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Abstract

This paper presents a deformable template object
recognition method for classifying fish species in un-
derwater video. This method can be a component of a
system that automatically identifies fish by species, im-
proving upon previous works which only detect and track
fish and those that rely on significant inter-species shape
variations or special equipment. Our method works
with video shot by a standard uncalibrated camera in
a natural setting rather than the calibrated stereo cam-
eras and man-made imaging environments described in
other publications. We use deformable template match-
ing which employs an efficient combination of shape
contexts and large-scale spatial structure preservation.
Experimental results demonstrate the improvement of
deformable template matching over raw SVM texture-
based classification.

1 Introduction

Quantifying the number of fish in a local body of wa-
ter is of interest for applications such as guiding fish-
eries management, evaluating the ecological impact of
dams, and managing commercial fish farms. Going be-
yond an aggregate count of aquatic animals, information
about the distribution of specific species of fish can as-
sist biologists studying issues such as food availability
and predator-prey relationships [11]. Applications like
these motivate the development of methods for collect-
ing biological data underwater.

Besides video, other options for automating under-
water fish counting include devices employing hydro-
acoustics (sonar), resistivity counters and infrared
beams [5]. Of the alternatives, sonar is best suited to
coarser detections such as finding shoals of fish, while
resistivity and infrared counters require fish to swim
through relatively narrow enclosed spaces. Underwater
video is a non-intrusive method of counting fish, as well
as the only one of these techniques that can classify fish
by species based on textural appearance. Other attempts
to visually identify fish by species rely on constrained
images or shape to make distinctions [5, 14, 16]. None
of these methods would work for the problem described
in this paper, where the two species of interest have very
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similar shapes and the environment is natural.
For computer vision researchers, this problem

presents a number of interesting challenges. First,
the complex environment confounds simpler approaches
like luminance thresholding and background subtraction.
Issues include shifting colors, uneven and variable illu-
mination, sediment in the water and undulating underwa-
ter plants. Secondly, the recognition task is non-trivial;
common cues such as background context, distinctive
colors and unique shapes are absent. Fig. 1 shows exam-
ples of the two species of fish we attempt to discriminate
between. Finally, the fish appear in a variety of scales,
orientations, and body poses, all factors that complicate
recognition.

We approach this task as a deformable template
matching problem followed by the application of a su-
pervised learning classifier. Aligning the images be-
fore classifying by appearance provides a demonstra-
ble increase in performance. A primary contribution
of this paper is the novel combination of shape con-
text descriptors [3] with efficient dynamic programming-
based correspondence using the distance transform [7]
for deformable template matching. This allows the es-
timation of template-to-query correspondences which
would not be possible using shape contexts alone be-
cause of the low quality of the underwater video im-
ages. Tree-structured dynamic programming and fast
distance transform techniques from [7] make it compu-
tationally feasible to simultaneously consider both shape
context matching costs and points’ spatial relationships,
and to find a globally optimum correspondence. Our
method recovers correspondences in low-quality images
that lack distinctive or stable features; it is similarly mo-
tivated but computationally cheaper than the IQP ap-
proach in [4].

1.1 Previous work

The idea of deformable template matching has deep
roots within the computer vision community. Fischler
and Elschlager [9] developed a technique based on en-
ergy minimization in a mass-spring model. Grenander
et al. [10] developed these ideas in a probabilistic set-
ting. Yuille [22] developed another variant of the de-
formable template concept by means of fitting hand-
crafted parametrized models.

Other approaches in this vein [13] first attempt to find
correspondences between a pair of images prior to an



appearance-based comparison, as we do in this paper.
Recent years have seen the emergence of part-based

models approaches [15, 8, 6, 2] that characterize appear-
ance using a collection of local image patches selected
by interest point operators. Shape information is en-
coded via spatial relationships between the local patches.
However, for our problem interest point operators would
not be successful due to the lack of distinctive and stable
image features. Thayananthan et al. [19] added figural
continuity constraints to shape context matching of con-
tours. In this work, we use tree-structured spatial con-
straints that can be efficiently optimized using the dis-
tance transform.

Images of a constrained environment, for exam-
ple from a glass-walled fish ladder, are used to in
other underwater fish data-analyses such as shape-
based classification [14] or counting after background-
subtraction [16]. Other methods use stereo cameras to
estimate traits such as fish mass [20], employ special de-
vices through which fish must swim to generate a sil-
houette for shape classification [5], or utilize color for
fish recognition [18]. Undersea animals are detected and
tracked in a natural setting in [21], however identifica-
tion is not performed.

2 Approach
Our goal is to distinguish between the fish species

shown in Fig. 1. The Striped Trumpeter (Fig. 1(a)), has
multiple horizontal markings while the Western Butter-
fish (Fig. 1(b)) sports a single bold stripe. Since the
images’ color information is dominated by the water’s
hue, color is not useful to differentiate these fish types.
Shape also provides little discernement, so we will focus
on texture-based classification.

We use deformable template matching to align tem-
plate images and query images in an attempt to improve
the performance of such a texture-based classifier, whose
results are sensitive to pixel alignment. The following
sections describe the details of this approach.

2.1 Model generation

The following steps are repeated for each of the two
classes. First, a template image representative of the cur-
rent fish class is chosen, e.g. Fig. 1(a) or Fig. 1(b). A set
of edge points similar to Fig. 2(f) are extracted from the
template using Canny edge detection. Next, a subset of
100 template edges is randomly chosen from the set of
edge points. The size of this subset was chosen empiri-
cally based on our previously fixed image size. The edge
subset is then connected into a minimum spanning tree
(MST) using Prim’s algorithm. An example of a tem-
plate overlaid with a MST is shown in Fig. 2(a). These
model trees are stored and reused for the remainder of
the matching process.

Finding the best match of a template tree model in a
query image will be phrased as an optimization problem
with two cost terms to be minimized. As in [7], if a tree
has n vertices {v1, . . . , vn} and an edge (vi, vj) ∈ E
for each pair of connected vertices, then a configuration

(a) Striped Trumpeter (b) Western Butterfish

Figure 1: The two types of fish to be classified.

L = (l1, . . . , ln) gives an instance of an object, where
each li specifies the location of part vi. Then, the best
match of a model to a query is

L∗ = arg min
L

(
n∑

i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)

)
(1)

where mi(li) is a matching cost between features in the
model and query image at location li, and dij(li, lj) is
the amount that model edge (vi, vj) is changed when
vertex vi is located at li and vj is placed at lj . In our
method, mi(li) will be the shape context matching cost
defined in §2.2.1, and dij(li, lj) = ‖(lj − li) − (lmj −
lmi )‖2, with lmk denoting the location of vertex vk in the
model tree.

This means that the best set of point correspondence
mappings from the template into the query are those that
minimize the total shape context matching cost and at
the same time least alter the relative spatial locations of
vertices which are neighbors in the model tree.

2.2 Deformable template matching

For the deformable template matching we combine
the strengths of shape context descriptors [3] with the
distance transform methods of [7]. Rather than match-
ing a set of edge points in the model image with another
set of edge points in the query image, we search every
pixel location in the query image and thus find a global
optimum match for the model tree.

2.2.1 Shape contexts

Our method employs shape contexts as image features
because they are well suited to capturing large-scale spa-
tial information in images exhibiting sparse edges, a
common characteristic of our underwater images.

Shape contexts [3] (SCs) are coarse radial histograms
of image edge points. For a particular location, its shape
context captures the relative spatial locations of all the
edge points within the circumference of the shape con-
text bins. In this work we use generalized shape con-
texts [17] which capture the dominant orientation of
edges in each bin, rather than just the point counts. For
a point pi, the shape context is a histogram hi capturing
the relative distribution of all other points such that

hi(k) =
∑
qj∈Q

tj , where Q = {qj 6= pi, (qj − pi) ∈ bin(k)} ,

(2)
and tj is a tangent vector that is the direction of the edge
at qj . Figs. 2(f) and 2(g) show a visualization of edge



points and a SC. When comparing two shape contexts,
we treat them as feature vectors and compute the L2 dis-
tance between them. This distance is referred to as the
shape context matching cost; in our method, this is the
first minimization term mi(li) in Eq. (1).

After a MST is constructed in the template image,
shape contexts are calculated at each of the points which
make up the vertices of the model tree, and these will
be matched with shape contexts computed at every pixel
location in the query image.

2.2.2 Distance transforms

Distance transforms and dynamic programming on a tree
structure [7] make it computationally feasible to find
globally optimal correspondences between the template
model and an unknown query image, a situation for
which the methods of [3, 4] are ineffective or intractable.
In particular, the distance transform method can find the
global optimum of Eq. (1) in time O(nt), where n is the
number of pixels and t is the number of nodes in the tree.
This allows efficient computation of dij(li, lj) in Eq. (1).

(a) original MST (b) estimated correspondences

(c) another MST (d) edges in query im-
age

(e) estimated corre-
spondences

(f) Detected edges (g) A shape context (h) Shape context
matching costs

Figure 2: Correspondences estimated using SC
costs and spatial structure (thicker yellow lines
with crosses) are better than spatially incoherent
estimates based on SC costs alone (crisscross-
ing narrower blue lines), as shown in 2(b). 2(e)
shows how spatial structure helps deal with clut-
ter. Canny edges are shown in 2(f). 2(g) visual-
izes a shape context histogram; yellow bars repre-
sent the magnitude and direction of the histogram
bins. 2(h) visualizes shape matching costs at ev-
ery pixel of a new image, with a cross at the best
match point.

.

2.2.3 Iterative warping

The techniques of [7] are then employed to find L∗ from
Eq. (1)—the globally optimum configuration of a tem-

plate model tree in the query image. From the template-
to-query correspondence estimates, a least-squares affine
transformation from the query to the template can be
derived. The use of affine transformations is justified
since the fish are relatively flat, and since in practice the
video sequence usually contains at least one side-on im-
age of each fish. This transformation is then applied to
the edge points from the query image, shape contexts are
recomputed everywhere in the query image, and the cor-
respondence process is repeated. For our experiments, a
maximum of 4 iterations were performed; if a reasonable
affine transformation is not found, the iterative warping
process aborts. After the iterative transformation of the
query edge points, the complete estimated transforma-
tion is applied to the query image. Fig. 3 shows some
examples of warped images.

2.3 Texture-based classification

Once the query images have been transformed into es-
timated alignment with the template they are processed
to extract texture properties. First, each image is con-
volved with a 3-pixel-tall vertical central difference ker-
nel. The motivation for vertical derivative filtering is that
after successful warping, the vertical direction captures
the most image information. Next, the filter response
is half-wave rectified to avoid cancellation during sub-
sequent spatial aggregation. Each half-wave component
of the filter response is summed into 7-pixel square sec-
tions. Finally, all of the combined filter responses are
concatenated into a feature vector as input for the classi-
fier.

SVMs are binary classifiers. However, in our method
there are two templates, one for each type of fish, and
each query image is warped to both templates. This
means that we have two SVMs whose outputs need to be
combined to get a final classification decision. Our situ-
ation is a simplified version of the multi-SVM problem
of [1]. If both SVMs agree on a classification decision,
then all is well. If the two SVMs assert opposite classi-
fications, then the decision of the SVM with the greater
absolute distance to its separating hyperplane is taken to
be the true one.

3 Results

The steps described in §2—tree-structured model
generation, point-correspondence estimation, iterative
warping and SVM texture classification—were imple-
mented in MATLAB and tested on a set of manually
cropped underwater video images of two fish species.
We used svmLight [12] for SVM classification. For both
species of fish being classified 160 images were manu-
ally cropped from frames of underwater video. In these
320 images, the fish appear at different angular poses al-
though all of their heads face the right. All images were
converted to grayscale, de-interlaced and resized to 50 ×
100 pixels, empirically chosen based on the size of the
majority of fish in the images.

8-fold cross validation on a training set consisting of
half the image data was used to select the best SVM ker-



Table 1: Results of SVM classification

SVM kernel unwarped warped
linear 84% 90%
polynomial 81% 86%

nels and parameters. SVMs with these attributes were
then constructed for the entire training set. The results
of running these SVMs on the set of test images are re-
ported in Table 1. The basis of comparison is the ac-
curacies of SVMs trained on texture features from the
original, unwarped images.

For both the linear and polynomial SVM ker-
nels, warping the images into alignment with a template
prior to classification improved the classification accu-
racy, in the best case by up to 6% (90% versus 84%).

4 Conclusion

This work describes a novel combination of exist-
ing techniques applied to classifying fish by textural
appearance in underwater video. Other methods, such
as the linear assignment problem (used in [3]) or IQP
(used in [4]),would be ineffective or computationally
intractable in this setting. In addition, our work goes
beyond previous fish tracking, counting and classifica-
tion methods by identifying similarly shaped fish species
based on textural appearance.

As future work, we are developing a preprocessing
and tracking component that will output cropped fish im-
ages to be classified using the method described in this
paper. The goal is a complete system that automatically
detects, tracks, counts and classifies fish in underwater
video, without requiring manual cropping of fish images.

(a) test image (b) template (c) warped test image

(d) test image (e) template (f) warped test image

Figure 3: Warping examples: 3(c) and 3(f) con-
trast successful and unsuccessful recoveries of
template-image correspondences.
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Particle filter-based predictive tracking for robust fish
counting. In Proc. SIBGRAPI, 2005.

[17] G. Mori, S. Belongie, and J. Malik. Efficient shape
matching using shape contexts. IEEE Trans. PAMI,
27(11):1832–1837, November 2005.

[18] N. J. C. Strachan. Recognition of fish species by colour
and shape. IVC, 11(1):2–10, 1993.

[19] A. Thayananthan, B. Stenger, P. H. S. Torr, and
R. Cipolla. Shape context and chamfer matching in clut-
tered scenes. In Proc. CVPR ’03, pages 127–133, 2003.

[20] R. Tillett, N. McFarlane, and J. Lines. Estimating dimen-
sions of free-swimming fish using 3D point distribution
models. CVIU, 79:123–141, 2000.

[21] D. Walther, D. R. Edgington, and C. Koch. Detection and
tracking of objects in underwater video. In Proc. CVPR
’04, 2004.

[22] A. Yuille. Deformable templates for face recognition. J.
Cognitive Neuroscience, 3(1):59–71, 1991.


