Monoprotic acid-base equilibria
(Ch 10)

- Weak acid equilibria
- Fraction of dissociation of a weak acid
- Weak base equilibria
- Fraction of association of a weak base
- When the dissociation of water cannot be neglected
- Buffer, Henderson-Hasselbalch equation and buffer capacity

Weak acid equilibria

Since $\left[\mathrm{OH}^{-}\right]=\frac{K_{W}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{6.80 \times 10^{-3}}=1.4_{7} \times 10^{-12} \mathrm{M}$
The amount of H^{+}, which is similar to $\left[\mathrm{OH}^{-}\right]$, contributed from dissociation of water is very small and the above approximation is justified.

$$
\therefore p H=-\log \left[H^{+}\right]=-\log x=2.17
$$

If the concentration of the acid is larger (e.g. 5.0F) and/or Ka is smaller, another approximation: $5.0-\mathrm{x} \approx 5.0$ could also be made to avoid solving the quadratic equation.

Weak acid equilibria

To calculate the pH of 0.050 F of o-hydroxybenzoic acid $\left(\mathrm{K}_{\mathrm{a}}=1.07 \times 10^{-3}\right)$

We assume that there is negligible contribution of H^{+}from dissociation of water.

$$
\text { Since } \quad K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \quad 1.07 \times 10^{-3}=\frac{x^{2}}{0.050-x}
$$

$x^{2}+\left(1.07 \times 10^{-3}\right) x-5.35 \times 10^{-5}=0$
This is a quadratic equation: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

The negative root is rejected. Chem215/P.LL/Monoprotic Acid-Base Equilibria/P 2

Fraction of dissociation of a weak acid

$$
\begin{aligned}
\alpha & =\frac{\text { amount of dissociate d conjugate base }}{\text { formal concentrat ion of the acid }} \\
& =\frac{\left[A^{-}\right]}{\left[A^{-}\right]+[H A]}=\frac{x}{F} \\
\alpha & =\frac{6.80 \times 10^{-3} \mathrm{M}}{0.0500 \mathrm{M}}=0.136
\end{aligned}
$$

$$
\text { So } 13.6 \% \text { of the } 0.050 \mathrm{~F} \text { acid has dissociated to give } \mathrm{H}^{+} \text {, leading to a rise in }\left[\mathrm{H}^{+}\right] \text {, }
$$

$$
\text { or a decrease in } \mathrm{pH} \text {. }
$$

Fraction of dissociation of a weak acid
Fig. 10-2: The fraction of dissociation of a weak electrolyte (e.g. a weak acid) increases as the concentration of the electrolyte decreases. This does not mean [H+] increases (or pH decreases) as the conc. of the weak acid decreases.

Weak base equilibria

To calculate the pH of 0.0372 F of a weak base: cocaine $\left(\mathrm{K}_{\mathrm{b}}=2.6 \times 10^{-6}\right)$
Similar to the weak acid calculation, note that $x=\left[\mathrm{OH}^{-}\right]$, instead of $\left[\mathrm{H}^{+}\right]$

$$
\text { Since } \quad K_{b}=\frac{\left[O H^{-}\right]\left[B H^{+}\right]}{[B]} \quad 2.6 \times 10^{-6}=\frac{x^{2}}{0.0372-x}
$$

We assume that there is negligible contribution of OH^{-}from dissociation of water. We also make the approximation: 0.0372-x ≈ 0.0372
$\therefore x=\sqrt{0.0372 \times 2.6 \times 10^{-6}}=3.1 \times 10^{-4} \quad$ The negative root is rejected.
Since $\quad\left[H^{+}\right]=\frac{K_{W}}{\left[O H^{-}\right]}=\frac{1.0 \times 10^{-14}}{3.1 \times 10^{-4}}=3.2 \times 10^{-11} \mathrm{M}$

$$
\therefore p H=-\log \left(3.2 \times 10^{-11}\right) \quad=10.49
$$

Fraction of association of a weak base


```
    = [BH+}[B\mp@subsup{H}{}{+}]+[B]=\frac{x}{F
For 0.0372F cocaine,
\alpha=\frac{3.1\times1\mp@subsup{0}{}{-4}M}{0.0372M}}=0.008
```

So only 0.83% of 0.0372 F cocaine has associated with H^{+}, leading to a lowering in $\left[\mathrm{H}^{+}\right]$, or rise in pH .

$$
\begin{aligned}
& \text { When the dissociation of water cannot be neglected } \\
& \text { What is the } \mathrm{pH} \text { of } 1.0 \times 10^{-8} \mathrm{M} \mathrm{KOH} \text { ? } \\
& \text { If the dissociation of water is neglected, } \\
& \therefore p O H=-\log \left(1.0 \times 10^{-8}\right)=8.00 \\
& p H=14.00-8.00=6.00<7.00!! \\
& \text { When the dissociation of water must be considered, } \\
& \qquad \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \quad \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \quad K_{w}=\left[\mathrm{H}^{+} 1\left[\mathrm{OH}^{-}\right] \quad \mathrm{x}+1.0 \times 10^{-8}\right. \\
& \begin{array}{l}
1.0 \times 10^{-14}=x\left(x+1.0 \times 10^{-8}\right) \quad x^{2}+\left(1.0 \times 10^{-8}\right) x-1.0 \times 10^{-14}=0
\end{array} \\
& x=\frac{-1.0 \times 10^{-8}+\sqrt{\left(1.0 \times 10^{-8}\right)^{2}-4(1)\left(-1.0 \times 10^{-14}\right)}}{2(1)}=9.6 \times 10^{-8} \quad \text { (The negative root is rejected) } \\
& \therefore p H=-\log \left(9.6 \times 10^{-8}\right)=7.02 \quad \text { Chem215/P.Li/Monoprotic Acid-Base EquilibriaP 8 }
\end{aligned}
$$

Buffer calculations

Example in Sec 10-5: Find the pH of a buffer prepared by
dissolving 12.43g of tris (FW 121.136) plus 4.67g of tris
hydrochloride (FW 157.597) in 1.00 L of water. $(\mathrm{pKa}=8.075)$
tris: tris(hydroxymethyl)aminomethane $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{C} . \mathrm{NH}_{2}$

$C_{B}=\frac{12.43 \mathrm{~g} / 12.136 \mathrm{~g} / \mathrm{mol}}{1.0 L}=0.1026 \mathrm{M}$
$C_{B H^{+}}=\frac{4.67 \mathrm{~g} / 157.597 \mathrm{~g} / \mathrm{mol}}{1.0 L}=0.0296 \mathrm{M}$
$p H=p K_{a}+\log \frac{C_{B}}{C_{B H^{+}}}=8.075+\log \frac{0.1025}{0.0296}=8.61$
The same buffer can be prepared by adding sufficient HC1 to tris or sufficient NaOH t t tris hydrochloride.
Chem215/PLi/Monoprotic Acid-Base Equilibria/P 11

Buffer calculations

Example in Sec $10-5$: Find the volume of 0.500 M NaOH added to 10.0 g of tris hydrochloride to give a pH of 7.60 in a final volume of 250 mL .

$$
\begin{aligned}
& \begin{array}{l}
\text { Moles of tris hydrochloride } \\
\text { initially present }
\end{array} \quad=\frac{10 \mathrm{~g}}{157.597 \mathrm{~g} / \mathrm{mol}}=0.0635 \\
& \begin{array}{l}
\mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\begin{array}{l}
\text { Initial moles } \\
\text { Final moles }
\end{array} \quad \begin{array}{l}
0.0635 \\
0.0635-\mathrm{x}
\end{array} \\
p H=p K_{a}+\log \frac{C_{B}}{C_{B H^{+}}} \\
7.60=8.075+\log \frac{x / 0.250 \mathrm{~L}}{(0.0635-x) / 0.250 \mathrm{~L}} \quad x=0.0159 \\
\text { volume of } \quad \mathrm{NaOH} \quad \text { added }=\frac{0.0159 \mathrm{~mol}}{0.500 \mathrm{~mol} / \mathrm{L}_{\text {se Equilibriap } 12}}=0.318 \mathrm{~L}
\end{array}
\end{aligned}
$$

Buffer Capacity

Therefore, there must be comparable amounts of the conjugate acid and base (say, within a factor of 10) to have sufficient buffer capacity against fluctuations of acid and base content in the solution.

$$
\begin{gathered}
\log \frac{C_{B}}{C_{B H^{+}}} \quad \text { or } \quad \log \frac{C_{A^{-}}}{C_{H A}}=\log \frac{10}{1}=1 \quad \text { or } \quad=\log \frac{1}{10}=-1 \\
\therefore p H=p K_{a} \pm 1
\end{gathered}
$$

Hence, based on the pH to be buffered, we prepare a buffer consisting the conjugate acid and base with a pKa close to the pH .

[^0]
[^0]: Summary: Monoprotic acid-base equilibria

 - To perform pH calculations on weak acid equilibria (Do Ex. 10-11)
 - To determine the fraction of dissociation of a weak acid (Do Ex. 10-13)
 - To perform pH calculations on weak base equilibria (Do Ex. 10-18)
 - To determine the fraction of association of a weak base (Do Ex.10-22)

 To perform pH calculations when the dissociation of water cannot be neglected (Do Exercise 10-3)
 To derive Henderson-Hasselbalch equation and perform pH calculations for buffers. (Do Ex. 10-37 and 10-38)

