
International Journal of Operations Research Vol. 4, No. 4, 206−219 (2007)

Tuning the Parameters of a Memetic Algorithm to Solve Vehicle
Routing Problem with Backhauls Using Design of Experiments

A. Saremi, T. Y. ElMekkawy∗, and G. G. Wang

Department of Mechanical & Manufacturing Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T 5V6

Received August 2006; Revised March 2007; Accepted April 2007

AbstractVehicle Routing Problem with Backhauls (VRPB) is an extension of the general Vehicle Routing Problem
(VRP). In contrast with general VRP, VRPB considers two types of linehaul and backhaul customers. VRPB tries to find
optimal routes with minimum cost in which backhaul customers are visited after linehaul customers for a fleet of
heterogeneous vehicles. In this paper, a Memetic Algorithm (MA) is developed to solve the VRPB. Similar to other
metaheuristic algorithms, an important issue that affects the performance of MA is the selection of components employed
in the algorithm along with their parameters’ values. This work examines the effect of employing different combinations of
MA components and parameter values on both the algorithm’s efficiency and the quality of solutions. Design of
Experiments (DOE) is introduced as a systematic approach to find the best combination of these parameters’ values.
Analysis of variance (ANOVA) is used to analyze the main effect and interaction effects of the considered parameters.
Results verified the efficacy of the proposed MA method and the systematic tuning approach for MA to solve VRPB.
KeywordsMemetic algorithm, Design of experiments, Metaheuristics, Vehicle routing problem

∗ Corresponding author’s email: tmekkawy@cc.umanitoba.ca

1. INTRODUCTION

Combinatorial optimization problems have attracted
many researchers in recent decades due to their practical
relevance and their considerable difficulties. Usually three
different categories of approaches are used to solve these
problems, namely, exact, heuristics, and metaheuristic
methods. Exact methods apply analytical and
mathematical approaches to solve the problems. Due to
the considerable complexity of the problems, the efficacy
of exact methods is limited to small scale problems.
However exact methods yield analytically optimal
solutions. Heuristic methods are employed to solve
problems that are difficult to solve by using exact
methods. They use simple intuitive techniques to make
the search limited to potentially better solutions. Although
heuristic methods can find a solution in a short time
compared to exact methods, the analytically optimal
solution is not guaranteed. To cope with the long
computational time and limitation on quality of the
obtained solutions, metaheuristic approaches are
employed to solve combinatorial problems. Metaheuristic
methods improve a solution’s quality by exploring the
search space while using heuristics to make the search
more intelligent. Metaheuristic methods try to obtain
quality solutions in a reasonable time, employing heuristic
algorithms as a part of their search algorithm.
Metaheuristic methods have been applied to many

research areas. In this paper, a new Memetic Algorithm
(MA) will be developed to solve the Vehicle Routing
Problem (VRP), a well-known combinatorial optimization

problem. VRP is considered as the determination of
optimal routes for fleet vehicles which are based on one
depot to serve a number of customers. The optimality can
be considered in terms of minimizing the total cost of
transportation, minimizing the total distance of travel
routes, and/or minimizing the total number of vehicles
employed for serving customers. Several requirements and
operational constraints confine VRP. For example, serving
nodes can include deliveries along with pickups from
customers, capacity of vehicles for carrying loads is limited,
the length of each route should not exceed a pre-defined
value, each customer should have a definite time of being
served, the fleet can be composed of one or different types
of vehicles, and some precedence relation can exist
between customers. If the precedence is considered in VRP,
then the problem becomes a Vehicle Routing Problem with
Backhauls (VRPB).

The complexity of metaheuristic algorithms originates
from the need of setting the values of several components
and parameters within them. These parameters’ values can
drastically affect the performance of metaheuristic
algorithms. Therefore, it is very important to develop a
systematic method of tuning up these parameters for the
best performance of the developed metaheuristic
algorithms.

The objective of this paper is two folds. First it is to
develop a Memetic algorithm (MA), as a metaheuristic
algorithm, to solve the Vehicle Routing Problem with
Backhauls (VRPB). Second this work is to introduce a
systematic method for selecting the best combination of
the employed parameters of the developed MA. Design of

International Journal of
Operations Research

1813-713X Copyright © 2007 ORSTW

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

207

Experiments (DOE) will be used for analyzing the effect
of several independent parameters on the performance of
the developed MA measured by the computational time
and quality of the obtained solution.

In the following sections, relevant literature concerning
tuning parameters of an evolutionary algorithm by means
of DOE is discussed. Problem description and the
proposed Memetic Algorithm are considered in Section 3.
Design of Experiments for the proposed MA algorithm is
described in Section 4. Computational results are presented
in Section 5. The last section is dedicated to conclusions
and future research.

2. RELEVANT LITERATURE

Toth and Vigo (1997) developed a branch and bound
algorithm in which a lower bound on the optimal solution
is derived from their linear programming (LP) formulation
with Lagrangian relaxation of constraints. Yano et al. (1987)
developed a set covering approach based on the exact
algorithm for a practical application of the VRPB. Deif
and Bodin (1984) proposed a heuristic algorithm named
DB. Deferent extensions of the DB algorithm were
proposed by Casco et al. (1988). Goetschalckx and
Jacobs-Blecha (1989) proposed an algorithm, which is
called SF in the paper, for VRPB with the Euclidean cost
matrix. The result presented in their paper showed that DB
solutions were generally better than SF but the SF
algorithm was faster for large scale problems. Later
Goetschalckx and Jacobs-Blecha (1993) presented a
heuristics, which was called LHBH, for the Euclidean
version of the VRP. Their algorithm was based on the
extension of Fisher and Jaikumar for the general VRP.
Toth and Vigo (1996) developed a cluster-first
route-second heuristic based on the K-tree approach for
the VRP. Furthermore, Toth and Vigo (1999) implemented
an improved version of the above heuristic to the
symmetric and asymmetric VRPB which was called TV.
This heuristic produced very competitive results in the
literature for this problem. Duhamel and Rousseau (1997)
designated a tabu search heuristic for the VRP with
backhaul and time windows (VRPBTW) as well as
customer precedence. Osman and Wassan (2002) published
a tabu search metaheuristic which, on average, produced
even better solutions than Toth and Vigo’s algorithm, but
required much more computing time. Zhong and Cole
(2005) proposed a guided local search for the VRPB. More
recently, Brandao developed a Tabu search algorithm for
the same problem Brandao (2006).

In all the metaheuristic methods, it is generally
recognized that different components and parameters
significantly impact the performance of evolutionary
algorithms. One of the impacts is seen in terms of the
convergence of the algorithm toward optimum solution.
Grefenstette (1986) used the Genetic Algorithm (GA) to
evolve good values for crossover and mutation
probabilities. Davis (1993) demonstrated that the
difference between using randomly picked parameters’
values rather than optimum values could easily delay the

convergence. Many recent studies tried to find optimal
parameter settings but there is no systematic method that
specifies parameters’ values and selects the type of
components which can result in best performance. Thus
the debate continues on if these settings are unique on
each problem or they should be dynamically determined as
the algorithm progresses. According to these views, Davis
(1993) presented four different methods for adaptively
setting the parameters to guarantee good convergence.
Srinivas and Patnaik (1994) gave another adaptive GA in
which low probabilities of crossover and mutation were
assigned to individuals with high fitness; and high
probabilities of crossover and mutation were assigned to
individuals with low fitness. Bagchi and Deb (1996)
proposed a DOE based approach for setting parameters of
GA. Their approach also considered interaction of
different parameters, e.g., probabilities of crossover and
mutation. In their work, they used pilot GA runs of
relatively short length of optimization in the factorial
design framework. Their research demonstrated the
effectiveness of the DOE approach in selecting algorithm
parameters. Ruiz and Maroto (2006) and Ruiz et al. (2006)
also used DOE to tune their hybrid GA, solving flowshop
problems. Their algorithm was combined with different
local search algorithms. Configuring such a complicated
algorithm they used DOE to select the best GA
component while previous works just considered DOE for
setting parameter values.

In this work, performance of different components of
MA along with a few parameters will be considered. Then,
results of the examinations will yield a good configuration
of the developed MA. The main difference between this
work and the other methods of algorithm calibration is the
consideration of interactions, which can play a major role
in affecting the algorithm performance.

3. PROBLEM DESCRIPTION AND PROPOSED

MEMETIC ALGORITHM

This paper considers a special case of VRP called the
Vehicle Routing Problem with Backhauls (VRPB). This
problem employs different types of vehicles in the fleet
and assumes precedence relationships. There are two types
of customers available in this problem. The first category
concerns customers that should be served first. This
service includes picking up the items from those customers.
This type of customers is called linehaul or forward
customers since the precedence calls for serving these in
the forward phase of the route. The second type of
customers is called backhaul customers and will be served
by the vehicles in the return to the depot. There are
limitations on the capacity of each vehicle so that the total
loads which are assigned to a vehicle should not exceed its
capacity for each type of the customers. A good example
of this problem can be the grocery industry. Being a
distributor company, you have two kinds of customer,
suppliers and retailer. The goods are taken from the
supplier to a depot and carried from the depot to retailers.
A method to carry out this process is separately assigning

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

208

vehicles for each type of customers. The second method is
assigning routes to the vehicles and includes both types of
the customers in the same route. Since the vehicle should
start from the depot and finish their route in the depot, it
would be reasonable to consider that the retailers have a
higher priority over the suppliers since the loads should be
delivered to the retailers first before new loads are picked
up from the suppliers. The cost of transportation in this
problem plays the main role in choosing the routes and
assigning customers to each route. Figure 1 demonstrates a
graphical representation of the problem. The problem can
be mathematically considered as a graph in which the
nodes represent customers and the arcs represent the
transportation network and existing routes that can be used
by the vehicles to reach nodes. A mathematical model of
VRPB has been used in this work is presented in Appendix
1. This model has been proposed by Tavakkoli-
Moghaddam et. al. (2006).

3.1 Memetic algorithm

Different metaheuristic approaches are applied in the
fields of routing and scheduling, specifically to solve VRP
as a challenging NP-hard problem. Genetic algorithm (GA),
Tabu search (TS), and Memetic Algorithms are the most
known methods in this field. Memetic Algorithms (MAs)
belong to the class of evolutionary algorithms (EAs) that
apply a separate local search process to refine individuals
(i.e. improve their fitness). These methods are inspired by
models of adaptation in natural systems that combine
evolutionary adaptation of populations of individuals with
individual learning within a lifetime. Additionally, MAs are
inspired by Dawkin’s concept of a meme (Dawkins, 1976),
which represents a unit of cultural evolution that can
exhibit local refinement. Under different contexts and
situations, MAs are also known as hybrid EAs, genetic local
searchers, Baldwinian EAs, Lamarkian EAs, and the like.

From an optimization point of view, MAs are hybrid
EAs that combine the global and local search by using an
EA to perform exploration while the local search method
performs exploitation. Combining the global and local
search is a strategy used by many successful global
optimization approaches. In particular, the relative
advantage of MAs over EAs is quite consistent on
complex search spaces.

The structure of the proposed Memetic Algorithm is
shown in Figure 2. Modules of the algorithm and their
variations will be explained in the following sections. Some
of these variations and their parameters are chosen as
factors in the DOE study in search of the best MA
configuration for VRPB.

3.2 Representation

The MA designed for VRPB uses a string presentation
for solution. Each individual in the generation maps a
solution for VRPB. Individuals are composed of a
sequence of nodes in which routes (sequences of nodes)
are divided by delimiters in the sequence. An individual
chromosome begins from and ends with a depot node
which is represented by “1”. Also, the delimiter used in the
sequence is the depot node, ‘‘1’’. It is used to break the
sequence in different routes which assures that each route
starts and ends in the depot. Figure 3 represents a solution
of two routes that visit all the nodes, 1→3→4→5→7→1
and 1→2→6→1. Each route consists of different nodes
including linehaul and backhaul nodes in which, linehaul
nodes have precedence in appearing than backhaul nodes.
For example, assuming backhaul nodes include 5, 6, and 7,
the first route is divided to a linehaul part of 3 and 4 and a
backhaul part of 5 and 7. It guarantees that backhaul nodes
are served after the linehaul nodes to assure there is
enough room in the vehicle for backhaul customers.

Figure 1. A graphical representation of VRPB.

Depot

Retailer

Supplier

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

209

Figure 2. Framework of presented memetic algorithm.

1 3 4 5 7 1 2 6 1

Figure 3. Representation of a solution for VRPB.

3.3 Fitness function

The fitness function is an important part of an
evolutionary algorithm since it evaluates the goodness of
each solution in the population, based on which individuals
are selected for reproduction, forming the next generation
of the population. In this paper, the fitness function is
defined as the total cost of serving all nodes through the
determined routes. The total cost consists of the sum of
each vehicle’s traveling cost. The traveling cost of each
vehicle, Ck, is defined by Eq. (1).

k k ij ijC m d x= ∑ ,i j∀ (1)

where mk is the vehicle cost multiplier; dij is the traveling
cost for the distance between node i and j; and xij

determines if the route includes the arc connecting i to j.
A common problem that population-based algorithms

have is the premature convergence. The combinatorial
nature of VRPB prevents an algorithm from searching the
entire search space, therefore there is no guarantee of the
global optimum solution. For the proposed algorithm, this
problem escalades in later runs when the average fitness of
population approaches the best individual’s fitness. In this
situation, the average and best individuals of the
population are almost equally likely to be chosen and the
search progresses slowly. The solution of this problem is
to use fitness scaling techniques. Fitness scaling modifies
the scores of individuals to make the discrimination
possible through the new values. Different types of scaling
are employed in this work for this problem such as the
rank fitness scaling, proportional fitness scaling, top fitness
scaling, and power law fitness scaling.

3.4 Initial population

Evolutionary algorithms benefit from a randomly
generated population as their initial population. The
randomness in generating the first population assures that

the selected solutions are uniformly chosen from the
search space. An alternative approach is to use a
constructive algorithm to develop the initial population.
Some of these approaches are explained in the following:

Randomly generated population: Using randomly
generated population, some consideration should be
noticed. Since the problem forces limitations on the
capacity of vehicles and urges for precedence of linehaul
nodes on backhaul nodes, some repairing procedures
becomes necessary. First to fix the inconsistency problem
with capacity constraints, the nodes that are included in
each route should be considered along with their demand.
Also in order to rearrange the chosen nodes and make
them in the order, a procedure is employed to change the
order of nodes so that all the backhaul nodes are placed
after the linehaul node while keeping their initial
arrangement in the randomly generated solutions.

Nearest neighborhood greedy method: A greedy
constructive algorithm is also used to generate the initial
population in the proposed MA. This algorithm first
selects a linehaul node randomly. Then it considers the first
vehicle. The second node is the closest linehaul node to the
current node. Following nodes are selected according to
their distance to the current node considering linehaul
capacity of the first vehicle. When there is no excessive
room for another linehaul node, the algorithm selects the
closest backhaul node as the current node. The procedure
continues till reaches the backhaul capacity limit. The next
step is selecting the next vehicle and filling with nodes
satisfying the mentioned criteria. In this work, the nearest
neighbor method is used to generate the initial population.

3.5 Selection

Selection plays an important role in MA. It is used to
determine which individuals are allowed to reproduce and
develop the next generation. According to the natural

Initialize Population

Optimize Population (Local Search)

Evaluate Population

Stopping Criteria Satisfied? Select Parents from Population

Recombine Parents (Mutation and Crossover)

Return the Best Solution in Population

No

Yes

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

210

evolution, the fittest members of population have the right
to reproduce because of their fitness to environment so
that they are more probable to survive. However, in the
EAs different methods are used to discriminate between
different individuals such as the roulette wheel selection,
uniform selection, tournament selection, and rank
selection.

In this paper, two methods are utilized; namely,
tournament and roulette wheel selection. Tournament
selection runs a “tournament” among a few individuals
chosen at random from the population and selects the
winner (the one with the best fitness) for crossover. It
chooses k (the tournament size) individuals from the
population at random. Then the best individual from the
tournament is chosen with a probability p. The second
individual is chosen with the probability p(1 − p). The third
best individual is selected with the probability p(1 − p)2, and
so on.

In the roulette wheel selection, like other selection
methods, possible solutions are evaluated by the fitness
function. In this method, the fitness level is used to
determine a probability of selection for each solution.
Candidate solutions with a higher fitness will more likely be
chosen. As an advantage of this selection method, there is
a chance that some weaker solutions survive the selection
process. Although a solution may be weak, it may include
some components which could prove useful following the
recombination process.

3.6 Evolutionary operators

Mutation and crossover operators are dependant on the
coding of the candidate solutions of the optimization
problem. Operators for sequential coding as used in GA
and MA will be discussed in this section. Most of
operators used in this work are borrowed from the
literature on the traveling salesman problem (TSP) with
some modification to comply with VRPB assumptions. It
goes back to the nature of VRP which can be considered
as a generalized TSP problem. Each route in VRP can be
seen as an ordinary TSP problem so it is natural to expect
good TSP evolutionary operators that can be applied to
VRP problems.

3.6.1 Crossover

In GA and MA, the crossover is a genetic operator used
to vary the composition of chromosomes from one
generation to the next. In the research on TSP, several
crossover operators have been proposed such as the
partial-mapped crossover (PMX), order crossover (OX),
position based crossover (PBX), and order-based crossover
(OBX). These operators can be viewed as an extension of
two-point or multi-point crossovers of binary strings to the
permutation representation. Generally, the two-point
crossovers yield infeasible offspring because two or more
nodes may be duplicated while some missed in the
sequence. The repairing procedure is usually embedded in
these operators in order to fix this problem. This work
employs these well-known TSP crossover operators with

slight modifications. The repairing procedure has the main
responsibility to adapt solutions to VRPB assumptions.
Thus, when a solution is generated by crossover, a
feasibility check is performed to investigate solution
regarding its feasibility. In case that any infeasibility exists
in the solution, the repairing procedure adjusts the
solution.

Partial-mapped crossover (PMX) has been proposed by
Goldberg and Lingle (1985). This operator can be viewed
as an extension of two-point crossover for binary string
using a special repairing procedure in order to fix
illegitimacy caused by two-point crossover. First, PMX
selects two positions in the string and substitute substrings
located between these positions. Then, it determines the
relation between two mapping sections and finally arranges
the other nodes according to discovered relations.

Order crossover (OX) can be viewed as an extension of
the PMX with a difference in repairing procedures. First,
OX selects a substring from one parent randomly and it
makes a new offspring by copying the substring in the
same position. Then, it arranges other nodes according to
their positions in another parent.

Position based crossover (PBX) was proposed by
Syswerda (1985). It is essentially a kind of uniform
crossover. It also can be viewed as a kind of OX in which
the nodes are selected inconsecutively. First, PBX selects a
set of positions randomly then copies them to the
offspring and finally puts other nodes according to their
positions in the second parent.

Order-based crossover (OBX) was also proposed by
Syswerda (1985). In this crossover, a set of positions is
randomly selected and the order of cities in the selected
positions in one parent is imposed on the corresponding
alleles in the other parent. The difference between OX and
OBX is that selected positions in OBX are separated from
each other.

3.6.2 Mutation

The classic example of a mutation operator involves a
probability that a randomly chosen bit in a genetic
sequence will be changed from its original state according
to a pre-determined mutation rate. The purpose of
mutation in GAs is to allow the algorithm to avoid being
trapped in local minima by preventing the population of
chromosomes from becoming too similar to each other.
The bits in a chromosome are often deemed independent.
When evolutionary algorithms are employed to solve
combinatorial optimization, however, the mutation rate
concept is not directly applicable. It is because in these
problems a chromosome is composed of a sequence of
nodes, jobs or other elements that are dependent on each
other. Therefore for these problems such as the VRPB in
this work, mutation operators are often designed as an
exchange procedure which randomly but systematically
changes the position of an element in the sequence. The
conventional mutation rate parameter is therefore not
explicitly used. Mutation used in this paper is originated
from mutation used for TSP with slight modifications. The

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

211

repairing procedure is the main procedure in the algorithm
which takes after nonconformities and repairs them.

Inversion mutation: In this mutation, two positions are
chosen randomly, which determines a substring. Then this
substring is inverted. The inverted substring then replaces
the original substring in the original string.

Insertion mutation: The operator first selects a random
position in the sequence and then inserts the content in the
position to a different, randomly-chosen, position.

Displacement mutation: The displacement mutation
selects a substring at random and inserts it in a random
position. Moreover, the insertion mutation can be viewed
as the displacement mutation in which the substring
contains only one node. Therefore in this work, only the
inversion and displacement mutation schemes are used in
the experiments for MA tuning.

3.7 Local search algorithms

Local search (LS) can be used to improve VRPB
solutions in two ways. They can either be improvement
heuristics for the TSP that are applied to only one route at
a time or multi-route improvement methods that change
the route structure of a whole solution. In general,
improvement heuristics are characterized by a certain type
of basic move to alter the current solution. Different local
search algorithms are introduced in this paper. These
algorithms can be divided in terms of the computational
time and range of adjustment that they make (i.e. intra or
inter-route adjustment). This paper employs three local
search methods as follows: 2-Opt, Adjacency improvement,
and 1-Move. All LS methods used in this paper make
inter-route adjustment. In the proposed local searches,
2-Opt and 1-Move generate the solutions obeying the
VRPB assumptions and preserve feasibility of solutions.
However, in Adjacency improvement, the generated
solutions are prone to be infeasible and need to be tailored
to VRPB solutions using repairing procedure.

2-Opt: A 2-Opt move includes removing two edges and
reconnecting the two resulting paths in a different way to
obtain a new solution. Among all pairs of edges whose
2-Opt exchange decreases the length, the pair that gives the
shortest tour is selected. This procedure is then iterated
until no such pair of edges is found.

Adjacency improvement: Adjacency improvement is a
very simple and effective algorithm. It tries to exchange
two adjacent nodes in the sequence to improve the solution.
If the exchange makes any improvement it will be
implemented and the algorithm continues searching the
rest of sequence for any potential changes. The developed
algorithm is presented below. This local search method is
efficient as only the difference () ()f f s f s ′∆ = − between

two adjacent nodes, s and ,s ′ are calculated. The
calculation of ∆f takes time O(1), while the calculation of a
new f takes O(n). In other words, the LS algorithm is able
to visit n solutions of the search space within the same
time as that the traditional EA evaluates a single solution.

1-Move: The 1-Move approach is similar to the heuristic
operators (1, 0) and (0, 1) modified by Zhong and Cole
(2005). The 1-Move deletes one node from a route and
inserts it into another route. The evaluation of 1-Move is
decided by the cost of arcs and capacity violations caused
by 1-Move.

3.8 Repairing procedure

After performing any operation including crossover,
mutation, or local search, a feasibility check is performed
on the solutions. If the solution is infeasible, a repairing
procedure is called. The repairing procedure adjusts the
infeasible solutions to get a feasible solution with minimum
changes.

The repairing procedure considers two important issues
in feasibility of each solution. First, the procedure
determines each vehicle route in such a way that the
capacity of vehicle is respected. The second important
issue is the order of linehaul and backhaul nodes in the
route of each vehicle. By the definition of VRPB problem
it is advised that the occurrence of the backhaul node
should be after the linehaul node. Thus, the repairing
procedure has a routine to accommodate this need. Figure
4 describes the repairing procedure.

Sl = Linehaul subsequence.
Sb = Backhaul subsequence.
Sv = Sequence of nodes which is forming for

current vehicle.
Seqfin = The final solution which includes the

sequence of nodes (routes) for the vehicles.
cli = Linehaul capacity of vehicle i
cbi = Backhaul capacity of vehicle i
VSij = Node j of the sequence of nodes which

determines the route for vehicle i
ncaplj = Linehaul demand of jth node in the sequence
ncapbj = Backhaul demand of jth node in the sequence
nv = Number of available vehicles
nc = Current node
ncl = Current node linehaul demand
ncb = Current node backhaul demand
Rej = Rejection counter
Rejmax = Maximum number of allowed rejections
Seqinp = Input solution which is composed of the

infeasible sequence of nodes for all the
vehicles.

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

212

Figure 4. Flowchart of repairing procedure.

4. DESIGN OF EXPERIMENTS

Design of experiments is an effective approach for
evaluating the effect of multiple factors on a process
performance. Its efficiency and effectiveness in the analysis
of multi-factor cause-response relationship has been
studied rigorously (Montgomery, 1997) and its associated
data analysis approach (ANOVA) is widely used (Cochran

and Cox, 1957). Therefore, this work applies DOE on
developed MA to identify the factors that might have
significant effect on its performance. Moreover, an
important consideration is the interaction between studied
factors. Two factors are said to interact if the observed
effect of one factor depends on the other factors.
Approaches rather than DOE usually ignore this
interaction effect. In addition, rarely in evolutionary

Form Sl and Sb; Initialize the
solution sequence. Seqfin; Set i = 0

Select vehicle i

k = 1

Select the node k from Sl

If

j l i
j

ncapl nc cl+ ≤∑

If maxRej Rej≤

k = k + 1

Select the node k from Sb

If

j b incapb nc cb+ ≤∑

Rej = Rej+1
If

maxRej Rej≤
≤

k = k + 1

Rej = 0
k = 1

Any node left
unassigned

If i ≤ nv

End

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

Rej =Rej + 1

Rej = 0, k = 1, i = i + 1

Yes
 No

Increase the
number of

allowed rejections
and start again

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

213

algorithms, the efficacy of an algorithm is dominated by a
single factor. DOE can find the effect of individual factors,
as well as it can reveal any significant interaction among
factors.

One objective of this paper is to show the potential
efficacy of DOE as a general tool for parameterization of
algorithms, regardless of being MA or simulated annealing.
It should also be noted that specific parameter values
obtained from applying DOE are normally context specific.
This is because the value of parameters including the type
of operators and values of probabilities for operators may
interact in a complex manner with the structure of the
solution space. In this work, DOE is used as a
methodology for tuning parameters and components to get
the best performance from the proposed MA for VRPB.
Analysis of variance (ANOVA) will be used as a tool to
study effects of different factors on the performance of
the developed algorithm.

4.1 Factors affecting the performance of an MA

In spite of the fact that many parameters affect the
performance of an algorithm, it is natural to focus on
those which are expected to have a significant effect. Thus,
the first step is to identify these parameters and
components. The considered factors within this research
along with their selected levels are shown in Table 1 and
are discussed in the following.

Crossovers type and crossover rate: Considering
crossover type as an effective factor, we introduce four
levels for this factor. These levels are PMX, OBX, PBX
and OX that are explained in Section 3.6.1. According to
our experience it is predicted that factors such as the
crossover rate have an important effect on the algorithm.
Basically, the crossover rate determines the probability of
performing crossover on the parent to generate the next
generation. The main impact of this factor can be seen on
the convergence of population and obviously on the
computational time. Four different levels that are selected
for this factor are 0.2, 0.4, 0.6 and 0.8.

Mutation type: Two different mutation operators, i.e.,
displacement mutation and inversion mutation, are
introduced in the algorithm and they are treated as two
levels of the mutation factor in the experiment.

Local search: Local searches in MA assure that a
population is only composed of local optimum solutions.
In GA, evolutionary operators are responsible for finding
the optimum solution in the algorithm, because of which
these operators could become very complex. For example
for a routing problem, if we want to use a simple GA, it is
inevitable to employ very complex crossover which can
survive route patterns and can avoid disturbance of routes
inherited from parents. In contrast, MA evolutionary
operators are only responsible for introducing promising
regions to local searches. Then it is the local searches’ job

to find local optima in the region. Hence, the structure of
evolutionary operators in the MAs can be simpler and this
modification is compensated by involving different local
searches in the algorithm. Local searches affect the quality
of solution and computational time of the MA algorithm.
In this study it is important to find out which local search
can generate better solutions in less computational time.
Since local searches are the most computation demanding
part of this algorithm, it is predicted that this factor has
significant effect on computational time. There are three
local searches available in the algorithm. Three levels of
this local search factor are 2-Opt, 1-Move, and adjacency
improvement methods.

Selection methods: Selection methods concern the
quality of selecting individuals for reproduction. There are
different methods for performing selection in evolutionary
algorithms. Different methods could lead to different
results. Therefore it is important to understand which type
of selection is of benefit for the current problem. In this
paper two selection methods are considered and will be
investigated as levels of this selection factor, shown in
Table 1.

Table 1. Factors and their levels

Factors Levels
Crossover type -Partial-mapped crossover

-Order crossover
-Position based crossover
-Order-based crossover

Crossover rate 0.2, 0.4, 0.6, and 0.8
Mutation type -Displacement mutation

-Inversion mutation
Local search type -Adjacency improvement

-1-Move
-2-Opt

Selection method -Tournament
-Roulette wheel

5. ANALYSIS OF RESULTS

This section presents the result of experiments
performed on the developed MA equipped with different
combinations of factors’ levels. Two sets of experiments
are carried out to examine the effect of different factors on
the performance of the algorithm for each test case. The
first set of experiments deals with the performance of
algorithm in terms of solution quality; while the second
investigates the factors which play a significant role in the
computational time of the algorithm. Experiments are
performed on an Intel Pentium 4 2.4 MHz PC with 512
MB of RAM. Test cases used in the experiments are
borrowed from the literature on VRPB Toth and Vigo
(1999). Three test cases used for the experiment differ in
the size of VRPB. The first test case includes 21 nodes
using three vehicles. The percentage of backhaul nodes in
the problem is 50%. The second test case considers 30

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

214

Table 2. Describes the parameter settings for first part of experiments
Parameter Eli 21_50 Eli 30_80 Eli 51_80

Generations No. 500 500 500

Population size 63 63 63

Fitness scaling Top scaling Top scaling Top scaling

Elite No. 6 6 6

Table 3. Describes the parameter settings for second part of experiments

Parameter Eli 21_50 Eli 30_80 Eli 51_80 Eli 75_80

Generations No. 500 500 500 500

Population size 110 200 300 400

Fitness scaling Top scaling Top scaling Top scaling Exponential
Stall generation

number 150 200 200 200

Elite No. 20 20 40 40

Table 4. ANOVA results concerning solution quality
Eli 21_50 Eli 30_80 Eli 51_80 Source

F-ratio P-value F-ratio P-value F-ratio P-value
A: Crossover 4.79 0.003 8.81 0 68.53 0
B: Mutation 2575.69 0 915.98 0 0.49 0.484

C: Crossover rate 23.52 0 23.55 0 38.28 0
D: Local search 281.31 0 29.75 0 79.61 0

E: Selection 28.39 0 1.63 0.202 17.07 0
AB 6.81 0 3.39 0.018 2.3 0.076
AC 2.52 0.008 0.94 0.486 5.02 0
AD 4.26 0 2.64 0.016 13.18 0
AE 1.15 0.327 2.79 0.04 1.11 0.344
BC 26.14 0 13.78 0 7.54 0
BD 90.35 0 193.55 0 27.7 0
BE 34.66 0 14.77 0 0.19 0.664
CD 5.84 0 1.77 0.102 21.2 0
CE 0.93 0.427 1.4 0.243 5.72 0.001
ED 22.31 0 2.87 0.058 8.28 0

nodes and employs 4 vehicles to serve the customers. The
ratio of backhaul nodes is 80% in this problem. The third
problem includes 51 nodes and employs 6 vehicles to serve
customers. Backhaul nodes compose 80% of all nodes.
The MA is executed with MATLAB Version 14; and the
Minitab 14 software is used for performing analysis of
variance. Each experiment contains four replications for
each of 192 different combinations according to levels
which are considered for each factor. In the first part, the
effect of different factors which we assume that are
significant is investigated. The other parameters which are
used in the experiments but are not investigated are
presented in Table 2. These parameters include generation,
population size, fitness scaling, and number of elite
individuals in each generation.

In the second part of this section, the values which are
recognized as the best values for significant parameters are
used to evaluate performance of the Memetic algorithm
with the other well known algorithms from the literature.
For this comparison, the other selected parameters’ values
are shown in Table 3.

5.1 Analysis of variance: Solution quality

This section will first analyze the main effects of
crossover type, crossover rate, mutation type, local search
type, and selection type, as well as their interactions, on the
quality of obtained solution. Totally, for each test case 768
experiments are carried out (192 for a full factorial design
times 4 replications). Table 4 shows the ANOVA result
from the experiments.

Table 4 includes the test case name (e.g. eli21_50 means
21 nodes with 50% backhaul nodes), F-ratio and P-value
of ANOVA. According to the results, for the first test case,
the mutation type is the most effective parameter in the
algorithm, followed by the local search type. Interaction of
the two factors is of importance too. Therefore, different
combinations of local searches and mutations lead to
dissimilar performances of the algorithm.

As the number of nodes in the problem grows and the
problem size increases, for the second problem the
situation is different. Mutation is still the most important
factor in the performance of the algorithm; however the
interaction between mutation type and local search bears
more significance than before and seems to be more
important than the local search type due to its higher
F-ratio. The next important factor is the local search type

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

215

used in the algorithm.
The third class of experiments uses a test case with 51

nodes. The situation is different from the first experiment.
Crossover in this class plays the most important role
instead of mutation which was previously the most
important factor for smaller problems. The local search
type is still the second important factor. Interaction of the
crossover and local search type is also of importance.

To select the best values for factors and to obtain best
quality solutions, it is necessary to examine the average of
each treatment. As the problem is a minimization problem,
the level should be chosen that leads to the minimum
average. For example for the first test case, Figure 5 shows
the average results for each significant factor. As seen,
displacement mutation and 2-Opt can be selected as the
best choice for the type of mutation and local search,
respectively, in the algorithm for this problem. Also, the
interaction of mutation and local search type has a
significant effect on the performance of the algorithm.
Figure 6 verifies that selecting the displacement mutation
along with 2-Opt local search leads to the best solution
quality for the first test case. As seen from the ANOVA
results, for solution quality of small scale problems, the
mutation and local search play a main role. This is due to
the ability of displacement mutation in introducing new
regions of search space to the algorithm. This helps the
algorithm to escape from local minima and explore for
better solutions. The local search has significant impact
since it uses the present solutions to find optimum
solutions. Additionally, applying displacement mutation
along with 2-Opt leads to very good results in the first test
case through their ability to complement each other in
terms of finding more promising regions and finding the
local optimum in the designated region. In the second test
case as the size of problem increases, the 1-Move local
search shows better results. When the problem size
becomes larger, the interaction of the local search and
crossover becomes more important. For the third case, the
crossover is the most important factor while the mutation

is not of importance. As the size of the test case in the
third problem is almost twice of the second test case, the
number of nodes in each route grows substantially.
Mutation is no longer capable of introducing rich regions
of search space and thus the crossover operators such as
OBX play a more important role in finding better
solutions.

5.2 Analysis of variance: Computational time

For the study of computational time, factors involved in
this experiment are as the previous study, i.e., the crossover
type, crossover rate, mutation type, local search type, and
selection type as shown in Table 1. Three test cases are
chosen and for each case 768 experiments are performed.
In this experiment a full factorial design is used and factors
and two-factor interactions are reflected in the result. Table
5 shows the ANOVA results.

Results for the three test cases show consistently that the
local search type, crossover rate, and crossover type have
main impacts on the computational time. It is predictable
that the local searches have the most significant effect on
the computational time since they are invoked after every
change takes place in the population and demands major
computational efforts to find local optimum solutions for
each individual in the population. Also, the crossover rate
has a direct relationship with the computational time since
it determines the amount of crossover operation as the
crossover is a time consuming operator. In addition,
crossover operators by themselves are accountable for a
considerable portion of computations since different
crossover operators have different computational demand.

To select the best values, averages of levels of each
significant factor are considered. For example for the first
test case, the 1-Move method is selected as the most time
saving local search. Also it is obvious that the smaller
crossover rate, the less time is needed for computation. For
the crossover type, Figure 7 shows that the PBX crossover
leads to the least calculation time on average.

M
ea

n
of

 O
B

 V
al

ue

InversionDisplacement

460

450

440

430

420

410

400

390
2-opt1-moveAdj-imp

B D

Main Effects Plot (fitted means) for objective function

Figure 5. Different level averages for mutation and local search for the first test case.

Mutation Local Search

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

216

DD

M
ea

n

321

480

460

440

420

400

B
1
2

Interaction Plot (fitted means) for objective function

Figure 6. Level averages in interaction of local searches and mutations for the first test case.

Table 5. ANOVA results for the computational time experiments

Eli21_50 Eli30_80 Eli51-80 Source F-ratio P-value F-ratio P-value F-ratio P-value
A: Crossover 78.8 0 90.45 0 453.47 0
B: Mutation 1.25 0.265 0.48 0.489 0.29 0.589

C: Crossover rate 288.61 0 302.32 0 1006.27 0
D: Local search 3809.72 0 15065.26 0 669947.7 0

E: Selection 3.09 0.079 2.17 0.141 12.09 0.001
AB 0.93 0.427 0.71 0.544 0.69 0.556
AC 5.49 0 7.45 0 27.24 0
AD 1.25 0.281 1.22 0.295 2.47 0.023
AE 0.63 0.597 1.11 0.345 0.71 0.544
BC 0.01 0.998 0.6 0.616 0.88 0.451
BD 3.32 0.037 1.49 0.226 1.97 0.14
BE 0.02 0.892 2.11 0.147 3.88 0.049
CD 0.39 0.884 1.42 0.203 0.93 0.47
CE 0.76 0.519 0.32 0.81 2.52 0.057
ED 0.44 0.643 1.84 0.16 1.75 0.174

M
ea

n
of

 T
im

e

0.80.60.40.2

110

108

106

104

102

2-opt1-moveAdj-imp

OBXPBXOXPMX

110

108

106

104

102

C D

A

Main Effects Plot (fitted means) for Time

Figure 7. Different levels of effective factors in computational time for the first test case.

Local searches
Adj-improvment

Crossover rate Local search

Crossover

Mutations
Displacement
Inversion

1-move 2-opt

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

217

Table 6. Summary of results
Solution quality Computational time

Test case
Important factors Selected component Important factors Selected component

Eli 22_50
Mutation,
Local Search, and their
interaction

Displacement,
mutation , and
2-Opt

Local search,
Crossover rate, and
type

Crossover rate = 0.2,
PBX and
1-Move

Eli 30_80

Interaction of local
search and mutation,
Mutation and local
search

1-Move and
displacement mutation

Local search,
Crossover rate and type

Crossover rate = 0.2,
PBX and 1-Move

Eli 51_80 Crossover, Crossover
rate and local Search

Crossover rate = 0.6,
OBX and 2-Opt

Local search,
Crossover rate and type

Crossover rate = 0.2,
PBX and 1-Move

Table 7. Comparison of tuned MA and mathematical programming

MA Mathematical
programming Name Number of

nodes
Number of

backhaul nodes
Solution Time (s) Solution Time (s)

Gap (%)

Eli16 16 6 112393 116.40 112385 65 0.01
Eli17 17 6 168952 121.09 168944 2619 0.00

Eli22_1 22 7 160617 169.63 157066 12897 2.26
Eli22_2 22 4 170439 340.47 167613 225297 1.69

Table 8. Comparison of the tuned MA with other heuristics for VRPB

Name N m k DB SF TV Brandao MA

 Sol.
Ratio
(%)

Sol.
Ratio
(%)

Sol.
Ratio
(%)

Sol.
Ratio
(%)

Sol.
Ratio
(%)

Eil22_50 11 10 3 429 115.63 492 132.61 371 100.00 371 100 384.95 103.76
Eil30_80 24 5 3 586 114.36 778 151.83 522 101.87 514 100.30 512.43 100.00
Eil51_80 40 10 4 655 115.93 703 124.42 574 101.59 565 100 612.13 108.34
Eil76_66 50 25 7 907 118.1 1057 137.63 780 101.56 768 100 831 108.20
Average 644.25 116. 757.5 136.62 561.75 101.26 554.5 100.08 593.5775 105.80

Parameters and their values are recommended based on

the ANOVA results for both the solution quality and
computation time, which are summarized in Table 6.

To set the configurations in such away that yields an
acceptable solution quality in reasonable computational
time, a rule of thumb can be derived from Table 6. In case
that there is no contradiction among the settings for both
criteria, these settings can be directly employed. For
example, in the test case Eli 30_80, the solution quality
asks for the use of 1-Move local search and displacement
mutation while computational time asks for employing
PBX crossover with the rate of 0.2 and using 1-Move,
which is also demanded by the solution quality. Therefore
for this case, the PBX crossover with a rate of 0.2, 1-Move
mutation, and displacement mutation can be used for both
quality and time criteria. However, in case that there is a
contradiction in recommendations for these criteria,
whichever criterion has more importance, the settings for
that criterion will be used. For example, in the test case Eli
22_50, assuming the computation time is more of concern,
for the local search method, 1-Move will be applied rather
than the 2-Opt method to favor the computation criterion.

5.3 Comparison of tuned MA with mathematical

programming and heuristic methods

To demonstrate the efficacy of the developed MA after
parameter tuning, it is inevitable to compare its

performance with other methods. Thus, the mathematical
model presented in the appendix is used to solve some test
cases. Test cases for this comparison include 4 different
problems with size of 16, 17, 22 and 22 nodes in which
two last problems differ in the percentage of backhaul
nodes. These test cases are used since it is very difficult to
solve problems with more than 22 nodes by means of the
mathematical programming approach due to the huge
amount of computational time needed for solution.

The mathematical model for each test case is solved
using Lingo 6.0 software. Table 7 presents the results of
comparison. Results show that there is a gap (less than
2.5%) between the analytical optimal solution and results
obtained by the tuned MA. The MA, however, is more
efficient than the mathematical programming methods in
larger problems since it is not possible to solve such
problems in a reasonable time using exact methods. The
computational time for mathematical programming in the
last test case is about 63 hours while the tuned MA takes
only 340.47 seconds.

The tuned MA is also compared with heuristic
approaches in the literature. Four heuristic methods from
the literature are considered in this study. These are DB, SF
and TV that are implemented by Toth and Vigo (1999) on
Intel 486/33. Brandao (2006) also used the same test cases
to evaluate its tabu search algorithm. As the computing
hardware is different, it lacks of a common ground for
computation time comparison and thus only the solution

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

218

quality is compared. Table 8 presents the result of
comparing MA algorithm with other four metaheuristics
that are available in the literature. Table 8 shows the
problem specification and solution characteristics, where n,
m, and k represent the number of nodes, number of
backhaul nodes, and number of vehicles, respectively. It
also includes the solutions and the ratio between the
current solutions to the best known solution for the test
cases.

As it can be seen from Table 8, the tuned MA obtains
better solutions as compared to DB and SF and that it is
comparable with the TV and Brandao algorithms on the
test cases. In all test cases, MA outperforms DB and SF
and in one of the four test cases MA performs better than
TV and Brandao’s algorithms.

6. CONCLUSION

In solving real world combinatorial problems, exact
solution methods are not suitable since they need a long
computational time. Metaheuristic approaches are complex,
demanding for good parameterization. There seems lack of
a systematic approach in the literature for tuning
parameters of metaheuristic approaches. In this work, a
memetic algorithm is presented for solving VRPB. This
approach satisfactorily solves the test cases with the
state-of-the-art solution quality and much greater efficiency
as compared with the mathematical programming
approach. The authors also presented a systematic study
based on Design of Experiments in tuning the memetic
algorithm to the highest performance, which is defined in
terms of solution quality and computational time.
Extensive experiments are performed and satisfactory
results obtained. The developed MA method is applicable
to other operational research problems. The systematic
tuning approach should help the design and refinement of
other metaheuristic optimization algorithms.

Our future work will include comparison of other
calibrating techniques such as adaptive parameter setting
with the presented approach, using the same approach to
tune parameters of other metaheuristics like Tabu Search
and simulated annealing.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous
reviewers for their constructive and useful comments that
significantly improved the quality and presentation of this
paper.

REFERENCES

1. Bagchi, T.P. and Deb, K. (1996). Calibration of GA
parameters: The design of experiments approach.
Computer Science and Informatic, 26(4): 46-56.

2. Brandao, J. (2006). A new tabu search algorithm for
the vehicle routing problem with backhauls. European
Journal of Operational Research, 173(2): 540-555.

3. Casco, O., Golden, L., and Wasil, A. (1988). Vehicle
routing with back hauls: Models, algorithms, and case

studies. In: B.L. Golden and A.A. Assad (Eds.), Vehicle
Routing: Methods and Studies, Elsevier, Amsterdam,
North Holland, pp. 127-147.

4. Cochran, W.G. and Cox, G.M. (1957). Experimental
Designs, Wiley, New York.

5. Davis, L. (1993). Handbook of Genetic Algorithms, Van
Nostrand Reinhold, New York.

6. Dawkins, R. (1976). The Selfish Gene, Oxford University
Press, New York.

7. Deif, I. and Bodin, L. (1984). Extension of the Clarke
and Wright algorithm for solving the vehicle routing
problem with backhauling. Proceedings of Babson
Conference on Software Uses in Transportation and Logistic
Management, Babson Park, MA, pp. 75-96.

8. Duhamel C. and Rousseau, J. (1997). A tabu search
heuristic for the vehicle routing problem with
backhauls and time windows. Transportation Science, 3(1):
49-59.

9. Goeschalckx, M. and Jacobs-Blecha, C. (1989). The
vehicle routing problem with backhauls. European
Journal of Operational Research, 42: 39-51.

10. Goetschalckx, M. and Jacobs-Blecha, C. (1993). The
vehicle routing problem with backhauls: Properties
and solution algorithms. Technical report, Georgia
Institute of Technology.

11. Goldberg, D.E. and Lingle, R. (1985). Alleles, Loci and
the Traveling Salesman Problem. Lawrence Eribaum
Associates, Mahwah, NJ.

12. Grefenstette, J. (1986). Optimization of control
parameters for genetic algorithms. IEEE Transactions on
Systems, Man, and Cybernetics, 16(1): 122-128.

13. Montgomery, D.C. (1997). Design and Analysis of
Experiments, Wiley, New York.

14. Osman, I. and Wassan, N. (2002). A reactive tabu
search for the vehicle routing problem with back-hauls.
Journal of Scheduling, 5(4): 263-285.

15. Ruiz, R. and Maroto, C. (2006). A genetic algorithm
for hybrid flowshops with sequence dependent setup
times and machine eligibility. European Journal of
Operational Research, 169(3): 781-800.

16. Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new
robust genetic algorithms for the flowshop scheduling
problem. Omega, 34(5): 461-476.

17. Srinivas, M. and Patnaik, L. (1994). Adaptive
probabilities of crossovers and mutations in genetic
algorithms. IEEE Transactions on Systems, Man, and
Cybernetics, 24(4): 656-667.

18. Syswerda, G. (1985). Uniform crossover in genetic
algorithms. Proceedings of the 3rd International Conference
on Genetic Algorithms, J.D. Schaffer (Ed.), San Francisco,
CA, pp. 2-9.

19. Tavakkoli-Moghaddam, R., Saremi, A.R., and Ziaee, M.
S. (2006). A memetic algorithm for a vehicle routing
problem with backhauls. Applied Mathematics and
Computation, 181(2): 1049-1060.

20. Toth, P. and Vigo, D. (1996). A heuristic algorithm for
the vehicle routing problem with backhauls. In: L.
Bianco, and P. Toth (Eds), Advanced Methods in
Transportation Analysis, Springer-Verlag, Berlin-

Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments
IJOR Vol. 4, No. 4, 206-219 (2007)

219

Heidelberg.
21. Toth, P. and Vigo, D. (1997). An exact algorithm for

the vehicle routing problem with backhauls.
Transportation Science, 31(4): 372-385.

22. Toth, P. and Vigo, D. (1999). A heuristic algorithm for
the symmetric and asymmetric vehicle routing
problems with backhauls. European Journal of
Operational Research, 113(3): 528-543.

23. Yano, C.A., Chan, T.J., Richter, L., Murty, K.G., and
McGettigan, D. (1987). Vehicle routing at quality stores.
Interfaces, 17(2): 52-63.

24. Zhong, Y. and Cole, M.H. (2005). A vehicle routing
problem with backhauls and time windows: A guided
local search solution. Transportation Research Part E:
Logistics and Transportation Review, 41(2): 131-144.

APPENDIX: MATHEMATICAL FORMULATION
OF THE VEHICLE ROUTING PROBLEM WITH
BACKHAULS (VRPB)

NOTATION

Cijk cost of moving from node i to node j using
vehicle k

n number of linehaul nodes
m number of backhaul nodes
M number of vehicles
Qk capacity of vehicle k
fi backhaul demand of node i
di linehaul demand of node i
xijk a binary variable which is equal to 1 if there is an

arc from node i to node j using vehicle k.

0,..., 0,..., 1,...,

min ijk ijk
i n m j n m k M

z C x
= + = + =

= ∑ ∑ ∑ (A-1)

Subject to:

0,..., 1,...,

1, 1, ..., , ijk
j n m k M

x i n m i j
= + =

= = + ≠∑ ∑ (A-2)

0,..., 1,...,

1, 1, ..., ,ijk
i n m k M

x j n m j i
= + =

= = + ≠∑ ∑ (A-3)

0
0,..., 1,...,

jk
j n m k M

x M
= + =

=∑ ∑ (A-4)

0
0,..., 1,...,

i k
i n m k M

x M
= + =

=∑ ∑ (A-5)

1,..., 1,...,

, 1, ..., , i ijk k
i n j n m

d x Q k M
= = +

≤ =∑ ∑

0,1, ...,j n m= + (A-6)

1,..., 1,...,

, 1, ..., ,i ijk k
i n n m j n m

f x Q k M
= + + = +

≤ = ∑ ∑

0,1, ...,j n m= + (A-7)

0,1,..., 0 ,1,...,

0, 1, ..., , ijk jlk
i n m l n m

x x j n m
= + = +

− = = + ∑ ∑

1, ...,k M= (A-8)

0,1,..., 0,1,...,

0, ijk lik
j n m l n m

x x
= + = +

− =∑ ∑ 0,1, ..., ,i n m= +

1, ...,k M= (A-9)
{ }1, 2, 3, ...,ijkx s s n m≤ − ⊆ +∑ (A-10)

= + + = =

=∑ ∑ ∑
1,..., 1,..., 1,...,

0ijk
i n n m j n k M

x (A-11)

0, 0,1, ..., ,iikx i n m= = +
 1, ..., ,k M= { }0,1ijkx = (A-12)

The objective function (A-1) tries to minimize the

transportation cost, which is the summation of the cost of
all arcs in a route multiplied by the vehicle multiplier.
Constraints (A-2) and (A-3) specify that just one route
passes from any node except the depot. Constraints (A-4)
and (A-5) ensure that the number of vehicles leaving the
depot must be the same as the number of vehicles
returning to the depot. Constraints (A-6) and (A-7)
stipulate that the vehicle load in terms of linehaul and
backhaul must not exceed the vehicle capacity. Continuity
of routes is enforced by constraints (A-8) and (A-9), i.e.,
each route must be served just by one vehicle. Constraint
(A-10) prevents the model generating sub-tours. Finally, the
precedence of linehaul nodes over backhaul nodes is
ensured by constraint (A-11).

