
Math 310

Fundamental Matrices

→ Read section 7.7

Consider the system of linear equations;
x′ = P(t)x (1)

A fundamental matrix for (1) is any matrix Ψ(t) that satisfies

Ψ′(t) = P(t)Ψ(t) (2)

Note that (2) is a first order differential equation for an unknown matrix, and as such has a unique solution for
every initial data Ψ(to) = B (B is any given matrix).

One way to form such a matrix is to use any fundamental set of solutions x(1)(t), . . . ,x(n)(t) of (1) as it’s
columns;

Ψ(t) =


x

(1)
1 (t) · · · x

(n)
1 (t)

...
...

x
(1)
n (t) · · · x

(n)
n (t)


Check that (2) holds for this matrix.

For this fundamental set of solutions, the general solution of (1) is

x(t) = c1x
(1)
1 (t) + · · ·+ cnx(n)(t)

= Ψ(t)c, c = (c1, . . . , cn) (3)

The same is true for any fundamental matrix Ψ(t); we can write the general solution of (1) as Ψ(t)c.

Let x(t) = Ψ(t)c be a solution of (1). If the initial condition is x(to) = xo, then

Ψ(to)c = xo

→ c = Ψ−1(to)xo

→ x(t) = Ψ(t)Ψ−1(to)xo (4)

Now we look at a special type of fundamental matrix. We do this by choosing a special initial data matrix
B in (2). Let’s look for one that satisfies Ψ(to) = I, the n × n identity matrix. Then, writing this fundamental
matrix as Φ(t), since Φ(to) = I = Φ−1(to), Φ(to)−1xo = xo, we can write (referring to (4));

x(t) = Φ(t)xo (5)

How to find Φ(t)? Here’s one way. Take any fundamental set x(1)(t), . . . ,x(n)(t) with initial values x(1)(to), . . . ,x(n)(to)
= x(1)

o , . . . ,x(n)
o . From this fundamental set we construct another y(1)(t), . . . ,y(n)(t) where y(j)(to) = ej , 1 ≤ j ≤ n

and ej = (0, 0, . . . , 0, 1, 0, . . . , 0) has all zeros except for a 1 in the jth position. To do this we need to solve these
systems of equations;

y(j)(to) = cj1x(1)
o + cj2x(2)

o + · · ·+ cjnx(n)
o = ej , 1 ≤ j ≤ n

for the unknowns cjk. Then we form Φ(t) with columns made up of the y(j)(t).
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The exponential of a matrix

In the special case of x′ = Ax, where A is a constant matrix (so the P(t) in (1) does not actually depend on
time), another way to find Φ(t) is as follows. From (2) we see that any fundamental matrix Ψ(t) of x′ = Ax
satisfies

Ψ′(t) = AΨ(t) (6)

And as before, we will call Φ(t) that particular fundamental matrix which satisfies Ψ(to) = I. Recall the scalar
case x′ = ax, x(to) = xo whose solution is xo = ea(t−to) = xo exp(a(t− to)). This suggests we write the solution of
(6) as Φ(t) = eA(t−to) = exp(A(t− to)) (remember that Φ(to) = I). How should we define the exponential exp(B)
of a matrix B? Recall the power series;

eat = exp(at) = 1 + at +
(at)2

2!
+

(at)3

3!
+ · · · =

∞∑
i=0

(at)i

i!
, (7)

so we may be lead to define exp(A(t− to)) also by a power series;

eA(t−to) = exp(A(t− to)) = 1 + A(t− to) +
(A(t− to))2

2!
+

(A(t− to))3

3!
+ · · · =

∞∑
i=0

(A(t− to))i

i!
(8)

It can be shown (along similar lines as done with (7)) that (8) converges for any A(t− to) (any matrix A and any
t, to), and so the expression exp(A(t− to)) makes sense as a matrix. Then, following the same lines as for (7), we
can differentiate the series (8) and show that

d

dt
exp(A(t− to)) = A exp(A(t− to)) (9)

Thus, if we define Φ(t) by Φ(t) = exp(A(t − to)) (as given by formula (8)), then this is the solution of (6) with
Φ(to) = I.

The next task is to actually compute the series (8). We will first look at a simple case when A = D is a
diagonal matrix with diagonal entries (λ1, λ2, . . . , λn). Then it’s easy to see that

Dk =

 λk
1

. . .
λk

n


(all other entries 0). Therefore,

Φ(t) = exp(D(t− to)) =


eλ1(t−to)

. . .
eλn(t−to)

 (10)

(all other entries 0).

The next simplest case is when A is diagonalizable. This means there is an invertible matrix T such that

T−1AT = D ( ⇐⇒ A = TDT−1) (11)

where D is a diagonal matrix. Recall that A is diagonalizable if it has n linearly independent eigenvectors
ξ(1), . . . , ξ(n). Let λ1, . . . , λn be the eigenvalues (counted with multiplicity, i.e., if λ occurs as a root of the
characteristic equation 2 times, then it appears in the list of eigenvalues 2 times; so not necessarily are all the λi

distinct); Aξ(i) = λiξ
(i).
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Given an x(t) (which we think of as being the solution of x′ = Ax, x(to) = xo), let’s define the vector y(t) by

x = Ty ⇐⇒ T−1x = y (12)

Then

x = Ty =⇒ Ty′ = x′

Ty′ = Ax

= ATy

=⇒ y′ = T−1ATy

= Dy (13)

So now we can write the solution of (13) as

y(t) = exp(D(t− to))yo, yo = T−1xo (14)

where exp(D(t− to)) is given by (10).
We now want to relate y(t) to the solution x(t). From (12) and (14),

x(t) = Ty(t)
= T exp(D(t− to))yo

= T exp(D(t− to))T−1xo

= Ω(t)xo, (15)

where we’ve written Ω(t) = T exp(D(t − to))T−1. Then since x′(t) = Ax(t), comparing this with (15) implies
that Ω ′(t) = AΩ(t). Thus, Ω(t) is a fundamental matrix of x′ = Ax. Note that Ω(to) = I. Thus,

Φ(t) = T exp(D(t− to))T−1 = TeD(t−to)T−1 (16)

is the special fundamental matrix of x′ = Ax with Φ(to) = I.

Now let Q(t) = exp(D(t− to)) and Ψ(t) = TQ(t). Then

Ψ ′(t) = TQ ′(t)
= TDQ(t)
= TD(T−1TQ

= (TDT−1)TQ(t)
= ATQ(t)
= AΨ(t)

and so Ψ(t) is a fundamental matrix of x′ = Ax (with Ψ(to) = T).

Note that Φ(t) = Ψ(t)Ψ−1(to);

Ψ(t)Ψ−1(to) = TQ(t)
(
TQ(to)

)−1

= TQ(t)Q−1(to)T−1

= TQ(t) IT−1

= TQ(t)T−1

= Φ(t)
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Repeated Eigenvalues

→ Read section 7.8 (and review section 7.3)

A is an n× n matrix. The characteristic equation pA(λ) = det(A− λI) has roots λi which are eigenvalues of
A. pA(λ) is a polynomial of order n and so has at most n real roots roots (but has exactly n complex roots).
The associated eigenvectors ξ(i); Aξ(i) = λiξ

(i). If eigenvalue λi occurs mi times as a root of pA(λ) we say that
λi has algebraic multiplicity mi. Each eigenvalue has at least one associated eigenvector, but it may happen that
it has more than one. The geometric multiplicity qi of the eigenvalue λi is the number of linearly independent
eigenvectors associated with λi. Note that 1 ≤ qi ≤ mi. We list the distinct eigenvalues as λ1, . . . , λk, k ≤ n, and
their algebraic multiplicities m1, . . . ,mk. Note that m1 + m2 + · · ·+ mk = n.

We now switch to the notation r for the eigenvalues λ, to be consistent with the text.

We consider the system x′ = Ax. For each (distinct) eigenvalue r with algebraic multiplicity m we need to
construct m linearly independent solutions (then we will have a total of n linearly independent solutions and thus
have a fundamental set of solutions).

Case I: Geometric multiplicity q = m. Let ξ(1), . . . ξ(m) be m linearly independent eigenvectors for r. Then we
have m linearly independent solutions

ertξ(1), ertξ(2), . . . , ertξ(m)

Case II: q < m. Here there are not enough linearly independent eigenvectors to construct independent solutions
of the form ertξ, so we have to look at a way to find more solutions for the eigenvalue r. We will only consider
the case when q = m − 1, in particular, when q = 2,m = 1. Then r occurs twice as a root of pA(λ) but there is
only one linearly independent eigenvector ξ. So we have one solution x(t) = ertξ. To find another we look for one
of the form

x(t) = ξtert + ηert (17)

for some unknown vector η. Substituting this into the equation x′ = Ax and comparing coefficients of tert and
ert, we find that

A ξ = rξ, and (A− rI)η = ξ (18)

The first equation in (18) is just the eigenvector equation for r (which we know is true), so we need to show
that the second equation has a solution, i.e., that there is an η which satisfies that equation. Now, we know that
the matrix A − rI is not invertible, so we can’t solve the equation by η = (A − rI)−1ξ. However, the system
(A − rI)η = ξ can always be solved for η (say, by Gaussian elimination, row reduction). Thus, we are able to
find a second linearly independent solution. The vector η is called a generalized eigenvector of A associated to the
eigenvalue r.

It may turn out that when you solve (18) for η, you will get a sum of two or more vectors, one of which may
be a multiple of ξ. Since ξ already occurs in the general solution, you can discard this part of η.

See the examples in the text.
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