal commands with less cognitive interference. 

Experimental evidence supports this theory. Investigating attentional capacity, 
Treisman and Davis [1973] found that the ability to concentrate on more than one 
task at a time was expanded when the tasks were presented in separate perceptual 
channels and people responded to them across different response channels. This is in 
part due to the spatial and verbal information being stored separately in human 
memory [Baddeley & Hitch, 1974]. Martin [1989] finds that the benefits of multiple 
modalities previously demonstrated with separate, multiple tasks also extend to single-
task, multiple-component situations more typical of human-computer interactions.

The level to which multimodal interfaces can bring benefit to the analytical rea-
soning process has yet to be fully explored, however. 

Recommendation 3.7
Investigate the applicability of multimodal interaction techniques for visual 
analytics.

The combination of gestural and voice interaction has produced some promising 
research results, but it has not been widely adopted in application. Visual analytics 
supports much more complex reasoning tasks than have been the subject of previous 
research on multimodal interfaces. Additional study is needed to see how multi-
modal interfaces affect the effectiveness and efficiency of the analytical process. We 
should investigate the use of multimodal interfaces for both individual analysts and 
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collaborative teams of analysts. In addition, research is needed to determine the 
value of multimodal interfaces in field conditions faced by border personnel and by 
distributed teams working in noisy and time-sensitive emergency situations.

New Visual Paradigms to  
Support Analytic Reasoning

Over the last 20 years, numerous new visual representations, interaction methods, 
software tools, and systems have been developed. Often these representations and tools 
have been developed without considering the analytical reasoning tasks that they support. 
Meaningful visualization techniques for complex information must be task-driven.

In this section we consider various reasoning tasks of critical importance and 
outline the types of visual representations that need to be developed.

Organizing Large Collections of Information
Today, two primary ways to organize information spaces exist: the graphical 

desktop user interface and information displayed by search engines. The desktop 
interface consists of hierarchically organized folders containing documents. It was 
designed in an era when floppy disks were common and file systems contained thou-
sands of documents. A desktop interface to handle larger collections of information 
is badly needed. Search engines developed by companies such as Google™, Inktomi®, 
Yahoo!®, and Microsoft® Corporation organize large interconnected document collec-
tions. The interfaces are query-driven and show only small result sets. No information 
is given about the space of all documents. Search technology is now being deployed 
to help organize the desktop, e-mail, and other information spaces.

Information visualization systems, such as IN-SPIRE™, allow thousands of docu-
ments to be visually, succinctly described, navigated, and accessed. The ThemeView™ 
3D visual landscape shown in Figure 3.1 reflects the high-dimensional properties 
and relationships of sets of documents by showing clusters of themes and their 
strengths. The complex content is visible. Exploration, summarization, comparison, 
trends over time, tracking, and many other operations are more efficient. The strengths 
of visualization and document vector mathematics are combined to achieve a new 
analytical capability for massive data [Hetzler & Turner, 2004].

SeeSoft [Eick et al., 1992] provides a visual representation of all source code in 
a large software system, as shown in Figure 3.2. The system represents lines of code 
from software files in successively smaller fonts, ultimately representing the most 
deeply indented lines as individual rows of pixels whose indentation and line length 
tracks the original text. The color of each row encodes an attribute such as the age, 
author, or function of the corresponding line of code. This representation captures 
the sequential nature of source code, shows critical loops in the code, and allows 
overlays of additional information. SeeSoft shows the information inside each source 
code file, as well as relationships across the files. For example, the lines of code writ-
ten by a single developer can be shown both within a file and across multiple files.
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Figure 3.2 shows an entire module from this software system with color showing 
age of each line. The reduced representation provides an overview, shows the new 
code, old code, and frequently changed code. This example highlights how an effec-
tive representation of a domain, such as software in this example, becomes a critical 
visual tool to enable understanding of the structure of the code and patterns of 
maintenance in the code that were not possible before it was created.

Another example of a set of integrated views of an information space is the 
Command Post of the Future system described in Chapter 5. Used in military appli-
cations, it presents a comprehensive map-based view of the operational area. The 
map provides a unified information space that is populated with intelligence assess-
ments and planned activities.

Figure 3.1. The IN-SPIRE software’s ThemeView landscape shows relation-
ships among documents. High peaks represent prominent themes. Peaks close 
together represent clusters of similar documents.
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These examples illustrate the value of showing large integrated views of dynamic 
information spaces. However, much more work is needed to support the full range 
of analytic tasks faced by the analyst and accommodate the demands of analyzing 
massive and complex data collections.

Recommendation 3.8
Create visual analytic tools that provide integrated views of large-scale infor-
mation spaces, support coordinated viewing of information in context, and 
provide overview and detail.

Integrated views of data can support and improve perception and evaluation of 
complex situations by not forcing the analyst to perceptually and cognitively inte-
grate multiple separate elements. Visualization systems should present all the relevant 
information required for a decision maker or operator to efficiently and correctly 
comprehend and act in a complex situation. Systems that force a user to view 
sequence after sequence of information are time-consuming and error-prone [Kapler 
& Wright, 2004; Mooshage et al., 2002].

Similarly, combining or merging interactions and controls with visible represen-
tations can also speed access, control, and manipulation operations. Often, users 
experience a cognitive separation between the task they want to accomplish and  
the mechanics for accomplishing the task. New techniques can be invented that  
do away with the separation of “what I want and the act of doing it” [Van Dam, 
2001]. Integrating views, interactions, and analytics provides significant productiv-
ity improvement for the combined human, analytical, and data system.

To provide the maximum information for the user, visual representations are 
routinely combined with textual labels. The generation of meaningful labels and 
their placement on the display represents an often-overlooked challenge. Labels 
should be visible without overwhelming the display or confusing users. The number 
of labels, their placement, and their content are all areas for further investigation. 

Figure 3.2. Left: SeeSoft representation for software source code where successively smaller 
fonts lead to a “reduced” single row of pixels per line of source code. Right: Module in a soft-
ware system with color encoding the age of lines of code.
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Cartographers have long wrestled with this problem and their work offers valuable 
lessons, but interactive systems and dynamic data bring new challenges and oppor-
tunities to labeling.

Analysts working with large data sets want to gain a global understanding of the 
data and then focus on particular data items and their attributes. Alternating among 
levels of detail generates moment-to-moment insights and spurs new questions. A 
number of visualization and user interface techniques have been developed to sup-
port coordinated views of both overview and detail. Greene et al. [2000] found that 
previews and overviews help users quickly understand the scope of their data set and 
discriminate between interesting and uninteresting content. Existing techniques 
include the use of multiple coordinated windows at different focus levels, panning 
and zooming operations, and so-called “fisheye” views [Plaisant et al., 1995; Furnas, 
1986]. Fisheye techniques are “focus+context” views, i.e., one in which both the 
overview and detail are presented side by side in the same view. The power of 
“focus+context” comes from the ability to subjugate unimportant information  
for contextual navigation while using attentive focus for effectively communicating 
information. While existing techniques in this area are very useful, new methods 
must be developed that take advantage of multiple and large-area computer displays 
to assist analysts with inquiries on the massive data sets evident in visual analytics.

Reasoning about Space and Time
Because of our daily need to navigate and reason about the world around us, 

people are particularly good at reasoning about space and time. Maps, which are one 
of the earliest visual inventions of the human race, abstract the space around us in 
ways that support various forms of reasoning. Modern geographic information sys-
tems provide access to large amounts of geospatial information, including satellite 
imagery, digital terrain models, and detailed maps of roads and cities. To support 
analysis, this information must be studied in a temporal context.

Cartographers have developed representations such as flow maps [Dent, 1999] 
that show migration patterns on top of maps. The common weather map is an 
example of a flow map. Understanding how best to combine time and space in visual 
representations needs further study. For example, in the flow map, spatial informa-
tion is primary (i.e., it defines the coordinate system of the visualization). Why is 
this the case, and are there visual representations where time is foregrounded that 
could also be used to support analytical tasks?

An example of an innovative system is GeoTime™, shown in Figure 3.3. Geo-
Time works with the spatial inter-connectedness of information over time and 
geography within a single, highly interactive 3D view. Events are represented within 
an X,Y,T coordinate space. Patterns of activity among people, places, and activities 
can be analyzed. Connectivity analytical functions help find groups of related objects 
[Kapler & Wright, 2004].

While systems such as GeoTime show great promise, the challenge of integrated 
spatial and temporal reasoning is still a substantial one.
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Figure 3.3. GeoTime provides an integrated view for analysis of a combination of tempo-
ral and geospatial data.
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Recommendation 3.9
Develop tools that leverage humans’ innate abilities to reason about space 
and time.

Analyzing observations over time and geography typically requires multiple, 
separate tools, e.g., a map for geospatial information and a timeline for the temporal 
information. Representations of time that support temporal reasoning are less studied 
and less developed than representations of geospatial data. Navigation and other 
problems that involve reasoning about space are well studied; however, reasoning 
about sequence of events is not as well understood.

Not only must we deepen the research understanding about temporal reasoning, 
but we must create task-appropriate methods for integrating spatial and temporal 
dimensions of data into visual representations.

Abstraction – Changing to the Appropriate Representation
To show what is important and why it is important is exceedingly difficult. Illus-

trators have successfully developed a powerful set of principles for concisely conveying 
complex information in an appropriate way. The objective is “to create an abstrac-
tion that conveys key ideas while suppressing irrelevant detail.” The challenge is to 
be able to assess a situation, extract key features, and visually represent those features 
and their combinations effectively. This needs to be done dynamically as conditions, 
interests, and tasks change [Foley, 2000; Smallman et al., 2001].

There are two interrelated issues in dealing with abstraction. The first is the 
development of an analytic capability to transform data from one representation to 
another. Selecting relevant information, filtering out unneeded information, perform-
ing calculations, sorting, and clustering are all components of data abstraction. 
Second is the development of techniques for visual abstraction. Visual abstraction 
involves developing effective representations for different types of information. 
Visual abstraction also involves the control of emphasis and level of detail. Different 
representations of the same object may be needed at different levels of detail, depend-
ing on the importance of that object for the given task. Secondary visual attributes 
can also be used to connote additional attributes that are important in reasoning, 
such as the quality of the data or the confidence in the assessment.

One particular challenge is to develop automatic, user-driven techniques for 
changing representation. The Pad++ system uses a zoomable interface to navigate a 
document collection. As the user zooms into a folder or document, more detail is 
shown. The system changes representations based on the semantics of the data, and 
hence it is possible to do meaningful semantic zooms. Other examples of multi-scale 
interfaces include Woodruff [1998] and Stolte et al. [2002].

Rendering techniques that support cognitive abstraction from visual representations 
and improve understanding of complex information spaces must also be incorporated 
into visual analytic solutions. These techniques include advanced rendering methods 
that aid 3D perception (e.g., advanced illumination, shading, texturing, transpar-
ency, shadowing) as well as illustrative rendering techniques that support design and 
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illustration principles (e.g., effective design [Agrawala et al., 2003; Heiser et al., 
2004], volume illustration [Rheingans & Ebert, 2002; Svakhine et al., 2003; Treveat 
& Chen, 2000]).

Recommendation 3.10
Develop visual representation methods for complex information that provide 
the appropriate level of abstraction.

Research is necessary to: 
• Identify alternative visual representations of data that best support different 

analytical tasks
• Develop transformation methods that allow the user to move among alter-

native visual representations to facilitate exploration and discovery
• Provide level of emphasis and detail appropriate to the user’s data and task.

Uncertainty – Understanding Incomplete or Erroneous 
Information

Reasoning and working with uncertain information is common in most visual 
analytics applications. To reach the appropriate conclusions, analysts must remain fully 
aware of the uncertainties and conflicts present in their information. However, repre-
sentation of uncertainty is not often considered in current visual analytics systems.

Recommendation 3.11
Develop visual representations that illustrate uncertain, missing, and mislead-
ing information, and that allow the analyst to understand the uncertainty 
inherent in visual analytics applications.

There is no accepted methodology to represent potentially erroneous informa-
tion, such as varying precision, error, conflicting evidence, or incomplete information. 
There is no agreement on factors regarding the nature of uncertainty, quality of 
source, and relevance to a particular decision or assessment. Nevertheless, interactive 
visualization methods are needed that allow users to see what is missing, what is 
known, what is unknown, and what is conjectured, so that they may infer possible 
alternative explanations. Uncertainty must be displayed if it is to be reasoned with 
and incorporated into the visual analytics process. In existing visualizations, much 
of the information is displayed as if it were “true” [Finger & Bisantz, 2002].

Integrating Powerful Analysis Tools with Visualization
Data representation and transformation (described more fully in Chapter 4) 

evolved from the statistics, pattern recognition, and machine-learning communities 
and have long been a staple in analysis. These approaches are powerful, automated, 
and quantitative.



88 Illuminating the Path

Unfortunately, data transformation approaches, by themselves, are insufficient 
to provide the required insights. Visual analytics couples these computational capa-
bilities with a human decision maker. The hybrid system is more powerful than 
either the machine or the analyst working alone.

Many possible data transformations may be applicable to a particular problem, 
but it is not necessarily clear which ones will be of most value in facilitating insight. 
Visual analytics offers advantages to the user because it provides visual cues that can 
help the analyst formulate a set of viable models. Also, because visual analytics is 
qualitative as well as quantitative, there are no assumptions of exact parameters and 
well-defined boundaries between what is interesting and what is not. A priori criteria 
of significance may be manipulated based on the judgment of the analyst. The weak-
nesses of visual analytics are that there are often infinite possibilities in terms of 
mappings and views, and there is a high potential for information overload in dense 
information fields.

Many analytic packages support multiple visual representations and computa-
tional techniques, although generally each will emphasize one over the other. For 
example, plots are routinely used to confirm analysis and sampling, and clustering 
algorithms are often used for data reduction prior to visual exploration. The prob-
lem is that the communication between the two forms of analysis is often a thin, 
one-directional channel.

Recommendation 3.12
Develop visual analytic methods that combine data transformations with 
interactive visual tools, leveraging powerful computational methods that are 
developed for continuous and discrete data analysis with human cognitive and 
perceptual abilities.

An ideal environment for analysis would have a seamless integration of compu-
tational and visual techniques. For instance, the visual overview may be based on 
some preliminary data transformations appropriate to the data and task. Interactive 
focusing, selecting, and filtering could be used to isolate data associated with a 
hypothesis, which could then be passed to an analysis engine with informed param-
eter settings. Results could be superimposed on the original information to show 
the difference between the raw data and the computed model, with errors high-
lighted visually. This process could be iterated if the resulting model did not match 
the data with sufficient accuracy, or the analyst could refocus on a different sub-
space of information.

An environment that strongly links data transformation and visualization will 
result in more powerful analysis process that allows the user to draw on the strengths 
of each approach.
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Monitoring Streams of Data – Assessing Situations  
and Detecting Changes

Many analytic activities involve monitoring a stream of information. The analyst 
is required to identify and respond to major new developments. We need a new 
visualization paradigm that will enable analysts to extract relevant information from 
information streams, gain situational awareness, and formulate appropriate actions.

Streaming data are particularly important for homeland security applications. 
With the decreasing cost of silicon, it has become cost-effective to deploy new sensor 
systems that are capable of collecting massive information streams. The systems will 
collect much more data than can be combined and warehoused in a centralized 
system. Thus we need to develop fundamentally new techniques to visualize and 
analyze data in motion.

As an example, we consider an ongoing project at University of Illinois-Chicago 
National Center for Data Mining. In this project, shown in Figure 3.4, traffic data 
from the tri-state region (Illinois, Indiana, and Wisconsin) are collected from hun-
dreds of embedded sensors. The sensors are able to identify vehicle weights and 
traffic volumes. There are also cameras that capture live video feeds, Global Positioning 
System (GPS) information from selected vehicles, textual accident reports, and 
weather information. The research challenge is to integrate this massive information 

Figure 3.4. Real-time view of Chicago traffic flows that integrates congestion levels, 
flow, vehicle types, video feeds, and textual accident reports.
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flow, provide visualizations that fuse this information to show the current state of 
the traffic network, and develop algorithms that will detect changes in the flows. 
Part of this project will involve characterizing normal and expected traffic patterns 
and developing models that will predict traffic activity when stimulus to the net-
work occurs, as would be expected if there were a terrorist attack. The changes 
detected will include both changes in current congestion levels and differences in 
congestion levels from what would be expected from normal traffic levels.

Another example is Smart Money magazine’s Map of the Market [Wattenberg, 
1999], shown in Figure 3.5. It allows the user to monitor the performance of hun-
dreds of stocks in real time as trading is underway. The Map of the Market uses the 
Treemap visualization technique [Johnson & Shneiderman, 1991; Bederson et al., 
2002]. Each rectangle represents a stock (company) and the rectangle’s size corre-
sponds to the market capitalization of the company. The color of a rectangle denotes 
the stock’s performance in a given period of time (red-decline and green-advance). 
The display is interactive and the viewer can easily change the segment of time being 
reviewed and can focus in on a particular market segment. One of the strengths of 
the visualization is that it provides a global impression of how the market is doing as 
a whole as well as the details of individual companies.

As these two examples show, real-time visualization can be a powerful tool in 
gaining insight from streaming data. However, real-time analytical systems for 
streaming data are still in their very early stages, as most visual analytics tools are 
targeted at static data sets.

Figure 3.5. Smart Money magazine’s Map of the Market illustrates both high-level over-
views and company-level details about stock market activity.
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Recommendation 3.13
Develop visual representations and new analysis techniques for streaming 
data, including data collected by sensors. Develop visual analytic techniques 
that detect and show changes in the streams and that integrate with predictive 
modeling tools.

The research challenge is to create a new class of visualizations for streaming data. 
Three significant problems must be addressed for streaming data visualizations: 

1. Provide situational awareness for data streams.
2. Show changes in the state of the system and help users identify when the 

changes are significant.
3. Fuse various types of information to provide an integrated view of the  

information.
Visual representations by themselves are insufficient to answer many analytic 

questions and must integrate with algorithms for change detection, forecasting, and 
predictive modeling tools.

It is also important to note that these types of analysis activities rarely occur in a 
quiet, private setting free of interruptions or distractions. Instead, they often take 
place under extreme pressure in shared workspaces such as command and control 
centers. We need a better understanding of human attention and how it affects the 
analysis activities that a person may be performing. How can we facilitate an analyst 
acquiring the previous state in an analytic process when some interruption or dis-
traction occurs? Can we design visualizations and systems that are more pliable to 
the interruptions that are bound to occur, that is, techniques that better facilitate 
analysts reorienting themselves and resuming prior activities? 

Handling Scale
As described in Chapter 1, our ability to collect data is increasing at a faster rate 

than our ability to analyze it. In this section, we address the issues of visual scalabil-
ity, information scalability, and software scalability that were raised in Chapter 1. 
Recall that visual scalability is the capability of visualization representations and 
visualization tools to display massive data sets effectively. Information scalability is 
the capability to extract relevant information from massive data streams. Software 
scalability is the capability of the software to accommodate data sets of varying sizes. 
We wish to avoid the hidden costs that arise when we build and maintain mono-
lithic, non-interacting, non-scalable software models.

Analytic scalability is the capability of the mathematical algorithms to efficiently 
accommodate large data sets. As data set sizes and complexity increase, new analyti-
cal approaches and algorithms are needed that can handle the increased complexity. 
The computational complexity of many current visual analytics algorithms is such 
that these algorithms cannot process data as rapidly as they are received.
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Scalability of Visual Representations
The state of the art for representing an information space typically consists of a 

static representation of the space that users interact with and manipulate to discover 
patterns within the information. The challenge is that the complexity of large informa-
tion spaces can overwhelm any single representation. A new class of dynamic and scalable 
visual representations is needed to enable rich analysis of these information spaces.

The choice of visual representation affects visual scalability. Some visual meta-
phors scale well in some circumstances, while others do not. To illustrate, we describe 
six common visual metaphors, which are shown in Figure 3.6 using Visual Insights’ 
ADVIZOR. These metaphors are chosen to be intentionally simple. They represent 
only a single dimension of the information space and illustrate one approach toward 
visual scalability.

Bar charts (top left in Figure 3.6) are collections of vertical bars arranged in a 
window. Two data attributes can be encoded in the bar height and color, and bars 
can be clustered or stacked to increase the number of attributes. In a bar chart, the 
minimum possible thickness for each bar is a single pixel, as is the minimum separa-
tion between adjacent bars. Assuming a window width of 1000 pixels, at maximum 
zoom a bar chart can display at most 500 bars. However, especially when there is 
little structure to index the bars, 50 bars is more realistic. One approach to increas-
ing the scalability of bar charts is to employ dynamic transitions to new representation 
as the size and complexity of the information space increases. For example, the 
ADVIZOR bar chart can transition into a smoothed histogram (Figure 3.6, bottom 
right) when the number of bars exceeds the number of available pixels.

Landscapes (middle left in Figure 3.6) are a 3D version of matrix views (top 
right in Figure 3.6). They show 2D tabular data using glyphs of skyscraper-like tow-
ers arranged on a grid. Usually, as in Figure 3.6, a landscape is viewed from an angle 
(from straight overhead, it becomes a matrix view). The height, color, and shape of 
the towers can potentially encode three data attributes, depending on the nature of 
the attributes. For example, numerical attributes map well onto height, somewhat 
well onto color, and poorly onto shape. Categorical attributes map best onto color.

Landscapes can show hundreds to thousands of data elements. Limiting factors 
are the number of pixels used to render each 3D glyph (typically several hundred), 
occlusion caused by tall bars in front obscuring short bars in the back and, as for 
matrix views, how well the numbers of index values match the screen aspect ratio.

Relationship views (middle right in Figure 3.6) show both characteristics of 
individual data elements and pairwise relationships among them. Nodes correspond 
to data elements, whose attributes become visual characteristics such as size, color, 
and shape. The relationships among nodes are encoded as visual characteristics of 
links (width, color, pattern). For example, the network view in Figure 3.6 shows 
characteristics of automobile traffic in Chicago by zones (such as the central business 
district, the large node at the center). Node sizes are number of destination trips, 
and link widths show zone-to-zone flows. Network views can usefully display a 
graph with tens to thousands of nodes, with strong dependence on the connectivity, 
number of links, and inherent structure of the graph. Scalability decreases dramati-
cally as connectivity increases, because many of the connecting links overplot, 
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causing the display to become confusing. Graph layout algorithms that attempt to 
minimize overplotting can overcome this to some extent. Their effect is visual acces-
sibility to data rather than display of structure, because distances may not encode 
relationships between nodes. Visual scalability is limited if layout algorithms destroy 
or distort “real” relationships (for example, geography) among nodes.

Scatterplots (bottom left in Figure 3.6) can display 100,000 points or more, 
depending on the data pattern. The primary factor limiting scatterplot scalability is 
point overplotting: as the number of points increases, points overplot, not only 
making structure in the data, such as trends or concentrations of points, harder and 
harder to identify, but also rendering access to details of the data impossible.

More recent work by Fekete and Plaisant [2002] has addressed the challenge of 
scaling visual representations. They are studying innovative approaches to represent 

Figure 3.6. Scalability of common visual representations. Top Left: Bar 
chart and Top Right: Matrix view, both illustrated with software change 
data. Middle Left: Landscape and Middle Right: Network view, both 
illustrated with zone-to-zone traffic flows in metropolitan Chicago. Lower 
Left: Scatterplot. Lower Right: Histogram.
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one million discrete items visually without use of aggregation techniques. They are 
investigating both visual attributes and interaction techniques, such as animation, to 
facilitate data set exploration. Work by Munzner et al. [2003] on TreeJuxtaposer 
provided tools for comparing trees of several hundred thousand nodes. The visual-
ization technique, called Accordion Drawing, has recently been extended to work 
on trees of up to 15 million nodes [Beermann, 2005].

Technology Needs
To scale our visual representations to meet ever-escalating data volumes, we must 

advance the state of the art in several major areas: visual representation of large data 
collections, support for multi-type information synthesis, and support for visualiza-
tion of high-dimensional spaces.

Visual representation of large data collections
We need to extend the state of the art for visual representations to be able to 

explore heterogeneous multi-source, multi-dimensional, time-varying information 
streams. We must develop new visual methods to explore massive data in a time-
critical manner. We must develop new methods to address the complexity of 
information and create a seamless integration of computational and visual tech-
niques to create a proper environment for analysis. We must augment our methods 
to consider visual limits, human perception limits, and information content limits.

Recommendation 3.14
Develop a science of visual scalability that includes new ways to define it, met-
rics to quantify it, and techniques to increase visual representation scalability.

It is difficult to increase what we cannot measure, so the first step toward increas-
ing visual representation scalability must be to develop ways to measure it. Current 
scalability metrics do not capture what is important for visual scalability. Thus we 
must establish metrics that allow us to evaluate both visual metaphors and data rep-
resentations as they apply to scalable algorithms. The best measurement will evaluate 
the representations according not only to scale but also to the number of insights, 
actions, or value achieved for the analyst.

Existing visual representations commonly support display of several orders of 
magnitude less data than needed to fully represent available data. For the field of 
visual analytics to achieve its potential, we need to develop new representations and 
techniques that support display of much greater data volumes. One approach to this 
is to create approaches that dynamically change form as the size and complexity of 
the information space increases.

Visual representations to support synthesis
Synthesis includes the capability to fuse the relevant information from diver-

gent multi-source, multi-dimensional, time-varying information streams. This is a 
grand challenge in visual analytics. Not only must researchers produce new visual 
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representations and data representations for specific data types or information 
streams but also we must develop methods that synthesize the relevant information 
into a single information space and develop new visual metaphors that allow the 
analyst to “look inside” this complex, time-varying space.

Recommendation 3.15
Develop visual representations for information synthesis. The representations 
should combine relevant information from heterogeneous multi-source, 
multi-dimensional, time-varying information streams into a single seamless 
visual representation.

Many visual analytics problems will involve heterogeneous data that must be 
integrated, synthesized, and viewed at multiple layers. Current visual representa-
tions often focus on a single attribute and do not enable analysts to understand the 
richness in complex heterogeneous information spaces. New representations are 
needed to help analysts understand complex heterogeneous information spaces. For 
example, in a crisis management center, analysts need to integrate information 
involving geospatial locations, text, flows, weather, video feeds, and radiological sensors 
into a single analytic environment to support real-time emergency management.

Scaling the number of dimensions
Analysis of large information spaces often translates into the analysis of data scat-

tered in very-high-dimensional (VHD) spaces, consisting of hundreds or thousands 
of variables. Interesting structures in these spaces may be nonplanar or nonlinear, 
suggesting that the analyst will require more sophisticated tools for analysis.

The challenges of scaling to deal with high-dimensional data affect both the visual 
representation and interaction techniques and the fundamental data representations 
and transformations that underlie those visual representations. We address the visual 
representation and interaction challenge here. The data representation and transfor-
mation issues are described in Chapter 4.

Recommendation 3.16
Research and develop visual representation and interaction methods for very-
high-dimensional, large information spaces.

Visually representing only a couple dimensions of a high-dimensional space is not 
necessarily effective in conveying the important content of that space. Not only can this 
scaled-down representation obscure the complex relationships that may exist within 
the data but it can also deceive the user with its simplicity. New visual representations 
and interactions are needed that help represent complex relationships without oversim-
plifying information. For example, Yang et al. [2004] developed a visualization that 
represents each of the dimensions of a high-dimensional space, along with all of the 
values for those dimensions, in a single display. Dimensionality reduction techniques 
(described in Chapter 4) should go hand in hand with visual representations that 
help users understand the complexity of their information.
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Novel Systems for Generating Visualizations
Our ability to experiment with and evaluate new interactive visual representations 

depends on our ability to create systems using them. This section focuses on the issues 
involved with the software that will create visual representations for the analyst’s use.

Creating effective visualization representations is a labor-intensive process that 
requires a solid understanding of the visualization pipeline, characteristics of the 
data to be displayed, and the tasks to be performed by the analyst. Current visualiza-
tion software generally has been written in environments where at least some of this 
necessary information was missing.

In general, it is not possible for the data analyst, who has the best understanding 
of the data and task, to construct new tools. The development of a visualization appli-
cation requires a firm understanding of issues of perception, data, information structures, 
human-computer interaction, and graphics, not to mention the knowledge of the 
wide range of possible visual mappings available. He or she also has little time to 
learn how to interpret new visualizations and determine when to use them. Instead, 
the visual analytics community needs technology to support the rapid creation of 
visual methods that are tuned to the data, tasks, and users involved in the analysis.

State of the Art
There have been four general approaches for constructing visualization software. 

The first, and most common, is to build a general-purpose visualization tool that 
targets a particular domain. Examples of systems following this approach include 
IN-SPIRE visual text analysis software [Hetzler & Turner 2004]; OpenDx (formerly 
IBM Visualization Data Explorer [http://www.opendx.org]); the general-purpose 
AVS software [Haeberli, 1988 and http://www.avs.org]; XmdvTool [Ward, 1994] 
and Spotfire [http://www.spotfire.com] for multi-dimensional data; and Rivet 
[Bosch, 2000].

A second broad approach for constructing visualizations involves visualization 
toolkits. The most obvious approach is to build component-based visualization libraries 
such as the InfoVisToolkit [Fekete, 2004 and http://ivtk.sourceforge.net/], ILOG’s 
library, (www.ilog.com), Visual Decisions’ In3D, or AT&T Bell Laboratories’ Vz. These 
libraries simplify software construction by providing high-level programming constructs 
for creating visualizations. However, programming is still required to use them.

A third related approach at a higher level of abstraction is to build visualization 
components that work well together. Examples of this approach include North’s 
Snap-Together Visualizations [North et al., 2002] and Eick’s ADVIZOR visualiza-
tion components [Eick, 2000]. Although visual components provide more capability  
than object libraries, the currently available technologies are not sufficient. It is very 
difficult to create reusable software in general and even harder to create reusable user 
interface software that includes visualization software.

A fourth approach toward constructing visualizations involves systems that auto-
matically generate visualization software. This approach includes the generation of 
visualizations based on creating a large database of examples that can be queried 
based on user needs [Zhou et al., 2002] and the use of rule-based techniques to 
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match task and data characteristics to appropriate visualizations [Mackinlay, 1986; 
Roth & Mattis, 1991; Zhou, 1999]. Taxonomies of methods have also been used as 
a mechanism to facilitate the rapid development of effective visualizations [Chi, 
2000; Fujishiro et al., 2000]. Analysis of domains [Espinoza et al., 1999], user tasks 
[Casner, 1991], and data characteristics [Zhou & Feiner, 1996] have also been used 
in the design of visual presentations.

Technology Needs
Research is needed to move beyond the current state of handcrafting special-

purpose visual representations to reach a future in which visual analytics software 
can rapidly adapt to new data and analytical needs.

Recommendation 3.17
Develop tools and techniques to incrementally automate the common tasks 
involved with creating visualizations.

We believe that it will be quite difficult to provide a complete solution for the 
problem of generating visual representations to support visual analytics. However, 
we think that there is an opportunity for semi-automatic methods that help users 
with many of the routine tasks involved with creating visualizations. There is a vast 
difference in quality between visualizations created by skilled artists and those cre-
ated using widely available visualization software. We need to develop incremental 
techniques and software to reduce this gap.

Although we need new and novel visual representations, we also need robust, easy-
to-use software that implements well-known metaphors. For example, the community 
needs software to produce visualizations for timelines, graphs, trees, and geospatial data.

Recommendation 3.18
Develop high-quality visualization components for well-known visual repre-
sentations.

Currently, each visualization system re-implements these basic visual representa-
tions at great expense and effort. We need reusable visualization components that 
embody well-known visual representations. In many ways, these components are 
like the mathematical software libraries that are now widely distributed.

We need to create the next-generation technology for producing visual analytics 
systems. The current generation of visual analytics tools has been developed at great 
expense and targets a narrow range of specific problems. To achieve their potential, 
visual analytics tools need to target a much broader range of problems; therefore, we 
must reduce the development costs to create these tools. New ideas and technologies 
are needed to produce these tools. We are optimistic that this is now possible with 
the emergence of standards such as XML and web services.
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Summary
Visual representations and interaction technologies provide the mechanism 

for allowing the user to see and understand large volumes of information at once. 
Scientific principles for depicting information must provide the basis for visual rep-
resentations, and principles are needed for new interaction approaches to support 
analytical techniques. Together, these foundations provide the basis for new visual 
paradigms that can scale to support analytical reasoning in many situations.

Visual design theory is more mature than interaction theory, so investments in 
the further development of interaction theory should take priority. Interaction the-
ory must take into account the time constraints associated with varying levels of 
urgency in an analytic task. The application of visual representations and interac-
tions must necessarily be adapted to fit the needs of the task at hand. The issues of 
scale also profoundly affect the design of visual representations and interactions and 
must be considered explicitly in the design of new visual representation and interac-
tion techniques.

Creating effective visual representations is a labor-intensive process. We need new 
methods for constructing visually based systems that simplify the development pro-
cess and result in better-targeted applications.

Summary Recommendations
The following high-level recommendations summarize the detailed recommen-

dations from this chapter. These actions are necessary to advance the science of 
visual representations in support of visual analytics. 

Recommendation
Create a science of visual representations based on cognitive and perceptual 
principles that can be deployed through engineered, reusable components. 
Visual representation principles must address all types of data, address scale 
and information complexity, enable knowledge discovery through informa-
tion synthesis, and facilitate analytical reasoning.

Visual representations and interaction techniques provide the analyst and the 
first responder with their understanding of developing situations so that they may 
take action. A science of visual representations has been developed to support  
scientific applications, but different visual representations are needed to address the 
diverse data types that are relevant to homeland security missions. These data  
must be combined and presented to the user in a way that allows the user to under-
stand their meaning, regardless of the data type or format of the original data. The 
goal is to expose all relevant data in a way that facilitates the reasoning process to 
enable action.
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Recommendation
Develop a new suite of visual paradigms that support the analytical reason-
ing process. 

These visualizations must:
• Facilitate understanding of massive and continually growing collections of 

data of multiple types
• Provide frameworks for analysis of spatial and temporal data
• Support understanding of uncertain, incomplete, and often misleading 

information
• Provide user- and task-adaptable, guided representations that enable full 

situation awareness while supporting development of detailed actions
• Support multiple levels of data and information abstraction
• Facilitate knowledge discovery through information synthesis, which is  

the integration of data based on their meaning rather than the original  
data type.

No one visual paradigm can address all possible tasks and situations. Therefore, 
we recommend developing a suite of visual paradigms that address multiple situations 
ranging from vulnerability analysis to real-time monitoring to emergency response 
support. The scale of data, especially in the forms of sensor, text, and imagery, is 
rapidly growing. Data are continually growing and changing, and visual representa-
tions must help analysts understand the changing nature of their data and the 
situations they represent. Likewise, many data are associated with a particular place 
and time. Representing these spatial and temporal qualities is necessary to provide 
analytical understanding. Furthermore, the visualization process is complicated by 
the need to support understanding of missing, conflicting, and deceptive informa-
tion in an analytic discourse that is guided by the individual’s knowledge and his or 
her task.

Recommendation
Develop a new science of interactions that supports the analytical reasoning 
process. This interaction science must provide a taxonomy of interaction 
techniques ranging from the low-level interactions to more complex interac-
tion techniques and must address the challenge to scale across different types 
of display environments and tasks.

Interaction is the fuel for analytic discourse. Although the fundamental princi-
ples of interaction have been around for more than a decade, they do not address 
the needs for higher-order interaction techniques, such as task-directed or hypoth-
esis-guided discourse, to support the analysis process. A new scientific theory and 
practice are critical to address the complexity of homeland security needs for analy-
sis, prevention, and response. These interaction techniques must adapt to the 
particular dimensions of the analytical situation, ranging from longer-term analyti-
cal assessments to urgent and highly stressful emergency response support tasks. 
These interactions must be adaptable for use in platforms ranging from the large 
displays in emergency management control rooms to field-deployable handheld 
devices in the hands of first responders. This is a high priority for initial investments.
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