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Introduction

e Automated hippocampus segmentation in T1 MRI
e Applications in computational neuroanatomy
 Multi-atlas segmentation fusion
* Good performance, but sensitive to atlas selection

Dataset

* 69 subjects (age 44-48) from PATH Through Life

 T1 and manual hippocampus tracings [J]
e N=9 atlas, M=30 training, and T=30 testing

Atlas-based Segmentation

* Majority voting weights each atlas equally

* Recent work chose weights as local estimates of

registration accuracy [1,2,3 4]

* We use supervised learning to find the optimal
welghts based on local registration accuracy

e FS+LDDMM [6] on each subject with all 9 atlases
e Diffeomorphic registration on sub-region MRI
e Initializes registration using FS segmentations
e Local registration accuracy (') estimated using
reciprocal of post-registration mean-squared error

Segmentation Spatial Normalization

* The subject segmentations and registration accuracy maps
spatially normalized to a common space (atlas subject 1)
o Allow for spatially local learning across subjects
e Affine registration between the corresponding
hippocampal shapes
* Sub-regions containing the hippocampus plus a 10 voxel
boundary were extracted

“Weight Learning” Linear Regression

e [.2-regularized linear regression performed at each voxel
e Determines optimal atlas weights for the training set
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* Mean surface distance
e Average of minimum distances from auto seg surface to
manual
e Learned vs equal weight segs (t-test, p-value=2.5¢e-15)

Atlas-based Segmentation
LDDMM

Results: Visualization and Segmentation Accuracy Metrics

SINGLE AVG: Mean of single atlas metrics
SINGLE BEST: Best of single atlas metrics
FUSE EQUAL: Equal weight fusion

FUSE LEARN: Learned weight fusion
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Discussion & Conclusions

+ Learning optimal weights
significantly improves automated
hippocampal segmentation over the
equal weighted apporoach

— Relies on large training set (30
subjects) to estimate weights
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* Application to computational
neuroanatomy analysis pipelines

References |

1] Artaechevarria et al. “Combination strategies in multi-atlas image segmentation ...”: IEEE TMI (2009) vol. 28 (8) pp. 1266-77 UNSW
2] Isgum et al. “Multi-atlas-based segmentation with local decision fusion ...” IEEE TMI (2009) vol. 28 (7) pp. 1000-10 SF fi mﬁl,jg EE?ﬁinEiIVERSIW ey o e UT WALES
3] Sdika. “Combining atlas based segmentation and intensity classification ...” Medical Image Analysis (2009) pp. THE AUSTRALAN NATIONAL UNIVERSITY > ° ¥ M EY @ AUSTRALLA
4] van Rikxoort et al. “Adaptive local multi-atlas segmentation ... “ Medical Image Analysis (2010) vol. 14 (1) pp. 39-49 7 P : . :

5] Cherbuin et al. “In vivo hippocampal measurement and memory ...” PLoS ONE (2009) vol. 4 (4) pp. €5265 5} b} e COI‘I‘GSP Ondlng author: Ali R. Khan (akhanf@Sfu'Ca)
6] Khan et al. “FreeSurfer-initiated fully-automated subcortical brain segmentation ...” Neuroimage (2008) vol. 41 (3) pp. 735-46 o MIAL http; [ [\sWwWw. autob rainmapp 1 ng.com



