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AbstractVehicle Routing Problem with Backhauls (VRPB) is an extension of  the general Vehicle Routing Problem 
(VRP). In contrast with general VRP, VRPB considers two types of  linehaul and backhaul customers. VRPB tries to find 
optimal routes with minimum cost in which backhaul customers are visited after linehaul customers for a fleet of  
heterogeneous vehicles. In this paper, a Memetic Algorithm (MA) is developed to solve the VRPB. Similar to other 
metaheuristic algorithms, an important issue that affects the performance of  MA is the selection of  components employed 
in the algorithm along with their parameters’ values. This work examines the effect of  employing different combinations of  
MA components and parameter values on both the algorithm’s efficiency and the quality of  solutions. Design of  
Experiments (DOE) is introduced as a systematic approach to find the best combination of  these parameters’ values. 
Analysis of  variance (ANOVA) is used to analyze the main effect and interaction effects of  the considered parameters. 
Results verified the efficacy of  the proposed MA method and the systematic tuning approach for MA to solve VRPB. 
KeywordsMemetic algorithm, Design of  experiments, Metaheuristics, Vehicle routing problem 
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1. INTRODUCTION 

Combinatorial optimization problems have attracted 
many researchers in recent decades due to their practical 
relevance and their considerable difficulties. Usually three 
different categories of  approaches are used to solve these 
problems, namely, exact, heuristics, and metaheuristic 
methods. Exact methods apply analytical and 
mathematical approaches to solve the problems. Due to 
the considerable complexity of  the problems, the efficacy 
of  exact methods is limited to small scale problems. 
However exact methods yield analytically optimal 
solutions. Heuristic methods are employed to solve 
problems that are difficult to solve by using exact 
methods. They use simple intuitive techniques to make 
the search limited to potentially better solutions. Although 
heuristic methods can find a solution in a short time 
compared to exact methods, the analytically optimal 
solution is not guaranteed. To cope with the long 
computational time and limitation on quality of  the 
obtained solutions, metaheuristic approaches are 
employed to solve combinatorial problems. Metaheuristic 
methods improve a solution’s quality by exploring the 
search space while using heuristics to make the search 
more intelligent. Metaheuristic methods try to obtain 
quality solutions in a reasonable time, employing heuristic 
algorithms as a part of  their search algorithm.  
Metaheuristic methods have been applied to many 

research areas. In this paper, a new Memetic Algorithm 
(MA) will be developed to solve the Vehicle Routing 
Problem (VRP), a well-known combinatorial optimization 

problem. VRP is considered as the determination of  
optimal routes for fleet vehicles which are based on one 
depot to serve a number of  customers. The optimality can 
be considered in terms of  minimizing the total cost of  
transportation, minimizing the total distance of  travel 
routes, and/or minimizing the total number of  vehicles 
employed for serving customers. Several requirements and 
operational constraints confine VRP. For example, serving 
nodes can include deliveries along with pickups from 
customers, capacity of  vehicles for carrying loads is limited, 
the length of  each route should not exceed a pre-defined 
value, each customer should have a definite time of  being 
served, the fleet can be composed of  one or different types 
of  vehicles, and some precedence relation can exist 
between customers. If  the precedence is considered in VRP, 
then the problem becomes a Vehicle Routing Problem with 
Backhauls (VRPB).  

The complexity of  metaheuristic algorithms originates 
from the need of  setting the values of  several components 
and parameters within them. These parameters’ values can 
drastically affect the performance of  metaheuristic 
algorithms. Therefore, it is very important to develop a 
systematic method of  tuning up these parameters for the 
best performance of  the developed metaheuristic 
algorithms. 

The objective of  this paper is two folds. First it is to 
develop a Memetic algorithm (MA), as a metaheuristic 
algorithm, to solve the Vehicle Routing Problem with 
Backhauls (VRPB). Second this work is to introduce a 
systematic method for selecting the best combination of  
the employed parameters of  the developed MA. Design of  

International Journal of 
Operations Research 

1813-713X Copyright © 2007 ORSTW 



Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments  
IJOR Vol. 4, No. 4, 206-219 (2007) 
 

207 

Experiments (DOE) will be used for analyzing the effect 
of  several independent parameters on the performance of  
the developed MA measured by the computational time 
and quality of  the obtained solution. 

In the following sections, relevant literature concerning 
tuning parameters of  an evolutionary algorithm by means 
of  DOE is discussed. Problem description and the 
proposed Memetic Algorithm are considered in Section 3. 
Design of  Experiments for the proposed MA algorithm is 
described in Section 4. Computational results are presented 
in Section 5. The last section is dedicated to conclusions 
and future research. 

 
2. RELEVANT LITERATURE 

Toth and Vigo (1997) developed a branch and bound 
algorithm in which a lower bound on the optimal solution 
is derived from their linear programming (LP) formulation 
with Lagrangian relaxation of  constraints. Yano et al. (1987) 
developed a set covering approach based on the exact 
algorithm for a practical application of  the VRPB. Deif  
and Bodin (1984) proposed a heuristic algorithm named 
DB. Deferent extensions of  the DB algorithm were 
proposed by Casco et al. (1988). Goetschalckx and 
Jacobs-Blecha (1989) proposed an algorithm, which is 
called SF in the paper, for VRPB with the Euclidean cost 
matrix. The result presented in their paper showed that DB 
solutions were generally better than SF but the SF 
algorithm was faster for large scale problems. Later 
Goetschalckx and Jacobs-Blecha (1993) presented a 
heuristics, which was called LHBH, for the Euclidean 
version of  the VRP. Their algorithm was based on the 
extension of  Fisher and Jaikumar for the general VRP. 
Toth and Vigo (1996) developed a cluster-first 
route-second heuristic based on the K-tree approach for 
the VRP. Furthermore, Toth and Vigo (1999) implemented 
an improved version of  the above heuristic to the 
symmetric and asymmetric VRPB which was called TV. 
This heuristic produced very competitive results in the 
literature for this problem. Duhamel and Rousseau (1997) 
designated a tabu search heuristic for the VRP with 
backhaul and time windows (VRPBTW) as well as 
customer precedence. Osman and Wassan (2002) published 
a tabu search metaheuristic which, on average, produced 
even better solutions than Toth and Vigo’s algorithm, but 
required much more computing time. Zhong and Cole 
(2005) proposed a guided local search for the VRPB. More 
recently, Brandao developed a Tabu search algorithm for 
the same problem Brandao (2006). 

In all the metaheuristic methods, it is generally 
recognized that different components and parameters 
significantly impact the performance of  evolutionary 
algorithms. One of  the impacts is seen in terms of  the 
convergence of  the algorithm toward optimum solution. 
Grefenstette (1986) used the Genetic Algorithm (GA) to 
evolve good values for crossover and mutation 
probabilities. Davis (1993) demonstrated that the 
difference between using randomly picked parameters’ 
values rather than optimum values could easily delay the 

convergence. Many recent studies tried to find optimal 
parameter settings but there is no systematic method that 
specifies parameters’ values and selects the type of  
components which can result in best performance. Thus 
the debate continues on if  these settings are unique on 
each problem or they should be dynamically determined as 
the algorithm progresses. According to these views, Davis 
(1993) presented four different methods for adaptively 
setting the parameters to guarantee good convergence. 
Srinivas and Patnaik (1994) gave another adaptive GA in 
which low probabilities of  crossover and mutation were 
assigned to individuals with high fitness; and high 
probabilities of  crossover and mutation were assigned to 
individuals with low fitness. Bagchi and Deb (1996) 
proposed a DOE based approach for setting parameters of  
GA. Their approach also considered interaction of  
different parameters, e.g., probabilities of  crossover and 
mutation. In their work, they used pilot GA runs of  
relatively short length of  optimization in the factorial 
design framework. Their research demonstrated the 
effectiveness of  the DOE approach in selecting algorithm 
parameters. Ruiz and Maroto (2006) and Ruiz et al. (2006) 
also used DOE to tune their hybrid GA, solving flowshop 
problems. Their algorithm was combined with different 
local search algorithms. Configuring such a complicated 
algorithm they used DOE to select the best GA 
component while previous works just considered DOE for 
setting parameter values.  

In this work, performance of  different components of  
MA along with a few parameters will be considered. Then, 
results of  the examinations will yield a good configuration 
of  the developed MA. The main difference between this 
work and the other methods of  algorithm calibration is the 
consideration of  interactions, which can play a major role 
in affecting the algorithm performance. 
 
3. PROBLEM DESCRIPTION AND PROPOSED 

MEMETIC ALGORITHM 

This paper considers a special case of  VRP called the 
Vehicle Routing Problem with Backhauls (VRPB). This 
problem employs different types of  vehicles in the fleet 
and assumes precedence relationships. There are two types 
of  customers available in this problem. The first category 
concerns customers that should be served first. This 
service includes picking up the items from those customers. 
This type of  customers is called linehaul or forward 
customers since the precedence calls for serving these in 
the forward phase of  the route. The second type of  
customers is called backhaul customers and will be served 
by the vehicles in the return to the depot. There are 
limitations on the capacity of  each vehicle so that the total 
loads which are assigned to a vehicle should not exceed its 
capacity for each type of  the customers. A good example 
of  this problem can be the grocery industry. Being a 
distributor company, you have two kinds of  customer, 
suppliers and retailer. The goods are taken from the 
supplier to a depot and carried from the depot to retailers. 
A method to carry out this process is separately assigning 
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vehicles for each type of  customers. The second method is 
assigning routes to the vehicles and includes both types of 
the customers in the same route. Since the vehicle should 
start from the depot and finish their route in the depot, it 
would be reasonable to consider that the retailers have a 
higher priority over the suppliers since the loads should be 
delivered to the retailers first before new loads are picked 
up from the suppliers. The cost of  transportation in this 
problem plays the main role in choosing the routes and 
assigning customers to each route. Figure 1 demonstrates a 
graphical representation of  the problem. The problem can 
be mathematically considered as a graph in which the 
nodes represent customers and the arcs represent the 
transportation network and existing routes that can be used 
by the vehicles to reach nodes. A mathematical model of  
VRPB has been used in this work is presented in Appendix 
1. This model has been proposed by Tavakkoli- 
Moghaddam et. al. (2006). 
 
3.1 Memetic algorithm 

Different metaheuristic approaches are applied in the 
fields of  routing and scheduling, specifically to solve VRP 
as a challenging NP-hard problem. Genetic algorithm (GA), 
Tabu search (TS), and Memetic Algorithms are the most 
known methods in this field. Memetic Algorithms (MAs) 
belong to the class of  evolutionary algorithms (EAs) that 
apply a separate local search process to refine individuals 
(i.e. improve their fitness). These methods are inspired by 
models of  adaptation in natural systems that combine 
evolutionary adaptation of  populations of  individuals with 
individual learning within a lifetime. Additionally, MAs are 
inspired by Dawkin’s concept of  a meme (Dawkins, 1976), 
which represents a unit of  cultural evolution that can 
exhibit local refinement. Under different contexts and 
situations, MAs are also known as hybrid EAs, genetic local 
searchers, Baldwinian EAs, Lamarkian EAs, and the like. 

From an optimization point of  view, MAs are hybrid 
EAs that combine the global and local search by using an 
EA to perform exploration while the local search method 
performs exploitation. Combining the global and local 
search is a strategy used by many successful global 
optimization approaches. In particular, the relative 
advantage of  MAs over EAs is quite consistent on 
complex search spaces. 

The structure of  the proposed Memetic Algorithm is 
shown in Figure 2. Modules of  the algorithm and their 
variations will be explained in the following sections. Some 
of  these variations and their parameters are chosen as 
factors in the DOE study in search of  the best MA 
configuration for VRPB. 

 
3.2 Representation 

The MA designed for VRPB uses a string presentation 
for solution. Each individual in the generation maps a 
solution for VRPB. Individuals are composed of  a 
sequence of  nodes in which routes (sequences of  nodes) 
are divided by delimiters in the sequence. An individual 
chromosome begins from and ends with a depot node 
which is represented by “1”. Also, the delimiter used in the 
sequence is the depot node, ‘‘1’’. It is used to break the 
sequence in different routes which assures that each route 
starts and ends in the depot. Figure 3 represents a solution 
of  two routes that visit all the nodes, 1→3→4→5→7→1 
and 1→2→6→1. Each route consists of  different nodes 
including linehaul and backhaul nodes in which, linehaul 
nodes have precedence in appearing than backhaul nodes. 
For example, assuming backhaul nodes include 5, 6, and 7, 
the first route is divided to a linehaul part of  3 and 4 and a 
backhaul part of  5 and 7. It guarantees that backhaul nodes 
are served after the linehaul nodes to assure there is 
enough room in the vehicle for backhaul customers. 

 

 
Figure 1. A graphical representation of  VRPB. 
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Figure 2. Framework of  presented memetic algorithm. 
 

1 3 4 5 7 1 2 6 1 

Figure 3. Representation of  a solution for VRPB. 
 

3.3 Fitness function 

The fitness function is an important part of  an 
evolutionary algorithm since it evaluates the goodness of  
each solution in the population, based on which individuals 
are selected for reproduction, forming the next generation 
of  the population. In this paper, the fitness function is 
defined as the total cost of  serving all nodes through the 
determined routes. The total cost consists of  the sum of  
each vehicle’s traveling cost. The traveling cost of  each 
vehicle, Ck, is defined by Eq. (1). 

 

k k ij ijC m d x= ∑   ,i j∀                        (1) 
 

where mk is the vehicle cost multiplier; dij is the traveling 
cost for the distance between node i and j; and xij 

determines if  the route includes the arc connecting i to j. 
A common problem that population-based algorithms 

have is the premature convergence. The combinatorial 
nature of  VRPB prevents an algorithm from searching the 
entire search space, therefore there is no guarantee of  the 
global optimum solution. For the proposed algorithm, this 
problem escalades in later runs when the average fitness of  
population approaches the best individual’s fitness. In this 
situation, the average and best individuals of  the 
population are almost equally likely to be chosen and the 
search progresses slowly. The solution of  this problem is 
to use fitness scaling techniques. Fitness scaling modifies 
the scores of  individuals to make the discrimination 
possible through the new values. Different types of  scaling 
are employed in this work for this problem such as the 
rank fitness scaling, proportional fitness scaling, top fitness 
scaling, and power law fitness scaling. 
 
3.4 Initial population 

Evolutionary algorithms benefit from a randomly 
generated population as their initial population. The 
randomness in generating the first population assures that 

the selected solutions are uniformly chosen from the 
search space. An alternative approach is to use a 
constructive algorithm to develop the initial population. 
Some of  these approaches are explained in the following: 
 
Randomly generated population: Using randomly 
generated population, some consideration should be 
noticed. Since the problem forces limitations on the 
capacity of  vehicles and urges for precedence of  linehaul 
nodes on backhaul nodes, some repairing procedures 
becomes necessary. First to fix the inconsistency problem 
with capacity constraints, the nodes that are included in 
each route should be considered along with their demand. 
Also in order to rearrange the chosen nodes and make 
them in the order, a procedure is employed to change the 
order of  nodes so that all the backhaul nodes are placed 
after the linehaul node while keeping their initial 
arrangement in the randomly generated solutions. 
 
Nearest neighborhood greedy method: A greedy 
constructive algorithm is also used to generate the initial 
population in the proposed MA. This algorithm first 
selects a linehaul node randomly. Then it considers the first 
vehicle. The second node is the closest linehaul node to the 
current node. Following nodes are selected according to 
their distance to the current node considering linehaul 
capacity of  the first vehicle. When there is no excessive 
room for another linehaul node, the algorithm selects the 
closest backhaul node as the current node. The procedure 
continues till reaches the backhaul capacity limit. The next 
step is selecting the next vehicle and filling with nodes 
satisfying the mentioned criteria. In this work, the nearest 
neighbor method is used to generate the initial population. 
 
3.5 Selection 

Selection plays an important role in MA. It is used to 
determine which individuals are allowed to reproduce and 
develop the next generation. According to the natural 

Initialize Population 

Optimize Population (Local Search) 

Evaluate Population 

Stopping Criteria Satisfied?  Select Parents from Population 

Recombine Parents (Mutation and Crossover) 

Return the Best Solution in Population 

No 

Yes 
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evolution, the fittest members of  population have the right 
to reproduce because of  their fitness to environment so 
that they are more probable to survive. However, in the 
EAs different methods are used to discriminate between 
different individuals such as the roulette wheel selection, 
uniform selection, tournament selection, and rank 
selection. 

In this paper, two methods are utilized; namely, 
tournament and roulette wheel selection. Tournament 
selection runs a “tournament” among a few individuals 
chosen at random from the population and selects the 
winner (the one with the best fitness) for crossover. It 
chooses k (the tournament size) individuals from the 
population at random. Then the best individual from the 
tournament is chosen with a probability p. The second 
individual is chosen with the probability p(1 − p). The third 
best individual is selected with the probability p(1 − p)2, and 
so on. 

In the roulette wheel selection, like other selection 
methods, possible solutions are evaluated by the fitness 
function. In this method, the fitness level is used to 
determine a probability of  selection for each solution. 
Candidate solutions with a higher fitness will more likely be 
chosen. As an advantage of  this selection method, there is 
a chance that some weaker solutions survive the selection 
process. Although a solution may be weak, it may include 
some components which could prove useful following the 
recombination process. 

 
3.6 Evolutionary operators 

Mutation and crossover operators are dependant on the 
coding of  the candidate solutions of  the optimization 
problem. Operators for sequential coding as used in GA 
and MA will be discussed in this section. Most of  
operators used in this work are borrowed from the 
literature on the traveling salesman problem (TSP) with 
some modification to comply with VRPB assumptions. It 
goes back to the nature of  VRP which can be considered 
as a generalized TSP problem. Each route in VRP can be 
seen as an ordinary TSP problem so it is natural to expect 
good TSP evolutionary operators that can be applied to 
VRP problems.  

 
3.6.1 Crossover 

In GA and MA, the crossover is a genetic operator used 
to vary the composition of  chromosomes from one 
generation to the next. In the research on TSP, several 
crossover operators have been proposed such as the 
partial-mapped crossover (PMX), order crossover (OX), 
position based crossover (PBX), and order-based crossover 
(OBX). These operators can be viewed as an extension of  
two-point or multi-point crossovers of  binary strings to the 
permutation representation. Generally, the two-point 
crossovers yield infeasible offspring because two or more 
nodes may be duplicated while some missed in the 
sequence. The repairing procedure is usually embedded in 
these operators in order to fix this problem. This work 
employs these well-known TSP crossover operators with 

slight modifications. The repairing procedure has the main 
responsibility to adapt solutions to VRPB assumptions. 
Thus, when a solution is generated by crossover, a 
feasibility check is performed to investigate solution 
regarding its feasibility. In case that any infeasibility exists 
in the solution, the repairing procedure adjusts the 
solution. 

Partial-mapped crossover (PMX) has been proposed by 
Goldberg and Lingle (1985). This operator can be viewed 
as an extension of  two-point crossover for binary string 
using a special repairing procedure in order to fix 
illegitimacy caused by two-point crossover. First, PMX 
selects two positions in the string and substitute substrings 
located between these positions. Then, it determines the 
relation between two mapping sections and finally arranges 
the other nodes according to discovered relations.  

Order crossover (OX) can be viewed as an extension of  
the PMX with a difference in repairing procedures. First, 
OX selects a substring from one parent randomly and it 
makes a new offspring by copying the substring in the 
same position. Then, it arranges other nodes according to 
their positions in another parent.  

Position based crossover (PBX) was proposed by 
Syswerda (1985). It is essentially a kind of  uniform 
crossover. It also can be viewed as a kind of  OX in which 
the nodes are selected inconsecutively. First, PBX selects a 
set of  positions randomly then copies them to the 
offspring and finally puts other nodes according to their 
positions in the second parent. 

Order-based crossover (OBX) was also proposed by 
Syswerda (1985). In this crossover, a set of  positions is 
randomly selected and the order of  cities in the selected 
positions in one parent is imposed on the corresponding 
alleles in the other parent. The difference between OX and 
OBX is that selected positions in OBX are separated from 
each other.   

 
3.6.2 Mutation 

The classic example of  a mutation operator involves a 
probability that a randomly chosen bit in a genetic 
sequence will be changed from its original state according 
to a pre-determined mutation rate. The purpose of  
mutation in GAs is to allow the algorithm to avoid being 
trapped in local minima by preventing the population of  
chromosomes from becoming too similar to each other. 
The bits in a chromosome are often deemed independent. 
When evolutionary algorithms are employed to solve 
combinatorial optimization, however, the mutation rate 
concept is not directly applicable. It is because in these 
problems a chromosome is composed of  a sequence of  
nodes, jobs or other elements that are dependent on each 
other. Therefore for these problems such as the VRPB in 
this work, mutation operators are often designed as an 
exchange procedure which randomly but systematically 
changes the position of  an element in the sequence. The 
conventional mutation rate parameter is therefore not 
explicitly used. Mutation used in this paper is originated 
from mutation used for TSP with slight modifications. The 
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repairing procedure is the main procedure in the algorithm 
which takes after nonconformities and repairs them. 
 
Inversion mutation: In this mutation, two positions are 
chosen randomly, which determines a substring. Then this 
substring is inverted. The inverted substring then replaces 
the original substring in the original string.  
 
Insertion mutation: The operator first selects a random 
position in the sequence and then inserts the content in the 
position to a different, randomly-chosen, position. 
 
Displacement mutation: The displacement mutation 
selects a substring at random and inserts it in a random 
position. Moreover, the insertion mutation can be viewed 
as the displacement mutation in which the substring 
contains only one node. Therefore in this work, only the 
inversion and displacement mutation schemes are used in 
the experiments for MA tuning. 

 
3.7 Local search algorithms 

Local search (LS) can be used to improve VRPB 
solutions in two ways. They can either be improvement 
heuristics for the TSP that are applied to only one route at 
a time or multi-route improvement methods that change 
the route structure of  a whole solution. In general, 
improvement heuristics are characterized by a certain type 
of  basic move to alter the current solution. Different local 
search algorithms are introduced in this paper. These 
algorithms can be divided in terms of  the computational 
time and range of  adjustment that they make (i.e. intra or 
inter-route adjustment). This paper employs three local 
search methods as follows: 2-Opt, Adjacency improvement, 
and 1-Move. All LS methods used in this paper make 
inter-route adjustment. In the proposed local searches, 
2-Opt and 1-Move generate the solutions obeying the 
VRPB assumptions and preserve feasibility of  solutions. 
However, in Adjacency improvement, the generated 
solutions are prone to be infeasible and need to be tailored 
to VRPB solutions using repairing procedure. 
 
2-Opt: A 2-Opt move includes removing two edges and 
reconnecting the two resulting paths in a different way to 
obtain a new solution. Among all pairs of  edges whose 
2-Opt exchange decreases the length, the pair that gives the 
shortest tour is selected. This procedure is then iterated 
until no such pair of  edges is found.  
 
Adjacency improvement: Adjacency improvement is a 
very simple and effective algorithm. It tries to exchange 
two adjacent nodes in the sequence to improve the solution. 
If  the exchange makes any improvement it will be 
implemented and the algorithm continues searching the 
rest of  sequence for any potential changes. The developed 
algorithm is presented below. This local search method is 
efficient as only the difference ( ) ( )f f s f s ′∆ = −  between 

two adjacent nodes, s and ,s ′  are calculated. The 
calculation of  ∆f takes time O(1), while the calculation of  a 
new f takes O(n). In other words, the LS algorithm is able 
to visit n solutions of  the search space within the same 
time as that the traditional EA evaluates a single solution. 
 
1-Move: The 1-Move approach is similar to the heuristic 
operators (1, 0) and (0, 1) modified by Zhong and Cole 
(2005). The 1-Move deletes one node from a route and 
inserts it into another route. The evaluation of  1-Move is 
decided by the cost of  arcs and capacity violations caused 
by 1-Move. 

 
3.8 Repairing procedure 

After performing any operation including crossover, 
mutation, or local search, a feasibility check is performed 
on the solutions. If  the solution is infeasible, a repairing 
procedure is called. The repairing procedure adjusts the 
infeasible solutions to get a feasible solution with minimum 
changes.  

The repairing procedure considers two important issues 
in feasibility of  each solution. First, the procedure 
determines each vehicle route in such a way that the 
capacity of  vehicle is respected. The second important 
issue is the order of  linehaul and backhaul nodes in the 
route of  each vehicle. By the definition of  VRPB problem 
it is advised that the occurrence of  the backhaul node 
should be after the linehaul node. Thus, the repairing 
procedure has a routine to accommodate this need. Figure 
4 describes the repairing procedure. 

 
Sl = Linehaul subsequence. 
Sb = Backhaul subsequence. 
Sv = Sequence of  nodes which is forming for 

current vehicle. 
Seqfin = The final solution which includes the 

sequence of  nodes (routes) for the vehicles. 
cli = Linehaul capacity of  vehicle i 
cbi = Backhaul capacity of  vehicle i 
VSij = Node j of  the sequence of  nodes which 

determines the route for vehicle i 
ncaplj = Linehaul demand of  jth node in the sequence 
ncapbj = Backhaul demand of  jth node in the sequence 
nv = Number of  available vehicles 
nc = Current node 
ncl = Current node linehaul demand 
ncb = Current node backhaul demand 
Rej = Rejection counter 
Rejmax = Maximum number of  allowed rejections 
Seqinp = Input solution which is composed of  the 

infeasible sequence of  nodes for all the 
vehicles. 
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Figure 4. Flowchart of  repairing procedure. 

 
4. DESIGN OF EXPERIMENTS 

Design of  experiments is an effective approach for 
evaluating the effect of  multiple factors on a process 
performance. Its efficiency and effectiveness in the analysis 
of  multi-factor cause-response relationship has been 
studied rigorously (Montgomery, 1997) and its associated 
data analysis approach (ANOVA) is widely used (Cochran 

and Cox, 1957). Therefore, this work applies DOE on 
developed MA to identify the factors that might have 
significant effect on its performance. Moreover, an 
important consideration is the interaction between studied 
factors. Two factors are said to interact if  the observed 
effect of  one factor depends on the other factors. 
Approaches rather than DOE usually ignore this 
interaction effect. In addition, rarely in evolutionary 

Form Sl and Sb; Initialize the 
solution sequence. Seqfin; Set i = 0 

 
Select vehicle i 

k = 1 

Select the node k from Sl 
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j l i
j
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≤
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Any node left 
unassigned 

If  i ≤ nv 
 

End 
 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

No 

Yes 

Rej =Rej + 1 

Rej = 0, k = 1, i = i + 1 
 

Yes 
 No 

Increase the 
number of  

allowed rejections 
and start again 



Saremi, ElMekkawy, and Wang: Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments  
IJOR Vol. 4, No. 4, 206-219 (2007) 
 

213 

algorithms, the efficacy of  an algorithm is dominated by a 
single factor. DOE can find the effect of  individual factors, 
as well as it can reveal any significant interaction among 
factors.  

One objective of  this paper is to show the potential 
efficacy of  DOE as a general tool for parameterization of  
algorithms, regardless of  being MA or simulated annealing. 
It should also be noted that specific parameter values 
obtained from applying DOE are normally context specific. 
This is because the value of  parameters including the type 
of  operators and values of  probabilities for operators may 
interact in a complex manner with the structure of  the 
solution space. In this work, DOE is used as a 
methodology for tuning parameters and components to get 
the best performance from the proposed MA for VRPB. 
Analysis of  variance (ANOVA) will be used as a tool to 
study effects of  different factors on the performance of  
the developed algorithm.  

 
4.1 Factors affecting the performance of  an MA  

In spite of  the fact that many parameters affect the 
performance of  an algorithm, it is natural to focus on 
those which are expected to have a significant effect. Thus, 
the first step is to identify these parameters and 
components. The considered factors within this research 
along with their selected levels are shown in Table 1 and 
are discussed in the following. 
 
Crossovers type and crossover rate: Considering 
crossover type as an effective factor, we introduce four 
levels for this factor. These levels are PMX, OBX, PBX 
and OX that are explained in Section 3.6.1. According to 
our experience it is predicted that factors such as the 
crossover rate have an important effect on the algorithm. 
Basically, the crossover rate determines the probability of  
performing crossover on the parent to generate the next 
generation. The main impact of  this factor can be seen on 
the convergence of  population and obviously on the 
computational time. Four different levels that are selected 
for this factor are 0.2, 0.4, 0.6 and 0.8. 
 
Mutation type: Two different mutation operators, i.e., 
displacement mutation and inversion mutation, are 
introduced in the algorithm and they are treated as two 
levels of  the mutation factor in the experiment.  
 
Local search: Local searches in MA assure that a 
population is only composed of  local optimum solutions. 
In GA, evolutionary operators are responsible for finding 
the optimum solution in the algorithm, because of  which 
these operators could become very complex. For example 
for a routing problem, if  we want to use a simple GA, it is 
inevitable to employ very complex crossover which can 
survive route patterns and can avoid disturbance of  routes 
inherited from parents. In contrast, MA evolutionary 
operators are only responsible for introducing promising 
regions to local searches. Then it is the local searches’ job 

to find local optima in the region. Hence, the structure of  
evolutionary operators in the MAs can be simpler and this 
modification is compensated by involving different local 
searches in the algorithm. Local searches affect the quality 
of  solution and computational time of  the MA algorithm. 
In this study it is important to find out which local search 
can generate better solutions in less computational time. 
Since local searches are the most computation demanding 
part of  this algorithm, it is predicted that this factor has 
significant effect on computational time. There are three 
local searches available in the algorithm. Three levels of  
this local search factor are 2-Opt, 1-Move, and adjacency 
improvement methods. 
 
Selection methods: Selection methods concern the 
quality of  selecting individuals for reproduction. There are 
different methods for performing selection in evolutionary 
algorithms. Different methods could lead to different 
results. Therefore it is important to understand which type 
of  selection is of  benefit for the current problem. In this 
paper two selection methods are considered and will be 
investigated as levels of  this selection factor, shown in 
Table 1. 

 
Table 1. Factors and their levels 

Factors Levels 
Crossover type -Partial-mapped crossover 

-Order crossover 
-Position based crossover 
-Order-based crossover 

Crossover rate 0.2, 0.4, 0.6, and 0.8 
Mutation type -Displacement mutation 

-Inversion mutation 
Local search type -Adjacency improvement 

-1-Move 
-2-Opt 

Selection method -Tournament 
-Roulette wheel 

 
5. ANALYSIS OF RESULTS 

This section presents the result of  experiments 
performed on the developed MA equipped with different 
combinations of  factors’ levels. Two sets of  experiments 
are carried out to examine the effect of  different factors on 
the performance of  the algorithm for each test case. The 
first set of  experiments deals with the performance of  
algorithm in terms of  solution quality; while the second 
investigates the factors which play a significant role in the 
computational time of  the algorithm. Experiments are 
performed on an Intel Pentium 4 2.4 MHz PC with 512 
MB of  RAM. Test cases used in the experiments are 
borrowed from the literature on VRPB Toth and Vigo 
(1999). Three test cases used for the experiment differ in 
the size of  VRPB. The first test case includes 21 nodes 
using three vehicles. The percentage of  backhaul nodes in 
the problem is 50%. The second test case considers 30 
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Table 2. Describes the parameter settings for first part of experiments 
Parameter Eli 21_50 Eli 30_80 Eli 51_80 

Generations No. 500 500 500 

Population size 63 63 63 

Fitness scaling Top scaling Top scaling Top scaling 

Elite No. 6 6 6 

 
Table 3. Describes the parameter settings for second part of  experiments 

Parameter Eli 21_50  Eli 30_80  Eli 51_80  Eli 75_80  

Generations No. 500 500 500 500 

Population size 110 200 300 400 

Fitness scaling Top scaling Top scaling Top scaling Exponential  
Stall generation 

number 150 200 200 200 

Elite No. 20 20 40 40 
  

Table 4. ANOVA results concerning solution quality 
Eli 21_50  Eli 30_80  Eli 51_80  Source 

F-ratio P-value F-ratio P-value F-ratio P-value 
A: Crossover 4.79 0.003 8.81 0 68.53 0 
B: Mutation 2575.69 0 915.98 0 0.49 0.484 

C: Crossover rate 23.52 0 23.55 0 38.28 0 
D: Local search 281.31 0 29.75 0 79.61 0 

E: Selection 28.39 0 1.63 0.202 17.07 0 
AB 6.81 0 3.39 0.018 2.3 0.076 
AC 2.52 0.008 0.94 0.486 5.02 0 
AD 4.26 0 2.64 0.016 13.18 0 
AE 1.15 0.327 2.79 0.04 1.11 0.344 
BC 26.14 0 13.78 0 7.54 0 
BD 90.35 0 193.55 0 27.7 0 
BE 34.66 0 14.77 0 0.19 0.664 
CD 5.84 0 1.77 0.102 21.2 0 
CE 0.93 0.427 1.4 0.243 5.72 0.001 
ED 22.31 0 2.87 0.058 8.28 0 

 
nodes and employs 4 vehicles to serve the customers. The 
ratio of  backhaul nodes is 80% in this problem. The third 
problem includes 51 nodes and employs 6 vehicles to serve 
customers. Backhaul nodes compose 80% of  all nodes. 
The MA is executed with MATLAB Version 14; and the 
Minitab 14 software is used for performing analysis of  
variance. Each experiment contains four replications for 
each of  192 different combinations according to levels 
which are considered for each factor. In the first part, the 
effect of  different factors which we assume that are 
significant is investigated. The other parameters which are 
used in the experiments but are not investigated are 
presented in Table 2. These parameters include generation, 
population size, fitness scaling, and number of  elite 
individuals in each generation. 

In the second part of  this section, the values which are 
recognized as the best values for significant parameters are 
used to evaluate performance of  the Memetic algorithm 
with the other well known algorithms from the literature. 
For this comparison, the other selected parameters’ values 
are shown in Table 3. 
 
5.1 Analysis of  variance: Solution quality 

This section will first analyze the main effects of  
crossover type, crossover rate, mutation type, local search 
type, and selection type, as well as their interactions, on the 
quality of  obtained solution. Totally, for each test case 768 
experiments are carried out (192 for a full factorial design 
times 4 replications). Table 4 shows the ANOVA result 
from the experiments. 

Table 4 includes the test case name (e.g. eli21_50 means 
21 nodes with 50% backhaul nodes), F-ratio and P-value 
of  ANOVA. According to the results, for the first test case, 
the mutation type is the most effective parameter in the 
algorithm, followed by the local search type. Interaction of  
the two factors is of  importance too. Therefore, different 
combinations of  local searches and mutations lead to 
dissimilar performances of  the algorithm. 

As the number of  nodes in the problem grows and the 
problem size increases, for the second problem the 
situation is different. Mutation is still the most important 
factor in the performance of  the algorithm; however the 
interaction between mutation type and local search bears 
more significance than before and seems to be more 
important than the local search type due to its higher 
F-ratio. The next important factor is the local search type 
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used in the algorithm. 
The third class of  experiments uses a test case with 51 

nodes. The situation is different from the first experiment. 
Crossover in this class plays the most important role 
instead of  mutation which was previously the most 
important factor for smaller problems. The local search 
type is still the second important factor. Interaction of  the 
crossover and local search type is also of  importance. 

To select the best values for factors and to obtain best 
quality solutions, it is necessary to examine the average of  
each treatment. As the problem is a minimization problem, 
the level should be chosen that leads to the minimum 
average. For example for the first test case, Figure 5 shows 
the average results for each significant factor. As seen, 
displacement mutation and 2-Opt can be selected as the 
best choice for the type of  mutation and local search, 
respectively, in the algorithm for this problem. Also, the 
interaction of  mutation and local search type has a 
significant effect on the performance of  the algorithm. 
Figure 6 verifies that selecting the displacement mutation 
along with 2-Opt local search leads to the best solution 
quality for the first test case. As seen from the ANOVA 
results, for solution quality of  small scale problems, the 
mutation and local search play a main role. This is due to 
the ability of  displacement mutation in introducing new 
regions of  search space to the algorithm. This helps the 
algorithm to escape from local minima and explore for 
better solutions. The local search has significant impact 
since it uses the present solutions to find optimum 
solutions. Additionally, applying displacement mutation 
along with 2-Opt leads to very good results in the first test 
case through their ability to complement each other in 
terms of  finding more promising regions and finding the 
local optimum in the designated region. In the second test 
case as the size of  problem increases, the 1-Move local 
search shows better results. When the problem size 
becomes larger, the interaction of  the local search and 
crossover becomes more important. For the third case, the 
crossover is the most important factor while the mutation 

is not of  importance. As the size of  the test case in the 
third problem is almost twice of  the second test case, the 
number of  nodes in each route grows substantially. 
Mutation is no longer capable of  introducing rich regions 
of  search space and thus the crossover operators such as 
OBX play a more important role in finding better 
solutions. 
 
5.2 Analysis of  variance: Computational time 

For the study of  computational time, factors involved in 
this experiment are as the previous study, i.e., the crossover 
type, crossover rate, mutation type, local search type, and 
selection type as shown in Table 1. Three test cases are 
chosen and for each case 768 experiments are performed. 
In this experiment a full factorial design is used and factors 
and two-factor interactions are reflected in the result. Table 
5 shows the ANOVA results.  

Results for the three test cases show consistently that the 
local search type, crossover rate, and crossover type have 
main impacts on the computational time. It is predictable 
that the local searches have the most significant effect on 
the computational time since they are invoked after every 
change takes place in the population and demands major 
computational efforts to find local optimum solutions for 
each individual in the population. Also, the crossover rate 
has a direct relationship with the computational time since 
it determines the amount of  crossover operation as the 
crossover is a time consuming operator. In addition, 
crossover operators by themselves are accountable for a 
considerable portion of  computations since different 
crossover operators have different computational demand. 

To select the best values, averages of  levels of  each 
significant factor are considered. For example for the first 
test case, the 1-Move method is selected as the most time 
saving local search. Also it is obvious that the smaller 
crossover rate, the less time is needed for computation. For 
the crossover type, Figure 7 shows that the PBX crossover 
leads to the least calculation time on average.  
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Figure 5. Different level averages for mutation and local search for the first test case. 
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Figure 6. Level averages in interaction of local searches and mutations for the first test case. 

 
Table 5. ANOVA results for the computational time experiments 

Eli21_50 Eli30_80 Eli51-80 Source F-ratio P-value F-ratio P-value F-ratio P-value 
A: Crossover 78.8 0 90.45 0 453.47 0 
B: Mutation 1.25 0.265 0.48 0.489 0.29 0.589 

C: Crossover rate 288.61 0 302.32 0 1006.27 0 
D: Local search 3809.72 0 15065.26 0 669947.7 0 

E: Selection 3.09 0.079 2.17 0.141 12.09 0.001 
AB 0.93 0.427 0.71 0.544 0.69 0.556 
AC 5.49 0 7.45 0 27.24 0 
AD 1.25 0.281 1.22 0.295 2.47 0.023 
AE 0.63 0.597 1.11 0.345 0.71 0.544 
BC 0.01 0.998 0.6 0.616 0.88 0.451 
BD 3.32 0.037 1.49 0.226 1.97 0.14 
BE 0.02 0.892 2.11 0.147 3.88 0.049 
CD 0.39 0.884 1.42 0.203 0.93 0.47 
CE 0.76 0.519 0.32 0.81 2.52 0.057 
ED 0.44 0.643 1.84 0.16 1.75 0.174 
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Figure 7. Different levels of  effective factors in computational time for the first test case.
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Table 6. Summary of  results 
Solution quality Computational time 

Test case 
Important factors Selected component Important factors Selected component 

Eli 22_50 
Mutation, 
Local Search, and their 
interaction 

Displacement, 
mutation , and  
2-Opt 

Local search, 
Crossover rate, and 
type 

Crossover rate = 0.2, 
PBX and  
1-Move 

Eli 30_80 

Interaction of  local 
search and mutation, 
Mutation and local 
search 

1-Move and 
displacement mutation 

Local search, 
Crossover rate and type 

Crossover rate = 0.2, 
PBX and 1-Move 

Eli 51_80 Crossover, Crossover 
rate and local Search 

Crossover rate = 0.6, 
OBX and 2-Opt  

Local search, 
Crossover rate and type 

Crossover rate = 0.2, 
PBX and 1-Move 

 
Table 7. Comparison of  tuned MA and mathematical programming 

MA Mathematical 
programming Name Number of  

nodes 
Number of  

backhaul nodes 
Solution Time (s) Solution Time (s) 

Gap (%) 

Eli16 16 6 112393 116.40 112385 65 0.01 
Eli17 17 6 168952 121.09 168944 2619 0.00 

Eli22_1 22 7 160617 169.63 157066 12897 2.26 
Eli22_2 22 4 170439 340.47 167613 225297 1.69 

  
Table 8. Comparison of  the tuned MA with other heuristics for VRPB 

Name N m k DB  SF  TV  Brandao  MA  

    Sol. 
Ratio 
(%) 

Sol. 
Ratio 
(%) 

Sol. 
Ratio 
(%) 

Sol. 
Ratio 
(%) 

Sol. 
Ratio 
(%) 

Eil22_50 11 10 3 429 115.63 492 132.61 371 100.00 371 100 384.95 103.76 
Eil30_80 24 5 3 586 114.36 778 151.83 522 101.87 514 100.30 512.43 100.00 
Eil51_80 40 10 4 655 115.93 703 124.42 574 101.59 565 100 612.13 108.34 
Eil76_66 50 25 7 907 118.1 1057 137.63 780 101.56 768 100 831 108.20 
Average    644.25 116. 757.5 136.62 561.75 101.26 554.5 100.08 593.5775 105.80 

  
Parameters and their values are recommended based on 

the ANOVA results for both the solution quality and 
computation time, which are summarized in Table 6. 

To set the configurations in such away that yields an 
acceptable solution quality in reasonable computational 
time, a rule of  thumb can be derived from Table 6. In case 
that there is no contradiction among the settings for both 
criteria, these settings can be directly employed. For 
example, in the test case Eli 30_80, the solution quality 
asks for the use of  1-Move local search and displacement 
mutation while computational time asks for employing 
PBX crossover with the rate of  0.2 and using 1-Move, 
which is also demanded by the solution quality. Therefore 
for this case, the PBX crossover with a rate of  0.2, 1-Move 
mutation, and displacement mutation can be used for both 
quality and time criteria. However, in case that there is a 
contradiction in recommendations for these criteria, 
whichever criterion has more importance, the settings for 
that criterion will be used. For example, in the test case Eli 
22_50, assuming the computation time is more of  concern, 
for the local search method, 1-Move will be applied rather 
than the 2-Opt method to favor the computation criterion.  

 
5.3 Comparison of  tuned MA with mathematical 

programming and heuristic methods 

To demonstrate the efficacy of  the developed MA after 
parameter tuning, it is inevitable to compare its 

performance with other methods. Thus, the mathematical 
model presented in the appendix is used to solve some test 
cases. Test cases for this comparison include 4 different 
problems with size of  16, 17, 22 and 22 nodes in which 
two last problems differ in the percentage of  backhaul 
nodes. These test cases are used since it is very difficult to 
solve problems with more than 22 nodes by means of  the 
mathematical programming approach due to the huge 
amount of  computational time needed for solution. 

The mathematical model for each test case is solved 
using Lingo 6.0 software. Table 7 presents the results of  
comparison. Results show that there is a gap (less than 
2.5%) between the analytical optimal solution and results 
obtained by the tuned MA. The MA, however, is more 
efficient than the mathematical programming methods in 
larger problems since it is not possible to solve such 
problems in a reasonable time using exact methods. The 
computational time for mathematical programming in the 
last test case is about 63 hours while the tuned MA takes 
only 340.47 seconds. 

The tuned MA is also compared with heuristic 
approaches in the literature. Four heuristic methods from 
the literature are considered in this study. These are DB, SF 
and TV that are implemented by Toth and Vigo (1999) on 
Intel 486/33. Brandao (2006) also used the same test cases 
to evaluate its tabu search algorithm. As the computing 
hardware is different, it lacks of  a common ground for 
computation time comparison and thus only the solution 
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quality is compared. Table 8 presents the result of  
comparing MA algorithm with other four metaheuristics 
that are available in the literature. Table 8 shows the 
problem specification and solution characteristics, where n, 
m, and k represent the number of  nodes, number of  
backhaul nodes, and number of  vehicles, respectively. It 
also includes the solutions and the ratio between the 
current solutions to the best known solution for the test 
cases. 

As it can be seen from Table 8, the tuned MA obtains 
better solutions as compared to DB and SF and that it is 
comparable with the TV and Brandao algorithms on the 
test cases. In all test cases, MA outperforms DB and SF 
and in one of  the four test cases MA performs better than 
TV and Brandao’s algorithms. 

 
6. CONCLUSION  

In solving real world combinatorial problems, exact 
solution methods are not suitable since they need a long 
computational time. Metaheuristic approaches are complex, 
demanding for good parameterization. There seems lack of  
a systematic approach in the literature for tuning 
parameters of  metaheuristic approaches. In this work, a 
memetic algorithm is presented for solving VRPB. This 
approach satisfactorily solves the test cases with the 
state-of-the-art solution quality and much greater efficiency 
as compared with the mathematical programming 
approach. The authors also presented a systematic study 
based on Design of  Experiments in tuning the memetic 
algorithm to the highest performance, which is defined in 
terms of  solution quality and computational time. 
Extensive experiments are performed and satisfactory 
results obtained. The developed MA method is applicable 
to other operational research problems. The systematic 
tuning approach should help the design and refinement of  
other metaheuristic optimization algorithms. 

Our future work will include comparison of  other 
calibrating techniques such as adaptive parameter setting 
with the presented approach, using the same approach to 
tune parameters of  other metaheuristics like Tabu Search 
and simulated annealing.  
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APPENDIX: MATHEMATICAL FORMULATION 
OF THE VEHICLE ROUTING PROBLEM WITH 
BACKHAULS (VRPB) 
 

NOTATION 

Cijk cost of  moving from node i  to node j  using 
vehicle k  

n number of  linehaul nodes 
m number of  backhaul nodes 
M number of  vehicles 
Qk  capacity of  vehicle k 
fi backhaul demand of  node i 
di linehaul demand of  node i 
xijk a binary variable which is equal to 1 if  there is an 

arc from node i to node j using vehicle k. 
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The objective function (A-1) tries to minimize the 

transportation cost, which is the summation of  the cost of  
all arcs in a route multiplied by the vehicle multiplier. 
Constraints (A-2) and (A-3) specify that just one route 
passes from any node except the depot. Constraints (A-4) 
and (A-5) ensure that the number of  vehicles leaving the 
depot must be the same as the number of  vehicles 
returning to the depot. Constraints (A-6) and (A-7) 
stipulate that the vehicle load in terms of  linehaul and 
backhaul must not exceed the vehicle capacity. Continuity 
of  routes is enforced by constraints (A-8) and (A-9), i.e., 
each route must be served just by one vehicle. Constraint 
(A-10) prevents the model generating sub-tours. Finally, the 
precedence of  linehaul nodes over backhaul nodes is 
ensured by constraint (A-11). 

 
 


