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The Problem

Numerical ice sheet models have been used to explain land

form patterns [1] and landform patterns have been used to

test numerical ice sheet models [2]. Neither approach is robust unless underlying assumptions are consistent with the
landform record. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last
Laurentide Ice Sheet (LIS). Most Laurentide eskers formed in subglacial to low englacial ice tunnels [3], a condition
that likely favoured their preservation. However, there is considerable debate over a) whether they formed gradually

from astronomically-forced meltwater flows [1, 2] or rapidly
whether they formed in segments time-transgressively [1

from glacial lake or surge-related outburst floods [4, 5], b)
, 2] or synchronously along their length [3, 4, 5], and c)

whether their distribution is mainly controlled by bed deformability [6], bed permeability and groundwater flow [2, 7],

sediment supply [8] or climate/water supply [3]. It is impera

tive that these debates be resolved so that the underlying

assumptions of numerical models are robust. Here we approach the problem from first principles, asking first what
basic conditions are required for esker formation and what controls these conditions, then assessing the evidence for
each ofthese controls 1) atthe scale of the LIS and 2) in southern Alberta where eskers are relatively small.

Esker-forming conditions (first principles)

Main controls

An ice tunnel plumbing system

Substrate character, meltwater flux (climate), ice
character® (temperature and structure)

A sediment supply that is appropriate (quantity & type)
for esker-building

Substrate character (antecedent bedrock/sediment
distribution, glacial processes)

A water supply adequate for gravel transport

Climate, geothermal heat flux*, ice dynamics*

* Not addressed on this poster
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Figure 3: Inspection of current Laurentide Ice Sheet (LIS) reconstructions reveals that the majority of Laurentide eskers formed post-Younger Dryas (YD), a time of
rapid temperature increase and melting (grey shading on graph). Under such conditions the LIS would have developed numerous melt ponds on its surface, much
like the Greenland Ice Sheet (GrlS) today. Drainage of many of these melt ponds to the bed, and sediment entrainment and transport in ice tunnels at the bed likely
favoured the post-Younger Dryas production of a dense esker network. Ice limits, ice cover and glacial lakes from [9], moraines and eskers from [10], and GISP2
data from [13]. B-A, Bolling-Allerod. Grey box on map delimits southern Alberta study (Figs 4, 5).

More than 380 eskers (most relatively small) have been mapped in southern Alberta. We use a chi-square analysis in conjunction with a Bonferroni z-statistic [14] to
estimate if eskers occur more, or less, often in any substrate type based on weighted area. The Bonferroni adjustments are necessary when simultaneously
estimating multiple substrate types; they resulted in more appropriate confidence intervals. All analyses are significant at 90% confidence.
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Figure 6: A) This map shows the location of glacial lakes, glacial channels and
eskers in part of southern Alberta. Glacial lake extent is reconstructed from the
distribution of lake and associated sediments in a basin. Glacial channels are
eroded into the substrate, many likely polygenetic, and include subglacial
channels and spillways. The longest eskers (e.g., CLE, Clear lake esker, SE,
Strathmore esker) occur within glacial channels, many of which connect
headward to glacial lakes. Long eskers, such as SE exhibit B) undulating
crestlines and C) downflow prograding and vertically-acctreting ridge-scale
macroforms [cf.1], similar to those known to have formed during a single flood
event [4]. The processed (above) and interpreted (below) GPR profiles reveal
sixteen radar elements (labelled A-O) that are defined by the bold lines (bounding
surfaces) in the interpretation. Some internal reflections are traced within the
radar elements to highlight ridge-scale macroform progradation. Together, these
more local observations suggest that many glacial channels may have acted as

*  floodways for lake drainage, and that many eskers may record the waning flow of

some of these floods [cf. 5].
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Figure 1: Over igneous and metamorphic bedrock of the Canadian Shield eskers are relatively long and ubiquitous; they are shorter and less Conclusions
common over sedimentary bedrock. Assuming that glaciers overriding sedimentary bedrock necessarily produce deforming beds, this distribution .
has been attributed to ther{)referential develogment%f canals over so?t beds, and Ry-channels over rigid);ﬁbstrates [6]. Howgever, over the Western C_ont_rqls atthe ice sheet scale : : C : :
Canadian Sedimentary Basin (WCSB) eskers are present over Mesozoic clastics (relatively impermeable) and rare over Paleozoic carbonates Itis difficult to tease out Whethe_r Cl!mate or SUb$trate Wa:S th_e dominant control on esker _d'St”bUt'On at the '_Ce sheet
(more permeable). Thus, R-channel location has been attributed to bed permeability [7]. Ice limit from [9], eskers from [10], and bedrock from [11]. scale because of the spatial coincidence of Shield terrain (impermeable rocks; coarse tills) and the footprint of the
Grey box delimits southern Alberta study (Figs 4, 5). LIS post-Younger Dryas. Over Shield terrain it is plausible that subglacial ice tunnels preferentially formed over
iImpermeable beds as theory suggests, yet is equally plausible that as climate warmed (post-YD) increased melt
rates favoured formation of surface melt ponds that drained through subglacial ice tunnels aiding dense esker
Legend Legend network formation. Eskers may be forming today under the GrlS in association with melt pond drainage. Clast-rich
—— ﬂ o — Eskers drift was also critical in providing an adequate local supply of sand and gravel for esker building on the Shield.
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e e el e S B i Substrate control (permeability or deformability) on plumbing style is ambiguous in southern Alberta. Thick till may
s %8 g - SRR R TS Fans have acted as an aquiclude favouring subglacial ice tunnel operation, but esker formation is also sediment supply
jﬂ;:pz-ja‘; PRty e Belly & Wapit (non-marine) BSDEREt limited. Thus, esker distribution is a minimum map of LIS subglacial ice tunnel location in this region. The association
S I - L Clagbniy of large eskers with ridge-scale macroforms, glacial channels and glacial lakes suggests that these eskers may
SN e %;% Y o Ferpau Sresiea name) e record deposition during the waning stages of floods that occurred as one lake basin decanted into another.
&5 & "“ 3 §f; o\ iR Implications for the underlying assumptions of numerical models | |
S N0 WAREEL - % ; o s ?_ * Esker formation can be related to episodic (flood) flows from glacial lakes (supra-, en- or sub-glacial, or ice-
””?@ | W20 ~— Laurentide ice limit ~ 21.4 ka BP 040 1 S T v s {2 oy gstel | " : marginal). Thus, esker distribution likely reflects abundant water availability (surface melt and ice-dammed lakes),
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