Retinal Processing

BISC 372 Home



Prog Retin Eye Res 1999 Nov;18(6):811-66

Amino acid neurochemistry of the vertebrate retina.

Kalloniatis M, Tomisich G

Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia. m.kalloniatis@optometry.unimelb.edu.au

The dominant neurochemicals involved in encoding sensory information are the amino acid neurotransmitters, glutamate, gamma-aminobutyrate (GABA) and glycine, which mediate fast point-to-point synaptic transmission in the retina and other parts of the central nervous system. The relative abundance of these neurochemicals and the existence of neuronal and glial uptake mechanisms as well as a plethora of receptors support the key role these neurochemicals play in shaping neural information. However, in addition to subserving neurotransmitter roles, amino acids subserve normal metabolic,cellular functions, may be precursors for other amino acids, and may also be associated with protein synthesis. Post-embedding immunocytochemistry of small molecules has allowed the characterization of multiple amino acid profiles within subpopulations of neurons in the vertebrate retina. The general theme emerging from these studies is that the retinal through pathway uses glutamate as its neurotransmitter, and the lateral elements, GABA and/or glycine. Co-localization studies using quantitative immunocytochemistry have shown that virtually all neuronal space can be accounted for by the three dominant amino acids. In addition, co-localization studies have demonstrated that there are no purely aspartate, glutamine, alanine. leucine or ornithine immunoreactive neurons and thus these amino acids are likely to act as metabolites and may sustain glutamate production through a multitude of enzymatic pathways. The mapping of multiple cellular metabolic profiles during development or in degenerating retinas has shown that amino acid neurochemistry is a sensitive marker for metabolic activity. In the degenerating retina, (RCS retina), neurochemical anomalies were evident early in development (from birth), even before photoreceptors mature at PND6-8 implying a generalized metabolic dysfunction. Identification of metabolic anomalies within subpopulation of neurons is now possible and can be used to investigate a multitude of retinal functions including amino acid metabolic and neurochemical changes secondary to external insult as well as to expand our understanding of the intricate interrelationship between neurons and glia.



Prog Retin Eye Res 1999 Nov;18(6):765-810

Glutamate receptors and circuits in the vertebrate retina.

Thoreson WB, Witkovsky P

Department of Ophthalmology, University of Nebraska Medical Center, Omaha 68198-5540, USA.

We survey the evidence for L-glutamate's role as the primary excitatory neurotransmitter of vertebrate retinas. The physiological and molecular properties of glutamate receptors in the retina are reviewed in relation to what has been learned from studies of glutamate function in other brain areas and in expression systems. We have focused on (a) the evidence for the presence of L-glutamate in retinal neurons, (b) the processes by which glutamate is released, (c) the presence and function of ionotropic receptors for L-glutamate in retinal neurons, (d) the presence and function of metabotropic receptors for L-glutamate in retinal neurons, and (e) the variety and distribution of glutamate transporters in the vertebrate retina. Modulatory pathways which influence glutamate release and the behavior of its receptors are described. Emphasis has been placed on the cellular mechanisms of glutamate-mediated neurotransmission in relation to the encoding of visual information by retinal circuits.



Invest Ophthalmol Vis Sci 1999 Jun;40(7):1313-27

Parallel processing in the mammalian retina: the Proctor Lecture.

Boycott B, Wassle H

Department of Visual Science, Institute of Ophthalmology, University of London, United Kingdom.



Prog Retin Eye Res 1998 Oct;17(4):637-85

The eyes of deep-sea fish. II. Functional morphology of the retina.

Wagner HJ, Frohlich E, Negishi K, Collin SP

Anatomisches Institut, Eberhard-Karls-Universitat Tubingen, Germany.

Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part, the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum.



Eye 1998;12 ( Pt 3b):531-40

The photoreceptor mosaic.

Ahnelt PK

Department of General and Comparative Physiology, Medical School, University of Vienna, Austria. peter.ahnelt@univie.ac.at

The organisation of the human photoreceptor mosaic reflects evolutionary strategies for optimising visual information under a wide range of stimulus conditions: (1) The rod population dominates (max. 170,000/mm2 at c. 30 degrees sup.) except for the central 2 degrees and along the ora serrata. (2) Density of cone inner/outer segments reaches up to 300,000 mm2 in the fovea. A bundle of c. 300-500 foveolar cones are further distinguished by having their synaptic terminals located within the capillary-free zone. Radial displacement (> 350 microns) of foveal cone terminals may result in the lesion of two sets of cone pathways by perifoveal laser treatment. Along the ora serrata peripheral cone density (c. 4000) rises within a small rim (1 degree) to up to 20,000, but may be considerably decreased by cystoid degenerations. For the L- and M-cone subpopulations ratios of 2:1 to 1:1 and random arrangement are suggested. (3) Blue-sensitive (S-) cones constitute a regular and independent submosaic of c. 7% across the periphery. An annular maximum (1000-5000/mm2) at c. 1 degree surrounds the foveola. There density decreases and irregular zones lacking S-cones result in tritan deficiencies.



Vision Res 1998 May;38(10):1431-41

Molecular composition of GABAC receptors.

Enz R, Cutting GR

CMSC 1004, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacology and electrophysiology. The predominant type, termed GABAA and a recently identified type, GABAC, have integral chloride channels, whereas GABAB receptors couple to separate K+ or Ca2+ channels via G-proteins. By analogy to nicotinic acetylcholine receptors, native GABAA receptors are believed to be heterooligomers of five subunits, drawn from five classes (alpha, beta, gamma, delta, epsilon/chi). An additional class, called rho, is often categorized with GABAA receptor subunits due to a high degree of sequence similarity. However, rho subunits are capable of forming functional homooligomeric and heterooligomeric receptors, whereas GABAA receptors only express efficiently as heterooligomers. Intriguingly, the pharmacological properties of receptors formed from rho subunits are very similar to those exhibited by GABAC receptors and rho subunits and GABAC responses have been colocalized to the same retina cells, indicating that rho subunits are the sole components of GABAC receptors. In contrast, the propensity of GABAA receptor and rho subunits to form multimeric structures and their coexistence in retinal cells suggests that GABAC receptors might be heterooligomers of rho and GABAA receptor subunits. This review will summarize our current understanding of the molecular composition of GABAC receptors based upon studies of rho subunit assembly.



Vision Res 1998 May;38(10):1385-97

Diversity of glutamate receptors in the mammalian retina.

Brandstatter JH, Koulen P, Wassle H

Max-Planck-Institut fur Hirnforschung, Abteilung fur Neuroanatomie, Frankfurt am Main, Germany. brandstaett@mpih-frankfurt.mpg.de

The main neurotransmitters in the vertebrate retina are glutamate, GABA and glycine. Their localization in the different cell types in the retina is well known. In addition, there exists a number of neuropeptides and other neuroactive substances that are only expressed by sparse populations of neurons. In recent years, molecular biology has led to the discovery of a rapidly increasing number of neurotransmitter receptors and the apparent simplicity of neurotransmitters in the mammalian retina is contrasted by the expression of a plethora of neurotransmitter receptors and receptor subunits (not mentioning receptor isoforms). This article will concentrate on glutamate receptors with the intention of reviewing some of the recent data on glutamate receptor expression in the mammalian retina and their possible involvement in retinal function.


Histol Histopathol 1998 Apr;13(2):531-52

Muller glia cells and their possible roles during retina differentiation in vivo and in vitro.

Willbold E, Layer PG

Technische Universitat Darmstadt, Institut fur Zoologie, Germany.

Muller cells are astrocyte-like radial glia cells which are formed exclusively in the retina. Here we present evidence that Muller cells are crucially involved in the development of the retina's architecture and circuitry. There is increasing evidence that Muller cells are present from the very early beginning of retinogenesis. We postulate the "gradual maturation hypothesis of Muller cells". According to this hypothesis, Muller cells are continuously generated by a gradual transition of neuroepithelial stem cells into mature Muller cells. This process may be partly reversible. Muller cells, or their immature precursors, are able to subserve different functions. They are primary candidates for stabilizing the complex retinal architecture and for providing an orientation scaffold. Thereby, they introduce a reference system for the migration and correct allocation of neurons. Moreover, they may provide spatial information and microenvironmental cues for differentiating neurons, and may also be important for the segregation of cell and fibre layers. Additionally, they seem to be involved in the guidance of axonal fibres both in radial and in lateral directions, as they are involved in the support and stabilization of synapses.


Wachtmeister L.

Oscillatory potentials in the retina: what do they reveal.

Prog Retin Eye Res. 1998 Oct;17(4):485-521.



Prog Retin Eye Res 1998 Jan;17(1):99-126

GABA-gated Cl- channels in the rat retina.

Feigenspan A, Bormann J

Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mammalian retina, and its physiological action is well established. GABA receptors have been localized immunocytochemically in the retina of different mammalian species, and all major retinal cell types have been found to express GABAA receptor subunits. Recently, a new type of GABA receptor with pharmacological and electrophysiological properties different from the known GABAA and GABAB receptors, has been described. These GABAC receptors are found predominantly in the vertebrate retina. This review concentrates on the electrophysiological characterization of GABA receptors expressed by amacrine and bipolar cells of the rat retina. We recorded GABA-induced currents from cultured neonatal amacrine and bipolar cells as well as from isolated bipolar cells of adult animals. While amacrine cells contain a homogeneous population of GABAA receptors, bipolar cells exhibit both GABAA and GABAC responses. Although both receptors gate chloride-selective ion channels, their biophysical and pharmacological properties differ markedly. These functional differences and the cellular distribution of GABAA and GABAC receptors suggest that they have different inhibitory functions in the rat retina.



Eye 1997;11 ( Pt 6):904-23

Amacrine cells of the mammalian retina: neurocircuitry and functional roles.

Kolb H

Department of Ophthalmology, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City 84132, USA.

Since amacrine cells are important interneurons of the inner retina and their activity may be detected in certain waveforms of the electroretinogram, this paper reviews their morphologies, classification, mosaics, neurotransmitter content, neural circuitry and physiological responses to light. Nine different amacrine cell types of cat, rabbit and human retinas are presently quite well studied in terms of the aforementioned aspects and are described in detail in this paper.



Djamgoz MB, et al. 

Neurobiology of retinal dopamine in relation to degenerative states of the tissue.

Vision Res. 1997 Dec;37(24):3509-29. 



Prog Neurobiol 1997 Oct;53(3):273-91

Syncytial integration by a network of coupled bipolar cells in the retina.

Poznanski RR, Umino O

Department of Information Sciences, Toho University, Chiba, Japan.

A model system for syncytial integration is the outer vertebrate retina, where graded signals or electrotonic potentials interact laterally via gap junctions to form an integrated response that is relayed by chemical synapses to the next layer of interconnected cells. Morphological and physiological experiments confirm that bipolar cells form quasisyncytial lattices, and so this review will aim to address two important issues: the function of coupling in visual information processing and the construction of a robust mathematical model that can adequately simulate signal spread in the bipolar cell syncytium. It is shown that the role of coupling in bipolar cells differs from that associated in the presynaptic networks, namely, loss in spatial resolution in order to increase the signal-to-noise ratio. The intrinsic membrane properties of bipolar cells which give rise to voltage-dependent currents are inactive over the normal in vivo operating range of membrane potential and may be shunted as a direct result of electrotonic coupling, suppressing any possibility of action potential propagation in the bipolar cell syncytium. It is therefore speculated that the mechanisms underlying processing of information in bipolar networks are dependent on the structure of bipolar cells and in particular, on the presence of gap junctions. It is proposed that a three-dimensional model which incorporates the spatial properties of each bipolar cell in the network in the form of a leaky cable is the most likely model to simulate signal spread in the bipolar cell syncytium in vivo. This is because discrete network models represent each bipolar cell in the syncytium as isopotential units without any spatial structure, and thus are unable to reproduce the temporal characteristics of electrotonic potential spread within the central receptive field of bipolar cells.



Microsc Res Tech 1997 Jan 1;36(1):26-42

Dopaminergic and GABAergic retinal cell populations in mammals.

Nguyen-Legros J, Versaux-Botteri C, Savy C

Laboratoire de Neurocytologie Oculaire, INSERM U-86, Paris, France.

A number of modern techniques now allow histologists to characterize subpopulations of retinal neurons by their neurotransmitters. The morphologies and connections of these chemically defined neurons can be analyzed precisely at both light and electron microscope levels and lead to a better understanding of retinal circuitry. The dopaminergic neurons form a loose population of special wide-field amacrine cells bearing intraretinal axons within the inner plexiform layer. One subtype, the interplexiform cell, sends an axon to the outer plexiform and outer nuclear layers. The number of interplexiform cells is variable throughout mammalian species. The GABAergic neurons form a dense and heterogeneous population of amacrine cells branching at all levels of the inner plexiform layer. The presence of GABA in horizontal cells seems to be species-dependent. Close relationships occur between dopaminergic and GABAergic cells. GABA antagonizes a number of dopaminergic actions by inhibiting both the release and synthesis of dopamine. This inhibition can be supported by GABA synapses onto dopaminergic cells, but GABA can also diffuse to its targets. Finally, GABA is also contained and synthesized in dopaminergic cells. This colocalization might be the basis of an intracellular modulation of dopamine by GABA.



Arch Med Res 1995 Spring;26(1):1-15

Receptors, photoreception and brain perception. New insights.

Mansilla AO, Barajas HM, Arguero RS, Alba CC

Division of Research and Teaching, Cardiology Hospital, National Medical Center Siglo XXI, Mexico, D.F.

Once photons have activated photosensitive cell receptors, a biochemical process mediated by G-proteins transforms the initial signal into nerve potentials. The generated impulses transmit the information through ganglion cells, after a complex interaction with other neurons by means of different neurotransmitters. Since visual function is processed in parallel, ganglion cells are divided into M-neurons which are in charge of capturing large objects, P-neurons capable of analyzing fine details and colors, and non-M, non-P neurons which are sensitive to changes in light intensity. Retina, bipolar and ganglion cells share circular receptive fields with an antagonistic surround whereas the lateral geniculate nucleus possesses rectangular receptive fields. Thus, when central cones are stimulated, ON-center cells depolarize, while OFF-center cells hyperpolarize. At the brain cortex, the magnocellular layers lead to orientation and achromatic perception, the parvocellular layers perform color vision in the blobs and achromatic contrast and orientation in the interblobs, and eventually, binocular perception is the result of multiple disparities phenomenon. On these bases, patients with agnosia for form and pattern or for depth and movement have been described. Likewise, color blindness is another disease that could be the result of photoreceptor dysfunctions or brain perception defects.


 Microsc Res Tech 1995 Aug 1;31(5):408-19

Gap junctions in the vertebrate retina.

Cook JE, Becker DL

Department of Anatomy and Developmental Biology, University College London, United Kingdom.

The vertebrate retina is a highly laminated assemblage of specialized neuronal types, many of which are coupled by gap junctions. With one interesting exception, gap junctions are not directly responsible for the 'vertical' transmission of visual information from photoreceptors through bipolar and ganglion cells to the brain. Instead, they mediate 'lateral' connections, coupling neurons of a single type or subtype into an extended, regular array or mosaic in the plane of the retina. Such mosaics have been studied by several microscopic techniques, but new evidence for their coupled nature has recently been obtained by intracellular injection of biotinylated tracers, which can pass through gap junctional assemblies that do not pass Lucifer Yellow. This evidence adds momentum to an existing paradigm shift towards a population-based view of the retina, which can now be envisaged both as an array of semi-autonomous vertical processing modules, each extending right through the retina, and as a multi-layered stack of interacting planar mosaics, bearing some resemblance to a set of interleaved neural networks. Junctional conductance across mosaics of horizontal cells is known to be controlled dynamically with a circadian rhythm, and other dynamically-regulated conductance changes are also likely to make important contributions to signal processing. The retina is an excellent system in which to study such changes because many aspects of its structure and function are already well understood. In this review, we summarize the microscopic appearance, coupling properties and functions of gap junctions for each cell type of the neural retina, the regulatory properties that could be provided by selective expression of different connexin proteins, and the evidence for gap junctional coupling in retina development.



Invest Ophthalmol Vis Sci 1994 Apr;35(5):2385-404

Published erratum appears in Invest Ophthalmol 1994 Sep;35(10):3576

The architecture of functional neural circuits in the vertebrate retina. The Proctor Lecture.

Kolb H

Department of Ophthalmology, University of Utah Health Sciences Center, Salt Lake City 84132.



Cell 1993 Jan;72 Suppl:139-49

Synaptic circuitry of the retina and olfactory bulb.

DeVries SH, Baylor DA

Department of Neurobiology, Fairchild Science Center, Stanford University School of Medicine, California 94305.



Rev Oculomot Res 1993;5:79-100

Directional selectivity in vertebrate retinal ganglion cells.

Amthor FR, Grzywacz NM

Department of Psychology, University of Alabama, Birmingham 35294.


Vis Neurosci 1993 Nov-Dec;10(6):981-9

Synaptic feedback, depolarization, and color opponency in cone photoreceptors.

Burkhardt DA

Department of Psychology, University of Minnesota, Minneapolis 55455.

For some 20 years, synaptic feedback from horizontal cells to cones has often been invoked, more or less convincingly, in discussions of retinal action and vision. However, feedback in cones has proved to be rather complex and difficult to study experimentally. The mechanisms and consequences of feedback are therefore still only partly understood. This review attempts to assess the knowns and unknowns. The limitations of the evidence for feedback are reviewed to support the position that unequivocal evidence still largely rests on intracellular recording from cones. Of the three distinct types of depolarization observed in cones, the graded depolarization is taken as the fundamental manifestation of feedback. The evidence for the hypothesis that GABA is the neurotransmitter for feedback appears reasonably strong but several complications will have to be resolved to make the hypothesis more secure. There is evidence that feedback contributes to aspects of light adaptation and spatiotemporal processing of visual information. The contributions seem modest in magnitude. The role of feedback in shaping the color-opponent responses of retinal neurons is evaluated with particular emphasis on pharmacological studies, spatial and temporal aspects of the response of chromatic horizontal cells, and the enigmatic nature of depolarizations in blue- and green-sensitive cones. On this and other evidence, it is suggested that feedback may impress some detectable wavelength dependency in some cones but the dominant mechanisms for color opponency probably reside beyond the photoreceptors.



Neurochem Int 1992 Feb;20(2):139-91

Localization and function of dopamine in the adult vertebrate retina.

Djamgoz MB, Wagner HJ

Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K.

Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.



Prog Brain Res 1992;90:133-47

Development of GABAergic neurons in the mammalian retina.

Redburn DA

Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77225.



Prog Brain Res 1992;90:107-31

GABAergic circuits in the mammalian retina.

Freed MA

National Institutes of Health, Bethesda, MD 20892.



Prog Brain Res 1992;90:29-45

The physiology of GABAA receptors in retinal neurons.

Ishida AT

Department of Animal Physiology, University of California Davis 95616.



Prog Brain Res 1992;90:61-92

Structural organization of GABAergic circuitry in ectotherm retinas.

Marc RE

University of Texas Graduate School of Biomedical Sciences, Sensory Sciences Center, Houston.



Prog Brain Res 1992;90:3-28

Expression of GABAA receptors in the vertebrate retina.

Brecha NC

Department of Medicine, CURE, UCLA School of Medicine 90024.



Vis Neurosci 1991 Jul-Aug;7(1-2):155-69

Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells.

Peichl L

Max-Planck-Institut fur Hirnforschung, Frankfurt/M., Germany.

A specific morphological class of ganglion cell, the alpha cell, was first defined in cat retina. Alpha cells have since been found in a wide range of mammalian retinae, including several orders of placental and marsupial mammals. Characteristically, they have the largest somata and a large dendritic field with a typical branching pattern. They occur as inner and outer stratifying subpopulations, presumably corresponding to ON-center and OFF-center receptive fields. In all species, alpha cells account for less than 10% of the ganglion cells, their somata are regularly spaced, and their dendritic fields evenly and economically cover the retina in a mosaic-like fashion. The morphology of alpha cells and many features, both of single cells and of the population, are conserved across species with different habitats and life-styles. This suggests that alpha cells are a consistent obligatory ganglion cell type in every mammalian retina and probably subserve some fundamental task(s) in visual performance. Some general rules about the construction principles of ganglion cell classes are inferred from the alpha cells, stressing the importance of population parameters for the definition of a class. The principle, that a functionally and morphologically homogeneous population should have a regular arrangement and a complete and even coverage of the retina to perform its part in image processing at each retinal location, is especially evident across species and across ganglion cell types.



Vis Neurosci 1991 Jul-Aug;7(1-2):113-24

The organization of dopaminergic neurons in vertebrate retinas.

Witkovsky P, Schutte M

Department of Ophthalmology, New York University Medical Center, NY 10016.

A survey of the shapes of dopaminergic (DA) neurons in the retinas of representative vertebrates reveals that they are divisible into three groups. In teleosts and Cebus monkey, DA cells are interplexiform (IPC) neurons with an ascending process that ramifies to create an extensive arbor in the outer plexiform layer (OPL). All other vertebrates studied, including several primate species, have either DA amacrine cells or IPCs with an ascending process that either does not branch within the OPL or does so to a very limited degree. DA neurons of non-teleosts exhibit a dense plexus of fine caliber fibers which extends in the distal most sublamina of the inner plexiform layer (IPL). Teleosts lack this plexus. In all vertebrates, DA cells are distributed more or less evenly and at a low density (10-60 cells/mm2) over the retinal surface. Dendritic fields of adjacent DA neurons overlap. Most of the membrane area of the DA cell is contained within the plexus of fine fibers, which we postulate to be the major source of dopamine release. Thus, dopamine release can be modeled as occurring uniformly from a thin sheet located either in the OPL (teleosts) or in the distal IPL (most other vertebrates) or both (Cebus monkey). Assuming that net lateral spread of dopamine is zero, the fall of dopamine concentration with distance at right angles to the sheet (i.e. in the scleral-vitreal axis) will be exponential. The factors that influence the rate of fall-diffusion in extracellular space, uptake, and transport--are not yet quantified for dopamine, hence the dopamine concentration around its target cells cannot yet be assessed. This point is important in relation to the thresholds for activation of D1 and D2 dopamine receptors that are found on a variety of retinal cells.



Vis Neurosci 1991 Jul-Aug;7(1-2):61-74

Anatomical pathways for color vision in the human retina.

Kolb H

Physiology Department, University of Utah School of Medicine, Salt Lake City, UT 84108.

The major neurons and neural circuits that are involved in the transmission of color signals through the human retina to produce the color and spatially opponent P cell or midget ganglion cell responses are described. The older findings of single cone to midget bipolar connectivity is reviewed, and the single midget bipolar cell to midget ganglion cell connectivity as revealed by a recent serial section electron microscope study is described in detail. Our present knowledge concerning the discrimination of the blue-cone subtype from the other longer wavelength cones in the human at the outer plexiform layer is summarized, and our most recent findings concerning horizontal cell connectivity to the different spectral types of cones are discussed. Finally, a hypothetical pathway is proposed for color-opponent surrounds of midget ganglion cells using both horizontal cells at the outer plexiform layer and amacrine cell pathways at the inner plexiform layer.



Invest Ophthalmol Vis Sci 1991 Mar;32(3):459-83

Published erratum appears in Invest Ophthalmol Vis Sci 1991 Jul;32(8):2440

Synaptic connections, receptive fields, and patterns of activity in the tiger salamander retina. A simulation of patterns of activity formed at each cellular level from photoreceptors to ganglion cells.

Werblin F

Department of Molecular and Cell Biology, University of California, Berkeley.



Prog Neurobiol 1991;37(4):287-327

The use of the carp retina in neurobiology: its uniqueness and application for neural network analyses of the inner retina.

Kato S, Negishi K, Teranishi T, Ishita S

Department of Neurophysiology, University of Kanazawa School of Medicine, Japan.



Cell Mol Neurobiol 1990 Sep;10(3):303-25

Retinal dopamine D1 and D2 receptors: characterization by binding or pharmacological studies and physiological functions.

Schorderet M, Nowak JZ

Department of Pharmacology, University Medical Center, Geneva, Switzerland.

1. In the retinal inner nuclear layer of the majority of species, a dopaminergic neuronal network has been visualized in either amacrine cells or the so-called interplexiform cells. 2. Binding studies of retinal dopamine receptors have revealed the existence of both D1- as well D2-subtypes. The D1-subtype was characterized by labeled SCH 23390 (Kd ranging from 0.175 to 1.6 nM and Bmax from 16 to 482 fmol/mg protein) and the D2-subtype by labelled spiroperidol (Kd ranging from 0.087 to 1.35 nM and Bmax from 12 to 1500 fmol/mg protein) and more selectively by iodosulpiride (Kd 0.6 nM and Bmax 82 fmol/mg protein) or methylspiperone (Kd 0.14 nM and Bmax 223 fmol/mg protein). 3. Retinal dopamine receptors have been also shown to be positively coupled with adenylate cyclase activity in most species, arguing for the existence of D1-subtype, whereas in some others (lower vertebrates and rats), a negative coupling (D2-subtype) has been also detected in peculiar pharmacological conditions implying various combinations of dopamine or a D2-agonist with a D1-antagonist or a D2-antagonist in the absence or presence of forskolin. 4. A subpopulation of autoreceptors of D2-subtype (probably not coupled to adenylate cyclase) also seems to be involved in the modulation of retinal dopamine synthesis and/or release. 5. Light/darkness conditions can affect the sensitivity of retinal dopamine D1 and/or D2-receptors, as studied in binding or pharmacological experiments (cAMP levels, dopamine synthesis, metabolism and release). 6. Visual function(s) of retinal dopamine receptors were connected with the regulation of electrical activity and communication (through gap junctions) between horizontal cells mediated by D1 and D2 receptor stimulation. Movements of photoreceptor cells and migration of melanin granules in retinal pigment epithelial cells as well as synthesis of melatonin in photoreceptors were on the other hand mediated by the stimulation of D2-receptors. 7. Other physiological functions of dopamine D1-receptors respectively in rabbit and in embryonic avian retina would imply the modulation of acetylcholine release and the inhibition of neuronal growth cones.