
Discussion & Conclusions

 + Learning optimal weights 
 significantly improves automated 
 hippocampal segmentation over the 
 equal weighted apporoach
 − Relies on large training set (30 
 subjects) to estimate weights

• Future work
• Effect of training dataset size?
• Additional subcortical structures
• Inclusion of demographics, shape 

similarity as predictors
• Application to computational 

neuroanatomy analysis pipelines
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Introduction

• Automated hippocampus segmentation in T1 MRI
• Applications in computational neuroanatomy

• Multi-atlas segmentation fusion
• Good performance, but sensitive to atlas selection
• Majority voting weights each atlas equally

• Recent work chose weights as local estimates of 
registration accuracy [1,2,3,4]

• We use supervised learning to find the optimal 
weights based on local registration accuracy
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Dataset

• 69 subjects (age 44-48) from PATH Through Life 
• T1 and manual hippocampus tracings [5]
• N=9 atlas, M=30 training, and T=30 testing

Atlas-based Segmentation

• FS+LDDMM [6] on each subject with all 9 atlases
• Diffeomorphic registration on sub-region MRI
• Initializes registration using FS segmentations

• Local registration accuracy (γ) estimated using 
reciprocal of post-registration mean-squared error 

Segmentation Spatial Normalization

• The subject segmentations and registration accuracy maps 
spatially normalized to a common space (atlas subject 1)
• Allow for spatially local learning across subjects
• Affine registration between the corresponding 

hippocampal shapes
• Sub-regions containing the hippocampus plus a 10 voxel 

boundary were extracted
“Weight Learning” Linear Regression

• L2-regularized linear regression performed at each voxel
• Determines optimal atlas weights for the training set

 Dependent variable: Manual segmentation
 Independent variables:  Atlas-based seg × Reg. accuracy
 Regression coefficients: Atlas weights

Weighted Segmentation Fusion

• Optimal weights used with test set registration accuracy 
and atlas-based segmentations

Atlas-based Segmentation
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Results: Visualization and Segmentation Accuracy Metrics
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Results
Visual contour comparison

• Learned weights adheres to anatomical boundaries better 
than equal weights
• Supervised learning enforces fused segmentations to be 

more similar to manual segmentations than equally 
weighted fusion

Quantitative comparison

• Volumetric overlap
• Union overlap: ratio of intersection to union between 

manual and automated segmentations
• Learned vs equal weight segs  (t-test, p-value=1.7e-8)

• Mean surface distance
• Average of minimum distances from auto seg surface to 

manual
• Learned vs equal weight segs (t-test, p-value=2.5e-15)
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