Whole brain image registration using multi-structure confidence-weighted anatomic constraints

Ali R. Khan, Mirza Faisal Beg Simon Fraser University, Canada

Introduction

- Inter-subject registration of whole brain magnetic resonance images
 - Challenging: high anatomical variability, convoluted folding of the cortex
 - Applications: morphometry, functional localization, atlas creation
- Our approach:
 - Use automated Freesurfer [1] segmentations of multiple brain structures as simultaneous anatomic constraints (multi-structure registration), instead of as initialization [2]
 - Weight these using trained segmentation confidence maps (SCMs)
 - Large deformation diffemorphic framework for registration (LDDMM [3])

Methods

- I. Run Freesurfer
- Subcortical and cortical
 - Fully automated segmentation
- Segmentation errors?
 - Train confidence maps

- 2. Train segmentation confidence maps for each brain structure
- For each training subject:
 - a. Find local errors between manual and automated structure
 - b. Spatially normalize these to the atlas
 - c. Compute SCM as probability of accuracy

- 3. Perform multi-structure confidence-weighted LDDMM registration to atlas
- I 6 subcortical, and 35 cortical structures used in the multi-structure registration
- Provides anatomical constraints to help guide the high-dimensional registration

Results

- Multi-structure confidence-weighted LDDMM registration compared against:
 - Free-form Deformation B-splines, IRTK [4]
 - Single channel LDDMM
- I.5T brain MR scans brains from the Internet Brain Segmentation Repository (IBSR) [5]
 - 9 brains used for training SCMs, other 9 brains used for testing image registration

Conclusions

- Anatomical constraints, in the form of automated segmentations, can improve brain registration
 - More accurate volumetry, morphometry, or functional localization in brain mapping studies
- Limitations:
 - SCMs generated for subcortical structures only; future work will include cortical SCMs
 - High computational cost with LDDMM; requires high-performance computing machines

References

- [1] B. Fischl, et al., "Whole brain segmentation automated labeling of neuroanatomical structures in the human brain," Neuron, vol. 33 (3), pp. 341–55, 2002.
- [2] A. R. Khan et al., "Freesurfer-initiated fully-automated subcortical brain segmentation in MRI using large deformation diffeomorphic metric mapping," Neuroimage, vol. 41 (3), pp. 735–46, 2008.
- [3] M. F. Beg, et al., "Computing large deformation metric mappings via geodesic flows of diffeomorphisms," International Journal of Computer Vision, vol. 61 (2), pp. 139–57, 2005.
- [4] Rueckert et al., "Nonrigid registration using free-form deformations: application to breast MR images," IEEE Transactions on Medical Imaging, vol. 18 (8), pp. 712–21, 1999.
- [5] IBSR data was provided by the Center for Morphometric Analysis at Massachusetts General Hospital and is available at http://www.cma.mgh.harvard.edu/ibsr/.