Math 310
Fundamental Matrices

— Read section 7.7

Consider the system of linear equations;
x' = P(t)x (1)

A fundamental matrix for (1) is any matrix ¥(¢) that satisfies

'(t) = P(t)®(1) (2)

Note that (2) is a first order differential equation for an unknown matrix, and as such has a unique solution for
every initial data ¥(t,) = B (B is any given matrix).

One way to form such a matrix is to use any fundamental set of solutions x((¢),...,x™(t) of (1) as it’s
columns;
1 n
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(D) = ;
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Check that (2) holds for this matrix.
For this fundamental set of solutions, the general solution of (1) is

x(t) = clxgl)(t) ot exM (1)
Y(t)e, c=(c1,...,¢n) (3)

The same is true for any fundamental matrix ¥(t); we can write the general solution of (1) as ¥(¢)c.

Let x(t) = ¥(t)c be a solution of (1). If the initial condition is x(t,) = X,, then

W(t,)c = X,
— ¢ = ¥ l{t,)x,
— x(t) = (T (t)x, (4)

Now we look at a special type of fundamental matrix. We do this by choosing a special initial data matrix
B in (2). Let’s look for one that satisfies W¥(t,) = I, the n x n identity matrix. Then, writing this fundamental
matrix as ®(t), since ®(t,) =1 =@ (t,), ®(t,) 'x, = X,, we can write (referring to (4));

X(t) = ®(t)%o ()

How to find ®(t)? Here’s one way. Take any fundamental set x(M) (¢), ..., x(")(¢) with initial values x(1 (t,), ..., x (t,)
(1) n)

=X5,... ,xg . From this fundamental set we construct another y()(¢), ..., y(™(t) where y9)(t,) = e, 1<j<n
and e; = (0,0,...,0,1,0,...,0) has all zeros except for a 1 in the 4t position. To do this we need to solve these
systems of equations;

yD(ty) = x4 cjox@ 4+ 4 ¢xW =5, 1<j<n

o

for the unknowns c;z. Then we form ®(t) with columns made up of the y¥/)(¢).



The exponential of a matrix

In the special case of x’ = Ax, where A is a constant matrix (so the P(¢) in (1) does not actually depend on
time), another way to find ®(¢) is as follows. From (2) we see that any fundamental matrix ¥(¢) of x’ = Ax
satisfies

V(1) = AW(t) (6)

And as before, we will call ®(¢) that particular fundamental matrix which satisfies ¥(¢,) = I. Recall the scalar
case 2’ = azx, z(t,) = x, whose solution is z, = e®*~t) = x, exp(a(t —t,)). This suggests we write the solution of
(6) as ®(t) = eAll=to) = exp(A(t—1t,)) (remember that ®(t,) = I). How should we define the exponential exp(B)
of a matrix B? Recall the power series;

t)? t)3 = (at)’
eat:exp(at):1+at+@+@+”’zz(a')’ (7)

| | 1
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so we may be lead to define exp(A(t —t,)) also by a power series;

eA(t—to) — exp(A(t—to)) — 1+A(t—to)+ (A(t;to))Q + (A(t:;to))g 4o = i(A(t_tc)))i (8)

It can be shown (along similar lines as done with (7)) that (8) converges for any A(t —t,) (any matrix A and any
t,t,), and so the expression exp(A(t — t,)) makes sense as a matrix. Then, following the same lines as for (7), we
can differentiate the series (8) and show that

%exp(A(t — 1)) = Aexp(A(t —t,)) )

Thus, if we define ®(t) by ®(t) = exp(A(t — t,)) (as given by formula (8)), then this is the solution of (6) with
®(t,) =1L

The next task is to actually compute the series (8). We will first look at a simple case when A = D is a
diagonal matrix with diagonal entries (A1, A2, ..., Ay). Then it’s easy to see that

A
D" =

(all other entries 0). Therefore,
B(t) = exp(D(t—1,)) = (10)

(all other entries 0).

The next simplest case is when A is diagonalizable. This means there is an invertible matrix T such that
T!'AT =D (< A=TDT) (11)

where D is a diagonal matrix. Recall that A is diagonalizable if it has n linearly independent eigenvectors
€W €M Let Ai,..., A\, be the eigenvalues (counted with multiplicity, i.e., if A occurs as a root of the
characteristic equation 2 times, then it appears in the list of eigenvalues 2 times; so not necessarily are all the )\;
distinct); AE® = N6,



Given an x(t) (which we think of as being the solution of x' = A x, x(t,) = X,), let’s define the vector y(¢) by

x =Ty <+ Tlx=1y (12)
Then
x =Ty = Ty = ¥
Ty = Ax
= ATy
—y = T 'ATy
= Dy (13)

So now we can write the solution of (13) as
y(t) = exp(D(t —t,))yo, ¥Vo=T 'x, (14)
where exp(D(t —t,)) is given by (10).
We now want to relate y(¢) to the solution x(¢). From (12) and (14),
x(t) = Ty(t)
= Texp(D(t—t))¥o
= Texp(D(t—1t,))T 'x,
= Q(t)xo, (15)
where we've written €2(t) = Texp(D(t — t,))T~!. Then since x'(t) = A x(t), comparing this with (15) implies
that Q'(t) = AQ(¢t). Thus, 2(t) is a fundamental matrix of x’ = A x. Note that Q(¢,) = I. Thus,
®(t) = Texp(D(t—t,))T"! = TePlte)p! (16)

is the special fundamental matrix of x’ = A x with ®(t,) = L.

Now let Q(t) = exp(D(t —t,)) and ¥(t) = T Q(¢). Then
v(t) = TQ'(?)
= TDQ(?)
= TD(T'TQ
— (TDTHTQE)
= ATQ()
= AT()

and so ¥(t) is a fundamental matrix of x’ = Ax (with ¥(¢,) = T).
Note that ®(t) = ¥(t)¥1(¢t,);

TOT () = TQM)(TQ()



Repeated Eigenvalues

— Read section 7.8 (and review section 7.3)

A is an n x n matrix. The characteristic equation p4(\) = det(A — AI) has roots A; which are eigenvalues of
A. pa(A) is a polynomial of order n and so has at most n real roots roots (but has exactly n complex roots).
The associated eigenvectors £€®; AW = \;6(0). If eigenvalue ); occurs m; times as a root of pa(\) we say that
i has algebraic multiplicity m;. Each eigenvalue has at least one associated eigenvector, but it may happen that
it has more than one. The geometric multiplicity ¢; of the eigenvalue A; is the number of linearly independent
eigenvectors associated with \;. Note that 1 < ¢; < m;. We list the distinct eigenvalues as A1,..., Ak, £ <n, and
their algebraic multiplicities mq, ..., mg. Note that m; +mo + -+ +my = n.

We now switch to the notation r for the eigenvalues A, to be consistent with the text.

We consider the system x’ = A x. For each (distinct) eigenvalue r with algebraic multiplicity m we need to
construct m linearly independent solutions (then we will have a total of n linearly independent solutions and thus
have a fundamental set of solutions).

Case I: Geometric multiplicity ¢ = m. Let €1, ... £(™) be m linearly independent eigenvectors for 7. Then we

have m linearly independent solutions
€rt€(1), ert§(2)’ e 6rt§(m)

Case II: g < m. Here there are not enough linearly independent eigenvectors to construct independent solutions
of the form e™¢, so we have to look at a way to find more solutions for the eigenvalue . We will only consider
the case when ¢ = m — 1, in particular, when ¢ = 2,m = 1. Then r occurs twice as a root of p4(A) but there is
only one linearly independent eigenvector £. So we have one solution x(t) = e"¢. To find another we look for one
of the form

x(t) = Ete™ + ne™ (17)

for some unknown vector 1. Substituting this into the equation x’ = A x and comparing coefficients of te’* and
e we find that
A =r¢, and (A—-rIin=¢ (18)

The first equation in (18) is just the eigenvector equation for r (which we know is true), so we need to show
that the second equation has a solution, i.e., that there is an 1 which satisfies that equation. Now, we know that
the matrix A — 71 is not invertible, so we can’t solve the equation by = (A — rI)~'¢. However, the system
(A — rI)n = £ can always be solved for 7 (say, by Gaussian elimination, row reduction). Thus, we are able to
find a second linearly independent solution. The vector 7 is called a generalized eigenvector of A associated to the
eigenvalue r.

It may turn out that when you solve (18) for 1, you will get a sum of two or more vectors, one of which may
be a multiple of £. Since & already occurs in the general solution, you can discard this part of 7.

See the examples in the text.



