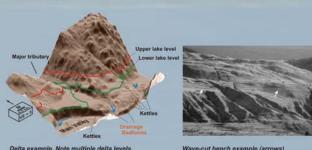


Fishing for answers in deglacial ribbon lakes advances in Cordilleran paleogeographic, paleoenvironmental and isostatic reconstructions

Timothy Johnsen and Tracy Brennand, Simon Fraser University, British Columbia, Canada

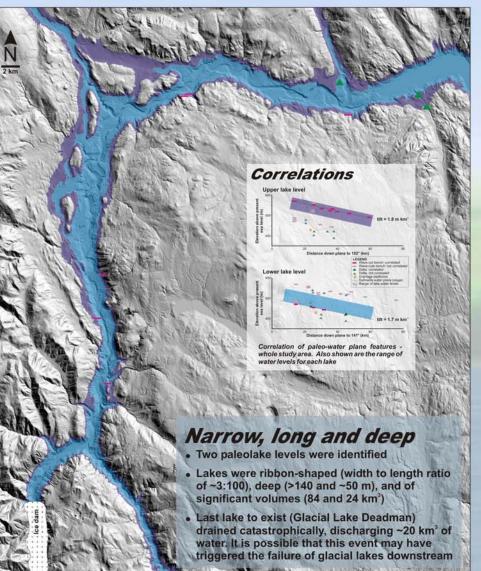
Objectives

- . Investigate, survey and correlate paleolake levels
- Reconstruct paleolake geography, evolution and environment
- Reconstruct glacio-isostatic rebound



Why study these lakes?

- · Deglacial ribbon lakes have rarely been studied beyond the reconnaissance level
- Abundant sediment exposures and shoreline features are in the study area
- Most glacial lake research has been completed for the low relief setting of the Laurentide Ice Sheet. The study area is moderately high relief

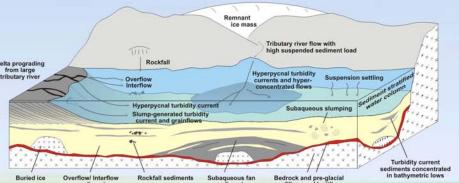

How?

• Integrate a diversity of techniques: geomorphology, sedimentology, aerial photographs, differential GPS, GPR, DEMs and GIS

Paleogeography

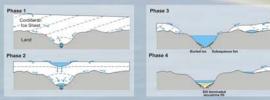
Catastrophic drainage

Ice dam failure led to catastrophic lake drainage and development of erosional surfaces and drainage bedforms


Eventually the floodwaters reached the marine environment of Georgia Strait, a total distance of ~250 km, where exotic deposits dated at ~10.500 "C vr BP' may have been

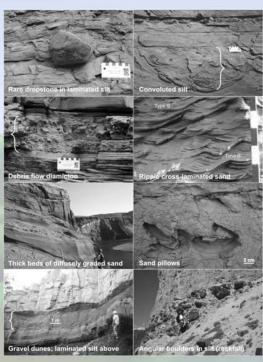
Glacio-isostasy

- · Glacio-isostatic tilts of these lake shorelines are among the highest measured in the world (1.8 - 1.7 m km⁻¹)
- Causes: very thin (<35 km thick) and low viscosity lithosphere, paleo-topography of the CIS, rapid deglaciation, and the possible early development of these
- Glacio-isostatic depression in this region was likely hundreds of metres


Paleoenvironment

Dynamic and energetic

- Deglacial environment whereby ice dominantly on plateaus, not valleys
- . Ice dammed lake with numerous tributaries containing remnant ice masses in
- High rates of sedimentation from tributaries that produced deltas, subaqueous fans and high energy lake sediments
- Low energy deposits dominated by laminated silts. Classic varves not produced
- . Buried ice producing collapsed sediments and kettle holes


Deglaciation

presence of ice on plateau areas during the time of these lakes. Meltwater drainage routes indicated by blue arrows. Dashed lines

Sedimentary facies

Seventeen glaciolacustrine lithofacies were identified (ranging in grain size from clayey-silt to boulder). They record: suspension settling (overflows), turbidity currents, debris flows, grain flows, hyperconcentrated flows (underflows), sediment loading, rockfall

Failures

