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Abstract. This paper addresses an important weakness of the macroeconomic learning
literature by allowing agents to test the specification of their models. In contrast to
existing macroeconomic learning models, we assume agents are aware of potential model
misspecification, and try to detect it, in real-time, using an econometric specification
test. If a model fails the test, a new model is formulated. If a model passes the test,
it is used to implement a policy based on the provisional assumption that the current
model is correctly specified, and will not change in the future. At the same time, policy
decisions feedback to influence the model that agents are trying to learn about.

Although this testing and model validation process is an accurate description of most
macroeconomic policy problems, the dynamics produced by this process are not well
understood. We make progress on this problem by exploiting results from the large
deviations literature. Our analysis can be interpreted as providing a selection criterion for
self-confirming equilibria, based on their ‘robustness’. Robust self-confirming equilibria
survive repeated specification tests, and are characterized by their large deviation rate
functions.

JEL Classification Numbers: C120, E590

1. Introduction

Macroeconomic policymaking confronts two serious challenges. First, policymakers do
not know the model. That is, they do not know the economy’s actual data-generating
process (DGP). Second, their beliefs about the model typically feedback to influence the
DGP. That is, policy operates within a ‘self-referential’ system.

Considered separately, each of these difficulties can be analyzed with standard meth-
ods. In the absence of feedback, model uncertainty can be addressed using a variety of
approaches. For example, during the past two decades classical econometricians have
made substantial progress on testing and comparing misspecified models.1 At the same
time, there has been an explosion of recent work on Bayesian macroeconometrics.2 For
Bayesians, there is no essential difference between model uncertainty and parameter un-
certainty. Specification of a prior over models essentially embeds model uncertainty within
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a larger space consisting of a single ‘hypermodel’. Unfortunately, genuine model uncer-
tainty is infinite dimensional, and specifying priors over infinite dimensional objects is not
easy. Recent work on robust control opens the door to an analysis of model uncertainty
in situations where it may be difficult to specify a prior over models (Hansen and Sargent
(2007a)). However, none of these approaches permits feedback from beliefs about models
to the actual DGP. The first two adopt the perspective of an outside observer, while the
latter typically assumes the DGP is a fixed reference model.

Of course, feedback is nothing new to economists. It lies at the heart of the Lucas
Critique, and macroeconometricians have developed methods for coping with it (Lucas
and Sargent (1981)). However, these methods presume that all agents know the model,
including the policymaker. Although the macroeconomic learning literature is designed to
relax this assumption, to date it either assumes a priori knowledge of the correct model
(at least up to a small handful of unknown parameters), or it assumes that any model
misspecification goes unquestioned and undetected.3

Our paper attempts to confront both challenges simultaneously. Its goal is to under-
stand how feedback between hypothesis testing and the DGP influences macroeconomic
model selection. Long ago, in response to the Lucas Critique, Sims (1982) argued that
macroeconomic policymakers do not need to know the correct model of the economy in
order to formulate good policy. According to Sims, as long as policy is flexible and adap-
tive, policymakers will learn to do the right thing.4 However, it is not at all obvious
whether this is indeed true when the data are endogenous. Sargent (1999) and Sargent
and Williams (2005) study this question in settings where models are fixed, but parame-
ters can vary. Their findings point to the importance of priors concerning parameter drift.
Our analysis pursues the same questions, but in a setting with multiple models. Here
there is greater scope for getting stuck in ‘bad’ Self-Confirming Equilibria (SCE). As in
Fudenberg and Levine (2008), we are interested in studying the role of experimentation
in selecting favorable SCE.

We assume policymaking takes place via the following four step process: (1) A pol-
icymaker is endowed with a fixed model class, consisting of a collection of potentially
misspecified linear models, each with a finite number of unknown parameters, (2) Each
period the policymaker tests the specification of his current model, (3) If the current model
survives the test, the model is updated and used to formulate a policy function, and (4)
If the model is rejected, a new model is randomly selected from the model class. This
combined process of estimation, testing, and selection will be called model validation.

The last step of this algorithm is crucial. It implies the policymaker deliberately injects
randomness into his model choice. This randomization does not reflect capriciousness or
computational errors, but instead reflects a strategic response to model uncertainty. In
particular, it prevents ‘nature’ from exploiting the policymaker’s ignorance of the DGP,
and in this way delivers a form of ‘robustness’ (Foster and Vohra (1998)). It can also be
interpreted as a form of experimentation. Our main conclusions do not depend on the
details of this experimentation process.

3See Evans and Honkapohja (2001) for a survey of the macro learning literature. Sargent (1999) contains
an interesting example of learning and macroeconomic policy with a misspecified model.

4See, in particular, pg. 117 of Sims (1982).
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Note that in our validation process a model is only replaced after it fails a specification
test. An alternative approach would be to continuously compare models. In this case, it
might be desirable to switch models before the current reference model actually fails a
specification test, if there appears to be a superior alternative. We examine this approach
in Cho and Kasa (2009). The dynamics of recursive model comparison have some subtle
features not found in validation dynamics, because one needs to continuously monitor the
performance of each model, even when it is not being used. We regard both approaches
as useful. Whether agents employ specification testing or model comparison likely hinges
on case-specific factors, such as the cost of switching models.

In conventional learning models (e.g., Marcet and Sargent (1989)), one can analyze
the asymptotic properties of the learning dynamics by approximating the evolution of a
model’s coefficients by the trajectory of an ordinary differential equation (ODE). This
is due to the fact that coefficient estimates evolve on a slower time-scale than the data.
A stationary solution of this ODE defines a self-confirming equilibrium, and its stability
provides a natural equilibrium selection criterion.

With model validation, however, models are occasionally replaced by different models.
As a result, the relevant state is defined not only by coefficient estimates, but also by
the realization of a discrete model indicator. In principle, the evolution of this enlarged
state space is considerably more complex. In general, it cannot be approximated by an
ODE. Fortunately, by appropriately calibrating the testing threshold, we can exploit the
same sort of time-scale separation as in conventional learning models. This is possible
due to the endogenous nature of the DGP. Specifically, in the neighborhood of a stable
self-confirming equilibrium, the probability of a model rejection will be very small. Hence,
models survive specification testing for a long time, where ‘long’ is defined relative to the
rate of coefficient updating. This allows the evolution of each model’s coefficients to be
approximated separately, using the trajectory of a conventional ODE.

More precisely, by exploiting the large deviation properties of each model’s self-confirming
equilibrium, we show that as the coefficient update gain decreases, a model’s coefficients
remain close to its self-confirming equilibrium for an exponentially long period of time.
As long as the policymaker tries each model with positive probability following model
rejections, a self-confirming equilibrium must be visited within a finite amount of time.
Hence, as the gain converges to zero, the policymaker spends an increasing fraction of time
using a single model. Large deviations theory allows us to identify this model. This kind
of result bears some resemblance to the evolutionary game theory literature (Kandori,
Mailath, and Rob (1993)).

Large deviation methods also deliver an interesting and useful interpretation of this
limiting model. Specifically, we show that it is the model possessing the largest so-called
‘rate function’. A key result in the theory of large deviations (i..e, Sanov’s theorem)
links this rate function to relative entropy and the Kullback-Leibler Information Criterion
(KLIC). This is interesing, since the KLIC is a pervasive concept in the econometrics
literature on model testing and selection. The relative entropy that is being captured by
each model’s rate function can be interpreted as the KLIC distance between the probability
distribution associated with its SCE and the distribution associated with the closest model
that triggers a rejection or escape. This extends the results of White (1982) in a natural
way to the case of endogenous data.
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There has been some prior work attempting to link learning with model validation.
First, the early work of Bray and Savin (1986) touched on this issue, asking whether
agents could use standard diagnostics, like Chow tests and Durbin-Watson statistics, to
detect the parameter variation that their own learning behavior generates. Bray and
Savin (1986) found that when convergence is slow, agents are generally able to detect the
misspecification of their models. In a repeated game context, Foster and Young (2003)
allow players to construct, test, and revise simple models of their opponent’s behavior.
Hypothesis testing produces convergence to a Nash equilibrium in a relatively strong
sense, although testing errors produce rare but recurrent experimentation phases. Perhaps
closest in spirit to our analysis is recent work by Branch and Evans (2007). They also
study a situation where agents not only update the coefficients of a given model, but also
select among alternative parametric models based on their recent forecasting performance.
However, they do not base model selection on statistical foundations.

The remainder of the paper is organized as follows. Section 2 provides an example of the
importance of specification testing in learning models. Section 3 maps our model validation
approach into a standard stochastic recursive algorithm. Section 4 applies results from the
large deviations literature to characterize model validation dynamics. Section 5 applies
our results to Sargent’s (1999) Phillips Curve model. Section 6 contains a few concluding
remarks, and an appendix contains proofs of some technical results.

2. An Example

To set the stage, we first present an example designed to highlight why we think it is
important to incorporate specification testing and model validation procedures into the
macroeconomic learning literature. The example also illustrates the difference between
hypothesis testing and recursive model selection.

2.1. Model Validation in a Cobweb Model. Many macroeconomic models take the
form of expectational difference equations. One prominent example is the famous cob-
web model. This model has long been a useful laboratory for analyzing various issues
in dynamic economics, first with constant coefficients adaptive expectations, then with
rational expectations, then with adaptive least-squares learning, and most recently, with
misspecified adaptive least-squares. We continue this tradition by using it to study model
validation dynamics. In particular, we pursue an example studied by Evans and Honkapo-
hja (2001, pgs. 318-20). They analyze so-called Restricted Perceptions Equilibria (RPE),
in which agents (exogenously) omit relevant variables from their fitted models. In their
analysis, any model can be a RPE, as long as its estimated coefficients adjust to account
for the omitted variable bias. Here we allow agents to test their models, and ask whether
some RPE are more robust than others.

Suppose the true price data generating process is given by

pn = αEn−1pn + β1w1,n−1 + β2w2,n−1 + εn (2.1)

where (w1,n, w2,n) are zero mean exogenous variables, and εn is an i.i.d. shock. Assume
wi,n and εn are Gaussian and mutually independent. This model has the following rational
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expectations equilibrium,

pn =
1

1 − α
(β1w1,n−1 + β2w2,n−1) + εn.

Following Evans and Honkapohja (2001), suppose the agent entertains two different mod-
els, each obtained by including only one element of {w1, w2} on the right hand side of the
equation.5 We thus endow the agent with a model class M = {M1,M2}, where

M1 : pn = β1w1,n−1 + v1,t (2.2)

M2 : pn = β2w2,n−1 + v2,t (2.3)
The agent believes the disturbance process in each model is i.i.d, and orthogonal to the
included regressor. Hence, each model is estimated using recursive least squares,

β̂1,n = β̂1,n−1 + ηR−1
1,n−1w1,n−1(pn − β̂1,n−1w1,n−1)

β̂2,n = β̂2,n−1 + ηR−1
2,n−1w2,n−1(pn − β̂2,n−1w2,n−1)

R̂1,n = R̂1,n−1 + η(w2
1,n − R̂1,n−1)

R̂2,n = R̂2,n−1 + η(w2
2,n − R̂2,n−1)

where the constant gain parameter, 0 < η < 1, serves to discount old data. This reflects
the agent’s doubts about the stationarity of the environment, which turn out to be self-
confirming.

Note that in this model the agent only takes two actions: (1) He selects a model at the
beginning of each period, and (2) He uses it to construct a forecast of next period’s price.
These forecasts feedback to influence the actual price process as follows:

pn = α(s1,n−1β̂1,n−1w1,n−1 + (1 − s1,n−1)β̂2,n−1w2,n−1) + β1w1,n−1 + β2w2,n−1 + εn

where s1,n is a model indicator, with s1,n = 1 when M1 is used in period-n, and zero
otherwise. In the next section we develop a more general framework, in which models are
used to formulate policy actions, and these policy actions feedback to influence the true
data-generating process.

Despite its simplicity, this model does raise an important question; namely, to what
extent are policymakers aware of their own influence over the data-generating process? If
they are aware of this influence, they face a difficult counterfactual - How would things
have been different if instead a different model had been used in the past? Fitting a model
to data that was generated while a different model was in use could produce misleading
inferences about the prospects of a given model. One way to account for this would be to
only update models while they are in use. The above algorithm strikes a more realistic
balance. Although models are continuously updated, even when they are not being used,
the fact that data are discounted means that data generated by previous models gets
downweighted.

It turns out that inferences about long-run model use do not depend on how unused
models are updated. In the long-run, one model dominates, and so its coefficients are

5To facilitate comparison to Branch and Evans (2007), suppose the agent cannot access a correctly
specified model.
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estimated with an ever larger fraction of data that were self-generated. In a sense, the
fact that a model is updated using data from another model is evidence that this model
is dominated. What’s important is the the combination of experimentation and constant
gain parameter updating. Experimentation guarantees the self-confirming equilibria of
all models get a chance to prove themselves. Without experimentation, the agent may
overlook models simply because they perform poorly when fit to data generated by other
models. At the same time, constant gain updating implies that all models will eventually
be rejected. This prevents the agent from getting trapped by inferior self-confirming
equilibria.

While the set-up here is similar Branch and Evans (2006), their goal is quite different.
They posit a large collection of agents who randomly select between the two models, with
weights determined by recent forecasting performance. They show that heterogeneity of
expectations can persist even when agents pick the best model with probability converging
to unity. In contrast, we posit a single agent who continuously challenges the existing
model. Hypothesis testing generates model switches.

Suppose that α < 1. Branch and Evans (2006) show that when model M1 is used
exclusively it has a stable self-confirming equilibrium,6

pn =
1

1 − α
(β1 + Ω−1

11 Ω12β2)w1,n−1 + εn (2.4)

while model M2 has its own stable self-confirming equilibrium

pn =
1

1 − α
(β2 + Ω−1

22 Ω12β1)w2,n−1 + εn (2.5)

where Ωij are the elements of the second moment matrix, Ω = E(ww′). Because the
self-confirming equilibria (2.4) and (2.5) are obtained by restricting the agent’s beliefs to a
misspecified model, Evans and Honkapohja (2001) refer to them as Restricted Perception
Equilibria (RPE). We take this idea a step further. In a sense we conduct a meta-stability
analysis, and ask which of several stable RPE is likely to dominate in the long-run when
agents are allowed to test the specification of their models.

In the context of this particular example, we can now describe the details of our model
validation process

(1) The agent enters period-n with a given model ` ∈ {1, 2}, with coefficients that
have been updated based upon all observations up through period n − 1.

(2) After observing pn, the agent computes each model’s squared forecast error, ξ`,n =
(pn − β̂`,n−1w`,n−1)2, and then updates his estimate of each model’s mean-squared
forecast error,

σ̂2
`,n = σ̂2

`,n−1 + η(ξ`,n − σ̂2
`,n−1) (2.6)

He continues to use model ` if and only if

σ̂2
`,n ≤ θ

for a given threshold θ > 0.

6Stable in the sense of E-stability (Evans and Honkapohja (2001)).
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(3) If model ` passes the test, the agent uses it to forecast next period’s price. If model
` fails the test, the agent selects another model in M. If this new model passes the
test, it becomes the reference model, and is used to forecast next period’s price.
Otherwise the search continues until a successful model is discovered.

(4) Move to period n + 1.
Note that in principle step (3) could continue indefinitely, if there is no model in M

that can pass the test. In this particular example we avoid this trivial outcome by cali-
brating the test threshold so as to guarantee that each model passes the test while in the
neighborhood of its own self-confirming equilibrium. In the next section we outline a more
sophisticated statistical test, based on Lagrange Multipier testing principles, which due
to the endogeneity of the data, guarantees that each model will pass the test at its own
self-confirming equilibrium.7

Figure 1 shows what happens when an agent tests his model each period, rejecting it if
its mean-squared error exceeds a fixed threshold.8 If a model is rejected, the agent selects
randomly between them with weights determined by a logit function. The parameters
have been rigged to favor model 1, in the sense that the variance of w1 is greater than the
variance of w2, so that model 2 omits the more important variable.9
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Figure 1. Model Validation in a Misspecified Cobweb Model

Not surprisingly, the agent uses model 1 most of the time. In fact, from the model
weights in the lower panel, we can see that model 1 is sometimes used even in periods
when model 2 has a lower estimated mean-squared error. This illustrates an important
difference between specification testing and recursive model selection.

Although model 1 is used most of the time, notice that occasionally a prolonged ex-
cursion to Model 2 takes place. These excursions represent the model’s escape dynamics.

7While more sophisticated than a simple comparison of mean-squared errors with a fixed threshold, a
Lagrange Multiplier test is not sophisticated enough to detect some subtle forms of misspecification. This
will become clear in our discussion of Sargent’s example in section 5.

8Leave aside for the moment the naivete associated with repeatedly testing against a fixed threshold.
This will be addressed in the following examples, and makes little difference to the point being made here.

9Some more details: (1) w1 and w2 are assumed independent with σ2
w1 = .4 and σ2

w2 = .3, (2) σ2
ε = .25,

(3) β1 = β2 = 1.0, (4) α = 0.4, (5) The update gain is set to η = .03, (6) The testing threshold is set to
τ = 1.0, and (7) The ‘choice intensity’ parameter of the logit function is set to 15.0.
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They can be analytically characerized using the tools of large deviations theory. The
RPE of each model has a rate function attached to it. These rate functions summarize
how unlikely it is to escape from each of the RPE. In the limit, as the update gain gets
smaller, Model 1 becomes dominant, and is used an increasingly large fraction of the time.
Accordingly, we refer to the RPE of model 1 as a robust self-confirming equilibrium. We
show that robust self-confirming equilibria possess relatively large rate functions.

3. A General Framework

This section attempts to distill the lessons of the previous example into a general analyt-
ical framework. This framework is sufficiently general to encapsulate most macroeconomic
policy problems.

We study a policymaker who must solve a Linear Quadratic Regulator (LQR), but he
doesn’t know the state transition equation. Traditional adaptive control methods are de-
signed to handle coefficient uncertainty, but not model uncertainty. Recently developed
robust control methods are designed to handle general forms of model uncertainty, assum-
ing the decision maker starts with an exogenously specified reference model against which
all uncertainty can be measured (Hansen and Sargent (2007b)). Bayesian methods could
in principle be applied, but would require specification of high dimensional prior distribu-
tions. Moreover, Bayesian methods lead naturally to model averaging, and encounter well
known difficulties when used to select models.10 Our approach is to assume the decision
maker starts with a model class, and then tries to sort out, in real-time, among this class
using traditional specification testing methods.11

3.1. Objective Function. Consider a policymaker who cares about an s × 1 vector of
state variables, xt, and who believes he can influence them by choosing a c × 1 vector
of control variables, ut. Preferences over these variables are ordered by the following
Linear-Quadratic loss function,

En

∞∑

j=0

δj{x′
n+jQxn+j + u′

n+jRun+j} (3.7)

where Q and R are s× s and c× c positive definite matrices, and δ is a discount factor. In
what follows, it is important to keep in mind that the expectations operator here pertains
to the beliefs of the policymaker. The probability measure associated with these beliefs
may differ from the probability measure generating the data, and it may evolve over time.

3.2. Models. The policymaker interprets the mapping between un and xn using a set of
candidate models, M, containing m elements. Each model is linear and Gaussian, and is
described by a finite collection of unknown parameters. The models may be nested or non-
nested. Forward-looking equations can be accommodated by adding Lagrange multipliers
to the state. Our maintained assumption is that the policymaker believes there to be a

10Brock, Durlauf, and West (2007) make progress in applying Bayesian methods to macroeconomic
policy design.

11Interestingly, Gilboa, Postlewaite, and Schmeidler (2008) argue that classical, frequentist-based econo-
metric methods are actually more in keeping with recent developments in decision theory than are Bayesian
methods.
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single ‘best’ model withinM, and the goal is to find it, while at the same time balancing the
ongoing pressures of meeting the control objective. An important limitation of our analysis
is the assumption that the model class, M, is fixed. The policymaker refines estimates
of each model’s parameters, and revises his beliefs over time about the usefulness of each
model, but by assumption, we do not allow the policymaker to reconsider his original
specification of M.12

We assume the policymaker entertains the possibility that the state variables of interest,
xn, are embedded within some larger system, which in addition to xn, contains an n × 1
vector of exogenous variables, zn. It is possible these exogeneity restrictions are misspec-
ified. In effect then, each model i = 1, 2, · · · , m is defined by a set of s variable selection
matrices, ei

j j = 1, 2, · · · , s, specifying which of the elements of xn and zn it contains,
and a set of s control selection matrices, ei

u,j , specifying which of the control variables are
relevant for each equation. If we then define the (s + n) × 1 stacked vector yn = (xn, zn),
we can express the elements of M as follows

xi
jn = αi

je
i
jyn−1 + γiei

u,jun−1 + εi
jn i = 1, 2, · · · , m j = 1, 2, · · · , s (3.8)

As usual, there is no loss in generality in assuming a single lag of yt in each state transition
equation, as higher order lags can be accommodated by increasing the dimensionality of
the state. What is essential, and in fact what is the defining feature of each model, is the
assumption that the error terms, εi

jn, are i.i.d. and uncorrelated with the regressors. The
specification test will be designed to check the accuracy of this assumption.

3.3. Data-Generating Process. We assume there is an underlying time invariant data-
generating process (DGP) for a fixed model with a fixed regression coefficients. Letting
βn = (αi

jn, γi
jn) be the full vector of model coefficient estimates at time-n, we can capture

the feedback from beliefs to the DGP by writing it as follows,

xn = A1(sn−1, βn−1)xn−1 + B1(sn−1, βn−1)zn−1 + C1(sn−1, βn−1)un + D1(sn−1, βn−1)ε1n

(3.9)
zn = A2(sn−1, βn−1)zn−1 + B2(sn−1, βn−1)xn−1 + C2(sn−1, βn−1)un + D2(sn−1, βn−1)ε2n

where sn is an indicator for the model being used at time-n. The coefficient functions
encoding the feedback from beliefs to the actual DGP are case specific, and can be quite
complex and highly nonlinear. However, all we need to know about the DGP is following:

Assumption 3.1. For a fixed (s, β) = (sn, βn), the joint distribution of (xn, zn) is sta-
tionary and ergodic.

Our analytical methods rely heavily on the ability to ‘average out’ fluctuations in xt

and zt for given values of the model coefficients and the model indicator. They require
this assumption.

12Of course, this is only an issue if events seem to call for an expansion of the model class. By adjusting
the weights, the policymaker can effectively discard (relatively) poorly performing models.
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3.4. Model Updating. While in use, models are updated in the standard way, using a
(discounted) recursive least-squares algorithm. Unfortunately, writing this algorithm in
the conventional way requires a little notation. Start by writing 3.8 as follows

xi
jn = (αi

j , γ
i
j)

(
ei
j 0
0 ei

uj

) (
yn−1

un−1

)
+ εi

jn

= βi
jE

i
jφn−1 + εi

jn

where Ei
j collects all the regressors in the jth equation of model i, and βi

j collects all their
coefficients. Then, if we place all s equations into the 1 × s vector xi

n, we can write

xi
n = βiΦi

n−1 + εi
n i = 1, 2, · · · , m

where Φi
n−1 = diag[Ei

1φn−1, E
i
2φn−1, · · · , Ei

sφn−1]. Finally, if we define si
n as an indicator

function for whether model i is being used at time-n, we have the update equations

β̂i
n = β̂i

n−1 + η(Ri
n−1)

−1Φi
n−1(x

i
n − Φi′

n−1β̂
i
n−1) (3.10)

Ri
n = Ri

n−1 + η(Φi
n−1Φ

i′
n−1 − Ri

n−1) (3.11)

where η is a constant gain parameter, assumed to be common across equations and models.
To facilitate the analysis, we assume that the set of feasible coefficients for each model

satisfies some regularity conditions.

Assumption 3.2. Let Bi be the set of all feasible coefficients for model i. We assume
that Bi is compact and convex.

The compactness assumption can be interpreted as a priori knowledge about the DGP,
which rules out outrageously large coefficients. Convexity is mainly a technical assumption,
designed to address the learning dynamics along the boundary of the parameter space.

3.5. Self-Confirming Equilibria. As in Marcet and Sargent (1989), the sample path of
an individual model’s coefficients can be approximated by the trajectory of an ordinary
differential equation (ODE), conditional on the assumption that the data is generated by
that model. We write each model’s resulting ODE

β̇i = hi(βi) (3.12)

where hi is assumed to be Lipschitz continuous.
We can now state the following important definition:

Definition 3.3. A self-confirming equilibrium (SCE) for model i consists of a fixed vector
of regression coefficients, βi

e, and a control feedback matrix, F i(βi
e), which satisfy the

following two conditions:
(a): The coefficients are a stationary point of the mean ODE, hi(βi

e) = 0.
(b): The control policy ui

n = −F i(βi
e)yn−1 solves the LQR in (3.7) for model i

At this level of generality there is not much to be said about existence or uniqueness of
SCE. Since our analysis focuses on selection among models and their associated SCE, it
would make little sense without the following assumption:
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Assumption 3.4. Each model i = 1, 2, · · · , m has a unique stable self-confirming equi-
librium. Let βi

e be the self-confirming equilibrium of model i, and Di
e be the domain of

attraction for βi
e of (3.12). We assume that Di

e = Bi, implying global stability of βi
e. In

addition, βi
e is in the interior of Bi.

Uniqueness is not essential. If model i has multiple locally stable self-confirming equilib-
ria, we can treat different self-confirming equilibria as different models, and invoke exactly
the same logic. We only have to assume instead that Bi is partitioned to the different
domains of attraction to different self-confirming equilibria. This condition is mainly to
avoid the presence of a stable orbit, where the decision maker will never learn the self-
confirming equilibrium, even if he uses the same model indefinitely. In many economic
applications of linear rational expectations models, global convergence is satisfied.

We regard the stability of a self-confirming equilibrium as a primary requirement of a
sensible solution. Our task is to provide a selection criterion among locally stable equilibria
by checking their resilience to specification testing.

Given the discrete time process {β̂i
n} and the fixed gain parameter η > 0, we can

construct a continuous time process β̂i
η(τ) by linear interpolation. For τ ≥ 0, define

k = min{n|nη > τ}.
Then, define

β̂i
η(τ) =

kη − τ

η
β̂i

k−1 +
τ − (k − 1)η

η
β̂i

k.

We follow the same convention to describe other continuous time processes. We refer to
n = 1, 2, . . . as periods or iteration numbers, while we refer to τ as fictitious time, or
simply time.

3.6. Model Validation. We have been purposely vague about the details of specification
testing, because there is no single best way to validate a model. The right approach
depends on what the model is being used for, and the nature of the relevant alternatives.
Although our approach is sufficiently general that it could accommodate a variety of
alternative specification tests, we opt for a Lagrange Multiplier (LM) approach. LM tests
can be interpreted as Likelihood Ratio tests against localized alternatives (Engle (1984)),
or as first-order approximations of KLIC statistics. Their defining feature is that they
are based solely on estimation of the null model, and do not require specification of an
explicit alternative. For this reason, they are often referred to as misspecification tests,
rather than specification tests.

In addition to being widely applied within the conventional econometrics literature,
LM testing has also received some attention within the literature on Stochastic Recursive
Algorithms (SRA). Chapter 5 in Benveniste, Metivier, and Priouret (1990), in particular,
outlines a recursive validation procedure based on LM testing principles. Their method
is based on the observation that the innovation in a typical SRA is proportional to the
score vector. 13 Essentially then, what is being tested is the significance of the algorithm’s
update term.

13Breusch and Pagan (1980) noted this as well, and argued that it could be exploited to simplify the
computation of conventional (nonrecursive) LM tests.
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Our approach is similar to that of Benveniste, Metivier, and Priouret (1990), except
we take the additional step of asking what happens in the event of model rejection. A
common criticism of misspecification testing is that it fails to address the question of how
to respond to test rejections. Our agent responds by going back to his original model class
and looking for a better model.

Figure 2 shows what would happen if the Central Bank were to apply a recursive LM
testing strategy in the context of Sargent’s (1999) Conquest model.14
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Figure 2. Sequential LM tests in Sargent’s Conquest Model

It seems clear that during escapes the Central Bank would have cause to doubt the
specification of its model. One should bear in mind, however, that this is suggestive
evidence, at best. First, although one can obtain distributional results in traditional
settings, the application here departs from these settings in some important respects (e.g.,
endogenous data and constant gain updating). Second, as noted by Hansen (1992), the
implicit alternative in this kind of test can be interpreted as being one of random walk
parameter drift. However, as Sargent and Williams (2005) note, random walk parameter
drift is the implicit null hypothesis behind constant gain learning algorithms. Applying LM
tests to a model that is updated with a constant gain learning algorithm should therefore
be designed to detect coefficient changes that are more rapid than what is implied by the
algorithm’s gain parameter. This can be accomplished most easily by subtracting a small
positive constant from the squared residuals when computing the test statistic. In terms
of the underlying model, what is then being tested is stability of the covariance matrix
in the coefficient drift process. Fortunately, our main conclusions do not depend on the
details of the threshold. What’s important is that the same threshold apply to all models.

Before proceeding, it will be useful to make explicit the connection between our model
update equations and a traditional scoring algorithm by rewriting equation (3.10) as fol-
lows:

β̂i
n = β̂i

n−1 + η(Ri
n−1)

−1Λi
n (3.13)

14Some details: (1) Let xn = (1, πn) be the regression vector, Rn be its second moment matrix, ξn

be the time-n model residual, and let σ̂2
n = σ̂2

n−1 + η(ξ2
n − σ̂2

n−1), (2) The bottom panel of Figure 2 then
reports the recursively estimated statistic, Ln = Ln−1 + η[(x′

nξ′
n)R−1

n (xnξn)/σ̂2
n −Ln−1].
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where Λi
n is defined as model i’s estimated vector of (unscaled) Gaussian scores

Λi
n = Φi

n−1(xn − Φi′
n−1β̂

i
n−1)

Model rejections will be triggered by excessively large fluctuations in Λi
n.

3.7. Model Selection. As noted earlier, a common criticism of misspecification tests is
that they fail to specify an alternative. That’s only partly true here. Our model validation
process consists of two main steps, where the first step consists of a misspecification test,
and the second step specifies what happens in the event of a rejection.

We assume that once a given model is rejected, a new model, along with its coefficients,
is randomly selected from the model class. Let πi be the probability of selecting model i,
and F i(βi) be the probability distribution according to which the policymaker selects the
initial value of its coefficients.

We intentionally choose a rather naive model selection protocol. One could easily con-
sider a more elaborate and realistic search process. For example, one could place more
weight on models with smaller historical mean-squared errors, as was done in our first
example. However, it will become apparent that our main conclusions are independent of
the details of the selection process. All that we require is a broad, exhaustive search that
excludes no model or coefficient vector. While this may engender highly unrealistic model
switching dynamics, as poorly fitting parameter vectors are quickly rejected, it does not
influence our inferences about the robustness of self-confirming equilibria.

4. Analysis

4.1. Representation as a Stochastic Recursive Algorithm (SRA). It is useful to
begin by collecting together the model’s equations. We first have a set of model update
equations.

β̂i
n = β̂i

n−1 + η(Ri
n−1)

−1Λi
n (4.14)

Λi
n = Φi

n−1(xn − Φi′
n−1β̂

i
n−1) (4.15)

Ri
n = Ri

n−1 + η(Φi
n−1Φ

i′
n−1 − Ri

n−1) (4.16)

Through feedback, the actual DGP is determined.

xn = A1(sn−1, βn−1)xn−1 + B1(sn−1, βn−1)zn−1 + C1(sn−1, βn−1)un + D1(sn−1, βn−1)ε1n

(4.17)
zn = A2(sn−1, βn−1)zn−1 + B2(sn−1, βn−1)xn−1 + C2(sn−1, βn−1)un + D2(sn−1, βn−1)ε2n

Models are tested by forming recursive LM test statistics

θi
n = θi

n−1 + η[Λi
nΣ−1/2

in (Ri
n)−1Σ−1/2

in Λi
n − θi

n−1] (4.18)

where Σin is an s × s diagonal matrix containing the squared residuals from model i.
In the event the current model is rejected, a new model is selected according to the

probability distribution π = (πi) over M, along with a new coefficient vector drawn
according to F i(βi).

These ingredients induce a Markov chain over M. Let pn ∈ ∆m−1 be the time-n
probability distribution over models, and let Pn be an m × m state transition matrix of
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sn, where Pij,n is the time-n probability of switching from model i to model j. Model
selection dynamics can then be represented as follows

p
′
n+1 = p

′
nPn (4.19)

The diagonal elements of Pn are given by

P[θi
n ≤ θ̄] + P[θi

n > θ̄)] · πi (4.20)

and the off-diagonals are given by

P[θi
n > θ̄] · πj (4.21)

where θ̄ is the common test threshold.
Reflecting time-scale separation, it is useful to decompose Pn into two parts, highlighting

the rate at which transitions arise:

Pn = I + O(η, n)Qn (4.22)

where Q = (qij) is the generator of a continuous-time Markov chain, and

lim
η→0

O(η, n) = 0 ∀n.

Note that ∀i 6= j, qij > 0 and qii < 0 so that
∑

j qij = 0. O(η, n) captures the rate at
which a given model is rejected. It plays an important role in the ensuing analysis.

4.2. ODE Approximation of Model Revisions. To approximate the sample path of
βn = (βi

n), it is instructive to calculate the speed at which the policymaker switches
between models. Following Dupuis and Kushner (1989), the rejection probability in a
small neighborhood of a stable self-confirming equilibrium βi

e is an exponential function
of η.

Proposition 4.1. ∀i, ∀T , ∀ρ > 0, ∃V ∗
i (ρ, T ) > 0 such that

P
(
∃τ ∈ (0, T ), |β̂i

η(τ) − βi
e| > ρ | β̂i

η(0) = βi
e

)
≤ e−V ∗

i (ρ,T )/η.

Next, since the test statistic is a continuous function of βi, we can appeal to the Con-
traction Principle (Dembo and Zeitouni (1998)) to re-write the above statement in terms
of the test statistics.

Corollary 4.2. ∀i, ∀T , ∀θ̄ > 0, ∃S∗
i (θ̄, T ) > 0 such that

P
(
∃τ ∈ (0, T ), θi

η(τ) > θ̄ | θi
η(0) = 0

)
≤ e−S∗

i (θ̄,T )/η

where θi
η is the continuous time process obtained by linear interpolation of {θi

n}.

Thus, for a sufficiently small η > 0, the probability that model i is rejected around its
self-confirming equilibrium is of order e−S∗

i (θ̄,T )/η.

Lemma 4.3.
P

(
θi
η(τ) > θ̄ | β̂i

η(0) = βi
e

)
= O(e−S∗

i (θ̄,T )/η)

Although Corollary 4.2 and Lemma 4.3 are proved for the initial condition being set
at βi

e, by exploiting continuity of the logarithmic moment generating function, one can
repeat the same logic for any initial condition βi

0 within a small neighborhood of βi
e.
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Lemma 4.4. ∀i ∈ M, ∃ρi > 0 such that ∀β̂i
η(0) satisfying |β̂i

η(0)− βi
e| < ρi,

P
(
θi
η(τ) > θ̄ | β̂i

η(0)
)

= O(e−S∗
i (θ̄,T )/η)

Let Nρi(β
i
e) be a ρi neighborhood of βi

e. For the moment, let us examine the evolution
of the stochastic recursive system described by (4.14)-(4.21), conditioned on the event that
sn = i and β̂i

n ∈ Nρi(β
i
e).

By Lemma 4.4, we know that a transition to another model is a very unlikely event,
whose probability vanishes at an exponential rate. Exploiting this feature, we can invoke
an approximation theorem of Yin and Krishnamurthy (2005) to approximate the sample
path starting at β̂i

n ∈ Nρi(β
i
e) by the ODE (3.12).

Proposition 4.5. Fix β̂i
0 ∈ Nρi(β

i
e), and s0 = i. Then,

lim
η→0

β̂i
η(τ) ⇒ βi(0) +

∫ τ

0
hi(βi)ds

where ⇒ denotes weak convergence.

Since in a small neighborhood of βi
e the rejection probability of model i vanishes at an

exponential rate, the log of the mean duration that βi
n remains in a small neighborhood

of βi
e is proportional the rate function S∗

i (ρi, T ) (Dembo and Zeitouni (1998)).

Lemma 4.6. Fix β̂i
0 ∈ Nρi(β

i
e), and s0 = i. Let τη be the first time that model i is

rejected. Then,
lim
η→0

η log E[τη|β̂i
0 ∈ Nρi(β

i
e)] = S∗

i (ρi, T )

and ∀δ > 0,

lim
η→0

P

(
e

S∗
i (ρi,T )+δ

η > τη > e
S∗

i (ρi,T )−δ

η

)
= 1.

If β̂i
n visits a small neighborhood of βi

e while sn = i, then the model survives testing
for an exponentially long period of time, while staying within a small neighborhood of the
self-confirming equilibrium.

We have yet to characterize the dynamics of (4.14)-(4.21) outside small neighborhoods
of each model’s self-confirming equilibrium. The following result says that eventually, due
to our assumptions of exhaustive search and global stability of SCE, the policymaker’s
model will come arbitrarily close to a SCE.

Proposition 4.7. ∀δ ∈ (0, 1), ∃T ∗ and η∗ > 0 such that

P
(
∃n ≤ dT ∗/ηe : sn = i, β̂i

n ∈ Nρi(β
i
e)

)
≥ 1 − δ.

Proof. Recall that the set of feasible coefficients is compact and convex, and that in re-
sponse to a model rejection, the policymaker selects every model with positive probability.
Since the set of coefficients around a stable self-confirming equilibrium has positive mea-
sure, the decision maker must visit this neighborhood within a finite number of periods.
Specifically, ∀δ1 > 0, ∃K1 such that

P
(
∃i, ∃n ≤ K1 : β̂i

n ∈ Nρi(β
i
e)

)
≥ 1 − δ1. (4.23)
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Of course, if models are rejected quickly, the policymaker switches models frequently.
Although it is possible that his model survives the test even when β̂i

n 6∈ Nρi(β
i
e), since the

SCE is globally stable and the policymaker continuously updates β̂i
n while it survives the

test, the coefficient vector βi
n must converge to it. Also, since the domain of the coefficients

is compact, it will take a finite number of iterations to visit a small neighborhood of βi
e.

To formalize this observation, let τi(β̂i
0) be the time it takes for β̂i

η(τ) to evolve from β̂i
0

to Nρi/2(βi
e), if it evolves according to the ODE (3.12). Since the trajectory is a continuous

function of the initial condition, Bi is compact, and the SCE is globally stable,

τ̄i = sup
β̂i
0∈Bi

τi(β̂i
0) < ∞

Let
τ̄ = max

i
τ̄i.

Since the sample paths of the stochastic recursive algorithm converge to the trajectory of
(3.12), ∀δ2 > 0, ∃η2 > 0 such that ∀η ∈ (0, η2), ∀i, ∀β̂i

0 ∈ Bi

P
(
∃τ ≤ τ̄ : β̂i

η(τ) ∈ Nρi/2(β
i
e)

)
≥ 1 − δ2 (4.24)

Choose δ1 = δ2, δ = δ1 + δ2, and T ∗ = K1τ̄ . The conclusion then follows from combining
(4.23) and (4.24). ut

From Lemma 4.6 and Proposition 4.7, we conclude that as η → 0, the (fictitious) time
the system takes to reach a small neighborhood of some model’s self-confirming equilibrium
is uniformly bounded by τ̄ , while the duration around it increases exponentially as η →
0. Moreover, this duration is also exponentially proportional to the rate function S∗

i
associated with model i’s self-confirming equilibrium.

Given an integer N , define model i’s empirical occupancy measure

π(i, N) =
1
N

#{sn = i}

as the proportion of periods during which model i is used. Define i∗ as the model which
has the largest rate function

S∗
i∗(T, βi∗

e ) ≥ S∗
j (T, βj

e) ∀j.

We call βi∗
e a robust self-confirming equilibrium. Our main result is the following, which

follows in an obvious way from the previous results.

Theorem 4.8.

lim
N→∞

π(i∗, N) = 1

On the one hand, this result is quite general, as it allows us to identify a dominant
model independently of the details of model selection and experimentation. On the other
hand, it is quite limited, since without these details one cannot make useful predictions
about the real-time dynamics of model selection.
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4.3. Discussion. We have defined a robust self-confirming equilibrium as an outcome
generated by a model which survives specification testing longer than any other model
in a given model class. We have identified this model as the model with the maximum
large deviations rate function, defined at its own self-confirming equilibrium. To readers
familiar with information theory and statistics, this may at first sight appear to be a
puzzling result. From Sanov’s Theorem we know rate functions are connected to relative
entropy, and then, from either Stein’s lemma (classical) or Chernoff bounds (Bayesian),
we know that relative entropy is connected to detection error probabilities. In particular,
larger relative entropy should make it easier to discriminate between a model and the
true DGP. That is, larger relative entropy reduces the probabilities of Type I and Type II
errors. Why then are models with large rate functions more robust against specification
tests?

This apparent contradiction illustrates a key difference between model validation with
exogenous data and model validation with endogenous data. With endogenous data, each
model has the capacity to mimic the true DGP. In this case, rejecting a model constitutes a
Type I error, and as usual, a larger rate function implies a smaller Type I error probability
(or more precisely, it increases the rate at which it converges to zero).

It is natural to ask what the relationship is between the dominant model and the
actual DGP. For example, if the true model is in M, will it be dominant? Interestingly,
with feedback this may not be the case. Feedback could accelerate the escape of a true
model. However, without feedback, the policymaker’s role reverts to that of an outside
econometrician, and we get the usual results (White (1982)).

Proposition 4.9. Suppose the DGP is exogenous. If the true model is in M then it is
dominant. If the true model is not in M, the dominant model will be the model that is
closest in terms of KLIC distance.

Since our primary interest is in the endogenous data case, we shall not formally prove
this. However, it follows easily from two facts. First, with random model selection and a
linear model class there is no essential difference between model uncertainty and parameter
uncertainty, and our assumptions imply the parameter space is strictly convex. Second,
since the environment is Gaussian, recursive least squares becomes equivalent to maximum
likelihood.

5. Another Example

At this point it is useful to consider another example, designed to illustrate some addi-
tional features of model validation that were not present in the cobweb example of section
2. In this example, the agent uses his model to solve a control problem, which creates
an additional source of feedback. Moreover, the misspecification here is more subtle than
simply omitting relevant explanatory variables. We shall see that by validating his model,
the agent learns to do the right thing, thus vindicating Sims (1982). At the same time,
however, we shall also see that the ability to conduct specification searches opens the door
to more insidious outcomes, in which mistaken beliefs can be ex post rationalized by the
validation process.
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5.1. Sargent’s Conquest Model. Sargent studied the problem of a Central Bank that
wants to minimize a quadratic loss function in inflation and unemployment, but is unsure
about the true model. The Bank posits a reduced form regression model of the form,

un = β0 + β1πn + εn

and then tries to learn about this relationship by adaptively updating its coefficients. To
account for potential drift in the underlying relationship, the Central Bank discounts past
data when updating its estimates. Simulations of this model produce the following time
paths of inflation. (Here, and in what follows, we use the same parameter values as in
Sargent). The striking feature here is the recurring cycle of gradually rising inflation,
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Figure 3. Simulated Inflation Path in Sargent’s Conquest Model

and then occasional sharp inflation stabilization. As noted by Cho, Williams, and Sargent
(2002) (CWS), this cycle represents the interplay between the model’s mean dynamics and
its escape dynamics. The mean dynamics reflect the Central Bank’s efforts to eliminate
systematic forecast errors. These errors are eliminated once inflation reaches its Nash/Self-
Confirming Equilibrium (SCE) value of 5%. The escape dynamics are more exotic. In
Sargent’s model, the true data-generating process is a natural rate model, containing no
exploitable Phillips Curve trade-off. At the SCE, the Central Bank’s beliefs are free to
wander in any direction, and when sequences of positively correlated inflation and Phillips
Curve shocks occur, they cause the Central Bank to revise downward its Phillips Curve
slope estimate, and therefore, its inflation target. Since in truth there is no trade-off, these
inflation reductions produce further downward revisions, and the process feeds on itself
until inflation reaches the Ramsey outcome of zero inflation. From this point, with no
further changes in the inflation target, the Central Bank begins to rediscover the Phillips
Curve, due to the presence of inflation shocks acting within the model’s natural rate
structure. This produces a gradual pull back up to the Nash inflation outcome.

5.1.1. Sequential t-testing in Sargent’s Model. A natural question at this point is - To what
extent is the Central Bank really learning anything here? True, it’s revising estimates of a
model in light of new data, but in practice policy makers spend most of their time looking
for new and improved models, not refining estimates of a given model. In Sargent’s anal-
ysis, the Central Bank never really evaluates the Phillips Curve as theoretical model of
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inflation and unemployment; it simply reconsiders the strength of an unquestioned trade-
off. What if the Central Bank engages in a traditional process of hypothesis testing and
model selection? In particular, suppose the Bank entertains the possibility that there is no
trade-off, perhaps because someone in the research department read a recent presidential
address by Milton Friedman. In response, the Bank decides to sequentially test the hy-
pothesis that β1 = 0, and if the hypothesis is not rejected, they switch to a vertical Phillips
Curve model and set the inflation target to zero. Looking at the t-statistics reported in
the bottom panel of Figure 3 suggests that this might produce a different result. Once
inflation is stabilized, the Bank would clearly switch to a vertical Phillips Curve. In fact,
the actual outcome is reported in Figure 4.
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Figure 4. Sequential t-tests in Sargent’s Conquest Model

Clearly, allowing the Bank to test hypotheses on the slope coefficient makes no differ-
ence, aside from a slight delay in the return to the SCE. 15 The fact is, there is a correlation
between inflation and unemployment, albeit not an exploitable one, and this correlation
will lead the Bank to quickly reject the null hypothesis β1 = 0, even after it has switched
to the vertical Phillips Curve model. The problem, of course, is that the Bank’s model is
subject to a fundamental misspecification, based on a misinterpretation of the role of the
private sector’s expectations in the inflation process. To break out of its inflation cycle,
the Central Bank must engage in a more sophisticated form of specification testing.

5.1.2. Expected vs. Unexpected Inflation. Now suppose a young, newly minted PhD ar-
rives in the research department, and having read recent papers by Lucas, Sargent, and
Barro, convinces the Bank to try to distinguish between expected and unexpected inflation
when estimating its model. That is, it fits an ‘expectations-augmented Phillips Curve’.
It turns out, this is quite simple to do in Sargent’s Conquest model, since the private
sector’s expectations are based directly on the Bank’s own inflation target. Hence, rather
than regress unemployment on realized inflation, the Bank just needs to run a multiple
regression on its target and the ex post realized inflation shock. Assume the Bank has

15Again, leave aside for the moment the naivete associated with repeatedly applying a t-test with a
fixed threshold.
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been conducting business-as-usual until mid-sample, observation 2500, when it suddenly
decides to give the new researcher’s ideas a try. The outcome is depicted in Figure 5
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Figure 5. Expected vs. Unexpected Inflation in Sargent’s Conquest Model

Evidently, the Bank quickly discovers the folly of its ways, and inflation is quickly
stabilized, forever. In the words of Sargent (1999), this would truly constitute a ‘triumph
of the natural rate hypothesis’.

5.1.3. Specification Searches. Unfortunately, this propitious outcome is not the only pos-
sibility. Suppose a different researcher arrives at the Bank, who argues that the Bank’s
model is misspecified because it omits supply shocks, which shift the Phillips Curve. In
addition, he persuades the Bank to modernize its econometric methods. Rather than for-
mal hypothesis testing, he argues that it is more reasonable, in light of misspecification
concerns, to apply a model selection approach, based on Akaike’s Information Criterion.
Also, he points out that it is crazy to repeatedly test the same hypothesis using a con-
stant critical value. Instead, he recommends a ‘monitoring structural change’ approach,
as developed by Chu, Stinchcombe, and White (1996).16 So let’s now suppose the Bank
entertains two models, one being Sargent’s simple bivariate Phillips Curve, and the other
being a supply-shock augmented model containing real oil prices as an additional regressor.
The Bank selects between these models using an AIC statistic, but sticks with its status
quo model as long as it remains within the ‘no structural change’ bounds determined by
the monitoring procedures of Chu, Stinchcombe, and White (1996). In this case, rather
than simulations, it is more interesting to see what would have happened in light of actual
U.S. inflation history. Figure 6 contains the results17

16Presumably, the researcher has access to a time machine, as these methods were not developed until
recently.

17A few details: (1) Inflation and unemployment data, as well as parameter values, are the same as in
Sargent (1999), (2) The Bank starts its experiment in June 1960, with a static Phillips Curve calibrated to

data from the prior year, which yields initial conditions β̂0 = 4.95 and β̂1 = −0.29, (3) Oil prices are taken
from the IMF database, line 76AAZ, and deflated using the CPI, line 64, (4) The monitoring thresholds are
taken from Deshayes and Picard (1982), and are given by ±

√
n log α, with log α = −2. This corresponds

to an approximate (nominal) significance level of 13%. Due to the endogenous nature of the DGP, the
actual size will be different. The results are not highly sensitive to α.
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Figure 6. Monitoring Structural Change in a Phillips Curve Model

The top panel displays the perceived slopes of the Phillips curve in the two models, i.e.,
the estimated inflation coefficients. The bottom panel then displays the resulting inflation
target. Note that when the Bank’s model includes oil prices, the inflation target responds
to the current price of oil. The response is positive since oil prices are estimated to have
a negative effect on employment.

It turns out the Bank switches models four times: (1) In late 1966 it switches to the
model with oil prices, even though oil prices were relatively flat until then. This likely
reflects the combination of gradual negative trends in both unemployment and real oil
prices, (2) At the end of 1969 it switches back to the static Phillips curve. This reflects
a decline in the correlation between oil prices and unemployment, as oil remains flat,
while unemployment rises gradually during the prior year, (3) In early 1975 the Bank
switches again to the supply-shock augmented Phillips curve. Notice that the switch is
not instantaneous, since the first shock occurs at the end of 1973. This reflects the adaptive
nature of the Bank’s beliefs, combined with a relatively small gain parameter (η = .015).
Interestingly, the Bank retains the supply-shock augmented Phillips curve model until
mid-2000, when it goes back to the simple static Phillips curve. This reflects the fact
that the (partial) correlation between oil prices and unemployment remains significant
well into the 1980s, although of course during the 1980s things were moving in reverse,
with oil prices and unemployment both falling.

What is interesting about Figure 6 is that it shows how the ability to engage in spec-
ification searches enables the Bank to sustain at least some belief in the Phillips curve.
However, it is clear that by themselves oil prices cannot explain the rise and persistence
of U.S. inflation during the 1970s. Instead, they mainly seem to explain why the Fed
might have retained a low, but positive, inflation target throughout the 1980s and 90s.
The failure to generate a rise in target inflation during the 1970s can be partly blamed on
the low gain parameter. In Figure 6, the Bank does weight recent data more heavily, but
not by much. One could argue, however, that the oil shocks were indeed just that, i.e.,
shocks, in which case a constant gain algorithm, designed to track slow parameter drift,
is not really appropriate. Although there are certainly more sophisticated ways to allow
the gain to vary (e.g., Kushner and Yin (1997)) Figure 7 shows what happens when the
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gain increases to η = 0.5 during the turbulent periods immediately following the two oil
shocks, 1974-75 and 1980-81.
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Figure 7. Model Selection, Oil Prices and a Variable Gain

Now we see a fairly significant jump in target inflation. Interestingly, it is the combina-
tion of a variable gain and model switching that generates the volatility in target inflation.
In particular, notice that the slopes of the two Phillips curves are quite similar during the
1970s, and that the Bank only switches to the shock-augmented model for a few months
during the first oil crisis, and switches back-and-forth quite rapidly during the second
crisis. Still, when combined with the spike in the oil coefficient, this is enough to generate
inflation movements that bear at least some resemblance to what actually occurred.

It is interesting to compare this account of recent U.S. inflation history to the account
in Cogley and Sargent (2005), which attributes the Fed’s delay in bringing down inflation
to Bayesian model uncertainty. In their model, the Fed sticks to a high inflation policy
because it risk-dominates the policy implied by the better-fitting model. In contrast, here
the rise and persistence of inflation reflects the Fed’s continued belief in the Phillips curve.
This belief is sustained by the Fed’s adaptive behavior, with respect to both parameters
and models, which allows the Fed to rationalize what might otherwise be interpreted as a
breakdown of the Phillips curve.

5.2. Learning To Do The Right Thing. We just saw that testing hypotheses within
the context of a single model would not produce good outcomes. The Bank continues to
rediscover a statistical Phillips Curve, and continues to let inflation slip out of control. We
then saw how good theory, in the form of a distinction between expected and unexpected
inflation, could produce good outcomes. Suppose, however, the bright young theorist from
Section 5.1.2 never gets hired, but instead the Bank follows the model validation procedure
we outlined in Sections 3 and 4. As Sims (1982) argued, could the Bank learn to adopt
the right policy even without a priori knowledge of the DGP?

Suppose the Bank begins with a model class comprised of two elements: (1) a statistical
Phillips curve, as in Sargent (1999), and (2) a vertical Phillips curve. Our theory predicts
that the dominant model will be the model with biggest large deviations rate function. In
this particular case, this is an easy comparison to make. We know from Cho, Williams, and
Sargent (2002) that the static Phillips Curve rate function is approximately S̄∗ = .0005.
The mean escape time is approximately exp[S̄∗/η] continuous time units, or η−1 exp[S̄∗/η]
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discrete time units.18 Hence, when η = .01 we should expect to observe escapes every 105
periods.19 If the LM test is calibrated to reject only during escapes, then the static Phillips
Curve would be expected to last about 100 periods. The vertical Phillips Curve case is
especially simple. Since the sequence of coefficient estimates becomes i.i.d Gaussian, the
rate function is well known to be S̄∗(x) = .5(x− ū)2/(σ2

1 + σ2
2), where σ2

1 and σ2
2 are the

variances of the shocks to the Phillips Curve and the inflation target, and ū is the natural
rate of unemployment. Note that in this linear setting, the rate function is symmetric, and
escapes are equally likely to occur in either direction. To maintain comparability with the
static Phillips Curve we need to calibrate the boundary point, x, so that model rejections
occur only during escapes, and with approximately equal statistical evidence. Rejections
of the static Phillips Curve occur when the LM test reaches levels of approximately 16.
Since in the case of a vertical Phillips Curve, the LM test essentially becomes a recursive F-
test, or a squared t-statistic, this suggests a mean escape time of approximately η−1 exp[8]
discrete time units; that is, about once every 300,000 periods! Clearly, the vertical Phillips
Curve would dominate, and for all practical purposes the Bank would stick to a low
inflation policy forever.

6. Concluding Remarks

This paper has attempted to model macroeconomic policymakers as econometricians.
We’ve done this by combining recent work in both macroeconomics and econometrics.
From macroeconomics, we’ve borrowed from the work of Sargent (1999) and Evans and
Honkapohja (2001) on boundedly rational learning dynamics. From econometrics, we’ve
borrowed from recent work on the analysis of misspecified models (Vuong (1989), White
(1994), and Burnham and Anderson (2002)). As it turns out, this produces a rather
difficult marriage.

From a macroeconomic standpoint, it is difficult because we abandon the rational expec-
tations hypothesis, thereby putting ourselves into the ‘wilderness of bounded rationality’.
We do this not because we like to analyze difficult and ill-posed problems, but simply
because of the casual observation that, as econometricians, macroeconomic policymakers
do not spend their time refining estimates of a known model, but instead spend most of
their time searching for new and better models. Of course, it is not necessary to abandon
rational expectations and traditional Bayesian decision theory when confronting model un-
certainty.20 However, we think there are good reasons to explore alternative approaches.21

The marriage between macroeconomics and econometrics is difficult from an econo-
metric standpoint because, presumably, policymakers have some influence over the data-
generating processes they are attempting to learn about. The econometric analysis of
misspecified models with endogenously generated data is truly uncharted territory.

18Warning: For Gaussian shocks this formula provides only an upper bound. It becomes an equality
only when shocks are bounded.

19Another warning: The distribution of escape times is not symmetric. It is exponential, with a long
right tail. Hence, the median escape time will be less than this.

20See, e.g., Brock, Durlauf, and West (2007) for an application of Bayesian model averaging to macroe-
conomic policy.

21See Sargent (1993), Hansen and Sargent (2007b), Kreps (1998), and Bray and Kreps (1987).
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We make progress on this problem by relating it to a problem that is relatively well
understood, namely, the dynamics of constant gain recursive learning algorithms. We de-
scribe the sense in which the dynamics generated by a process of testing and model revision
can be approximated by the dynamics generated by recursive learning models. This is a
useful connection to make, because it enables us to apply the results of Williams (2001)
and Cho, Williams, and Sargent (2002) on escape dynamics to help us understand a wide
range of Markov-switching macroeconomic dynamics. Looking at it from the other side,
a second payoff from making this connection is that it provides a more secure behavioral
foundation for recursive learning models.

Although we feel this paper takes a significant step forward in understanding the in-
terplay between macroeconomics and econometrics, there are certainly many loose ends
and unexplored avenues remaining. One possibility is to consider alternative specification
tests. Here we focused on LM tests. However, there are many possibilities, depending
on what sort of potential misspecification is of most concern. Second, like most work on
bounded rationality, our analysis rests on an uneasy tension between positive and nor-
mative ingredients. For the most part, we have struck the balance on the positive side,
and adopted assumptions that are meant to be more descriptive than prescriptive. The
one major exception here was our assumption about model selection. Policymakers do
not randomly select models. It would be interesting to study the effects of more realistic
model selection strategies. Although this would not affect the main conclusions of this
paper, it would open the door to a real-time analysis of model selection dynamics, with
potentially interesting empirical implications. Third, it would be useful to provide a more
complete characterization of the dominant model by studying in more detail the links
between large deviation rate functions and relative entropy. Finally, perhaps the most in-
teresting and important extension would be to allow the agent to entertain doubts about
the entire model class itself. The work of Hansen and Sargent (2007a) on robust filtering
of discrete hidden states offers one route toward such an extension. Another possibility
is to take advantage of recent work on calibrated learning in repeated games. We are
currently pursuing this in Cho and Kasa (2009).
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