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Abstract. We consider the quasi-de Sitter geometry of the inflationary
universe. We calculate the energy flux of the slowly rolling background scalar
field through the quasi-de Sitter apparent horizon and set it equal to the change
of the entropy (1/4 of the area) multiplied by the temperature, d£l = T'dS.
Remarkably, this thermodynamic law reproduces the Friedmann equation for the
rolling scalar field. The flux of the slowly rolling field through the horizon of
the quasi-de Sitter geometry is similar to the accretion of a rolling scalar field
onto a black hole, which we also analyse. Next we add inflaton fluctuations
which generate scalar metric perturbations. Metric perturbations result in a
variation of the area entropy. Again, the equation dF = T'dS with fluctuations
reproduces the linearized Einstein equations. In this picture as long as the
Einstein equations hold, holography does not put limits on the quantum field
theory during inflation. Due to the accumulating metric perturbations, the
horizon area during inflation randomly wiggles with dispersion increasing with
time. We discuss this in connection with the stochastic description of inflation.
We also address the issue of the instability of inflaton fluctuations in the ‘hot tin
can’ picture of the de Sitter horizon.
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1. Introduction

The inflationary paradigm established during the last 20 years assumes that the primordial
equation of state is almost vacuum-like: p &~ —e. To realize this equation of state, most
models deal with a scalar field ¢(t) (or other fields which in combination act as an effective
scalar field) slowly rolling to the minimum of its potential V' (¢). During the slow roll
regime the homogeneous scalar field produces geometry which can be well approximated
by the quasi-de Sitter metric.

The full pure de Sitter spacetime, which corresponds to a 4d hyperboloid of constant
curvature, can be compactly represented by its Penrose diagram, given by the full square
in figure 1. It can be covered by different coordinates. Cosmologists most often use
coordinates in which the metric is time-dependent and corresponds to an expanding flat
universe

ds® = —dt* 4 e (dr® + r?dQ?), (1)

where dQ? = df? + sin?6d¢?. This coordinate system covers the upper half of the
hyperboloid, which corresponds to the expansion branch. The Penrose diagram of de
Sitter spacetime in flat FRW coordinates is shown in the left panel of figure 1. Quasi-
de Sitter geometry is described by the scale factor a(t) = ag el 4H () where the Hubble
parameter H is a slowly varying function of time, H < H?.

The time-dependent form of the metric (1) is very convenient for investigating the
dynamics of a scalar field with the equation

Op =V, (2)

and for quantizing this field in the de Sitter spacetime [1]. Among quantum scalar fields
with mass m and conformal coupling ¢ in de Sitter geometry, the case of minimal coupling
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Figure 1. Penrose diagram of de Sitter spacetime in the flat FRW coordinates
(left) and the static coordinates (right). Each point represent a sphere S2. Its
radius at the horizon (dashed line on the left, edge of diamond on the right) is
equal to 1/H.

¢ = 0 and very small mass m < H plays an especially important role. Indeed, the
regularized vacuum expectation value is (6¢?) = 3H*/87?m?. Formally, as was noted
before the discovery of inflation, this is an odd case since its eigen-spectrum contains
an infrared divergent term: (0¢?) — oo as m — 0. On the other hand, this is the
most interesting case for application to inflation, since the theory of inflaton (as well
as tensor) fluctuations is reduced exactly to this case. Following the time evolution of
individual fluctuations, it was found that the infrared divergence can be interpreted as
the instability of quantum fluctuations of a very light scalar field, which are accumulated
with time (6¢?) = (H?/47)t [2]-[4]. Fluctuations of d¢ induce scalar metric perturbations
[4]-[8]. This picture is a basis of the inflationary paradigm so successfully confirmed
observationally. Notice that heavy or conformal fields are not produced by inflation.
Further, backreaction of fluctuations d¢ leads to the picture of stochastic evolution of
quasi-de Sitter geometry [9, 10], and at large values of H even to self-reproduction (eternal)
of the inflationary universe [11]. The scalar field in the eternal inflationary universe is
described naturally in terms of the probability distribution function P(¢,t) [10, 12].
Recently, de Sitter spacetime and inflation have drawn significant attention in the
theoretical physics/superstring community. Some of the most interesting topics are
holography and the thermodynamics associated with the de Sitter horizon. In this context,
the static form of the metric of the de Sitter spacetime
ds* = —(1 — H* R*)d7?* + _ + R*dQ? (3)
(1— H?R?)
is commonly used. The Penrose diagram of de Sitter spacetime in static coordinates is
plotted in the right panel of figure 1. The classical result of [13] is that an observer
at the origin detects a thermal radiation from the de Sitter horizon at R = 1/H with
the temperature T = H/2m, and the horizon area A = 4w /H? is associated with the
huge (geometrical) entropy S = A/4G. Thermal vacuum in the causal patch (‘hot tin
can’) corresponds to the Bunch-Davies vacuum of the metric (1) [14, 15] and gives a
complementary picture of scalar field(s) fluctuations. It is not clear to us, however, how
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quantum fluctuations in the ‘hot tin can’ picture correspond to the instability of quantum
inflaton fluctuations d¢ and generation of metric perturbations. We will return to this
point at the end of the paper.

One of the issues in the holographic approach is the bookkeeping of entropy of
de Sitter spacetime. The holography bound declares that the geometrical entropy of
the horizon exceeds the entropy of quantum states (of fields and particles) within the
volume surrounded by the horizon. It was recently claimed that counting the entropy
of quantum fluctuations generated during inflation in the ‘hot tin can’ and comparing it
to the change of the apparent horizon entropy violates the holography bound unless an
ultra-violet cutoff of order of ~ 10'® GeV in the momenta of fluctuations is imposed [16].

While it is expected that the approaches based on the time-dependent form of the
de Sitter metric with unstable fluctuations and the static form of the de Sitter metric
with thermal flux should give us complementary insights, their languages are apparently
different. This is partly due to the difference between quasi-de Sitter and pure de Sitter
geometries, and partly because different questions are addressed. However, we have to
understand how these two different approaches to (quasi-)de Sitter geometry with a scalar
field are compatible with each other with respect to such important issues as the generation
of fluctuations, entropy and global geometry.

In this paper we consider a particular question of how the apparent horizon area A,
or the entropy S = A/4G, vary due to the slow roll of the background scalar field and the
generation of scalar metric perturbations during inflation. A novel element here is that we
combine the concepts of a dynamical, slowly rolling background field and the instability
of its fluctuations with the concept of geometrical, holographic entropy.

In section 2, we will calculate a variation of the geometrical entropy due to the energy
flux through the apparent horizon area. We find that, remarkably, the thermodynamical
relation 0F = T'dS is equivalent to the Einstein equation for the rolling inflaton field.
In a sense, our derivation of a correspondence between thermodynamics and the Einstein
equations for inflation is a realization of such a correspondence found in an inspiring
paper [17] for local accelerating observers. However, we introduce a technique to treat
the apparent horizon of R x S? topology which is different from the description [17] of a
local Rindler horizon for an accelerating observer.

As we will see, a non-vanishing flux is generated by the kinetic term ¢?2 of the slowly
rolling inflaton field. It turns out that this problem is very similar to the problem of the
interaction of a homogeneous rolling scalar field with a runaway potential V' (¢) and a
black hole. In section 3, we switch our attention from inflation to black holes. A rolling
scalar field interacting with a black hole is a transparent illustration of the energy flow of
a light scalar field through a horizon.

In section 4, we return to inflation. On top of the rolling background inflaton,
we consider inflaton fluctuations d¢, which generate scalar metric perturbations ®. We
study the energy flux through the horizon including inhomogeneous d¢ fluctuations and
corresponding variations in the area of the horizon, or entropy dS, which are sensitive
to the scalar metric perturbations ®. In this case, the calculations are more involved
than the calculations for the homogeneous time dependent background field in section 2.
This happens because there is no exact Killing vector generating the horizon. However,
for metric perturbations which preserve spherical symmetry we still can define T'dS and
compare it with the energy flux through the horizon.
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In section 5, we argue that the metric perturbations generated from inflaton quantum
fluctuations can indeed be treated as (locally) spherically symmetric. We apply the general
formalism for the spherically symmetric non-static geometry of section 4 to fluctuations
from inflation. Again, we find that the thermodynamical relation 0E = T'dS leads to
equations connecting ® and d¢ which are in exact agreement with the linearized Einstein
equations for the fluctuations from inflation. This allows us to give new insights into the
entropy of cosmological fluctuations, as we will discuss in section 6.

2. Slowly rolling inflaton and de Sitter entropy

We begin with an inflaton scalar field in the spacetime (1). The homogeneous background
field ¢(t) is time-dependent and obeys the equation (2), which for the metric (1) reads
¢+ 3Hop+ Vs = 0. If the Hubble parameter is large, the friction term here is significant
and ¢ slowly rolls towards the minimum of V' (¢), realizing the inflation.

The apparent horizon of de Sitter spacetime has the topology of R' x S2, and is
shown in figure 1 in both coordinate systems of interest. Imagine a spherical light front
propagating from outside towards an observer at the origin r = 0 or R = 0. In the
time-dependent coordinates the space is exponentially expanding. There is a critical,
trapped surface S?, which separates the region inside the apparent horizon which is in
causal contact with the observer, and the outside region, where expansion keeps the
light from reaching the inside region. The instant physical radius of an S? sphere is
equal to p = a(t)r. Since the position of the apparent horizon is r = 1/a(t)H, its
radius py, is equal to 1/H. It is constant in the pure de Sitter space time, and a slightly
increasing function of time in the quasi-de Sitter geometry where H(t) slowly decreases
with time.

So far we have not used the Einstein equations, which relate the energy momentum
tensor TH = ¢*¢, — (%qb"qba — V(gb)) d# of the background inflaton field ¢(¢) to the scale
factor a(t). Actually, we are going to derive them from the first law of thermodynamics
of the de Sitter horizon.

Let us calculate the flux of energy through the area A = 47/H? of the apparent
horizon of the quasi-de Sitter spacetime. In the spirit of the adiabatic approximation, we
will treat the horizon as a static surface for this purpose, but allow it to slowly vary with
time when calculating the change in its area. The energy flux through the horizon is given
by the integral

SE =5 / dx, TV ¢, (4)

where d¥,, is the 3-volume of the horizon, and £* is the null generator of the horizon, as
sketched in figure 5. Notice that at the horizon d3¥* is parallel to £, as both are null. We
will equate the energy flux through the horizon to the change of geometrical entropy dS

TdS =6E =6 / Ay, Tr ¢, (5)

where the temperature T is defined by the surface gravity at the horizon. For the de Sitter
horizon T'= H /2.

The entropy dS and the expression (4) are geometrical invariants and can be
calculated in arbitrary coordinates. In the case of de Sitter geometry we can work either in
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time-dependent (1) or static (3) coordinates. The metric (1) can easily be modified for the
(adiabatic) regime of slowly rolling H(t), while it is not so straightforward for the static
form of the metric. Therefore, we will work in time-dependent coordinates. Consider a
slowly rolling inflaton ¢(¢) that is time-dependent but homogeneous in the coordinates (1).
The background stress-energy tensor T# is diagonal. As the (approximate) Killing vector
is &# = (1, —Hr,0,0), the energy flux through the horizon 7, {#¢¥ = (/52 is non-zero. To
calculate the right-hand side of equation (5), we integrate over the infinitesimal volume
47 (1/H?)d\, where ) is the affine parameter along the null generators of the apparent
horizon. In the left-hand side of (5), the variation of the entropy is

dA 2r dH
== "¢mw

By comparing both sides of the thermodynamic equation (5) and dividing them by

d)\ = dt, we obtain

H = —47G g52 . (6)

This is nothing else but one of the Einstein equations. Using the equation of motion
for ¢ and equation (6), and assuming the field ¢ is dominant, one can reconstruct the
Friedmann equation for H. Note that for a pure de Sitter geometry & = 0 and the energy
flux through the horizon is absent.

Formula (6) can also be derived from (5) in the coordinates (3). The coordinates
(t,r) of (1) and (7, R) of (3) are related by the transformations

Hrt R 1 2 P2

r==e \/]__—T}%Z’ t:T—l-ﬁln(l—HR) (7)
In static coordinates, we have ¢ = ¢ (7 + (1/2H)In(1 — H?R?)). This ¢(7, R) dependence
corresponds to the field profile delayed as R approaches the horizon. We find a similar
delayed field configuration in black hole spacetimes in the next section. The energy flux
through the horizon Tf = ¢ ,¢ g ~ ¢* is non-vanishing. In these coordinates, however, a
central observer does not see the flux going through the horizon but rather accumulating
the energy just outside the horizon. To quantify this, one can define the local mass
function M as it is done in appendix B.

To conclude this section, we consider a sub-dominant, test scalar field xy during
inflation. We can calculate the flux of the field y through the de Sitter horizon. In
this case, it is not important whether we are dealing with pure de Sitter or quasi-de Sitter
geometry. Independent of the potential V (), the x-field contribution to the energy flux
0F is given by precisely the same expression as the inflaton field contribution. Either in
terms of the thermodynamic equation 7'dS = dF or in terms of the Einstein equations
(6), the contribution of y is additive

H = —47G ($* + ). (8)

This formula works even if the inflaton field velocity is sub-dominant, ¢ < vy, and
independent of the shape of the y-field potential. In particular, it works for a massive
scalar field y, which oscillates about the minimum with an exponentially decreasing
amplitude.
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3. Rolling scalar field and black hole

In this section we interrupt the discussion of the slowly rolling inflaton in the early universe
and focus on the seemingly different topic of a scalar field accreting into a black hole. The
reader of the de Sitter story can jump to the next section.

Consider a homogeneous scalar field ¢(¢) with a runaway type potential V' (¢), say
V ~ 1/¢? or V(¢) ~ e~?/MP_ The concrete form of the potential is not important. We
can even broaden the class of models to include fields with the potential V(¢) = 1m?¢?
with very small masses m, as long as we deal only with the phase of slow roll towards the
minimum. The well known case of a massive scalar field oscillating around its minimum
will have qualitatively different accretion onto a black hole similar to the accretion of
massive (quasi)-particles.

We will consider a test homogeneous (cosmological) scalar field described by the
equation (2). In the vicinity of a black hole, the spacetime is described by the
Schwarzschild metric

2 2M 2 dr? 2 102
ds® = <1 r)dt+(1—2M/r)+rdQ’ (9)
and we will treat the cosmological evolution of the scalar field as the boundary conditions
imposed sufficiently far away from the black hole. The scalar field retains its spherical
symmetry ¢ = ¢(t,r), so near a black hole it obeys the equation (2)

22 (-2) 2] wr)- (-2 oon

where the tortoise coordinate r, is defined as r, = r + 2M In(r/M — 2). The field
asymptotics at the horizon r — 2M corresponds to an infalling wave ¢(t + r.). The
boundary conditions far away from the black hole follow from the assumption that there
the cosmological field is spatially uniform and is free to roll down the field potential.
We take ¢(t,r) = ¢oo(t) at 7 > 2M, where the time-dependent function ¢ () is the
background evolution of the field in the absence of the black hole. The function ¢u.(t)
depends on the scalar field potential V' (¢).

Equation (10) is well studied for the case of a massive scalar field V(¢) = sm?¢?,
where it can be reduced to a linear Schrodinger-type ordinary differential equation with
an effective potential Ueg(r).

However, in general the equation (10) is non-linear and the behaviour of its solution
is very different from the case of a massive scalar field; compare figures 3 and 4. We
treat equation (10) as a partial differential equation and solve it numerically for several
examples of runaway potentials. We also consider the case of a very light massive field
and compare it with the case of a heavy massive field.

The sequence of radial profiles ¢(t, r) for several moments ¢ is shown in figure 2 for a
runaway potential and in figure 3 for a very light massive field, respectively.

We found that ¢(¢,7) in these cases with a very high accuracy can be approximated
by a simple formula

St 1) = b [t +oMn (1 - ﬂ)] | (11)

r

This result is rather insensitive to the form of the runaway potential. We will call the
solution (11) the delayed field approximation. This is because the field profile is merely
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Figure 2. Field profiles ¢(¢,7) outside a black hole for the runaway potential
V(¢) = 1/¢* at two subsequent time moments; the horizontal axis is a tortoise
coordinate r,. Red (solid) curves are the numerical solutions, and green (pale)
curves are obtained with the delayed field approximation. The horizontal line
corresponds to the homogeneous initial conditions.

delayed, not frozen, on the horizon. In the Eddington—Finkelstein coordinates (v,r) the
incoming light geodesic is v = ¢t 4+ r,. The solution (11) near the horizon is ¢ ~ ¢(v — vy),
so the field crosses the horizon at the speed of light, but is delayed by a small amount
vo = (2In2 — 1) M compared to the null characteristic. Far away from the black hole, at
large r > 2M, a long-range tail is formed, which can be described by the formula

CMY 5 o). (12)

For a light massive field when the equation (10) is linear, the tail (12) can be related to
scattering on the effective potential Udg(r) with a sharp peak at ~ 3M.

Our approximation (11), verified by the numerical solutions, generalizes the similar
analytic result of [18] for the case of a free scalar field (V' = 0), where ¢oo(t) = t.
The accuracy of the delayed field approximation can be estimated by substituting the
expression (11) into the differential equation (10) and calculating the residual term which
is of order O ((2M/r)(1 — (2M)3/r?)). The residual is bounded and localized at around
3M; this is why the approximation (11) works.

Equipped with equation (11), we can calculate the energy flux of the scalar field
through the horizon and the accretion rate onto the black hole M = dM/dt. We can
calculate M in different coordinates. In Schwarzschild coordinates, the spatial gradient of

¢(t’ 7“) ~ ¢00(t) -

r
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Figure 3. Field profiles for the potential V(¢) = %qubz with a very small mass m
at two subsequent time moments. Red (solid) curves are the numerical solutions,
and green (pale) curves are the delayed field approximations.

¢ develops just outside the horizon, and the energy flux is defined by T} = ¢ ¢, ~ ¢§o
In these coordinates, an observer at asymptotic infinity does not actually see the energy
flux go through the horizon. What she/he sees is the energy from accretion accumulating
just outside the Schwarzschild radius, increasing the black hole mass (defined in the ADM
sense). In the Eddington—Finkelstein coordinates, the energy flux through the horizon is
given by T,, = ¢2..

Independent of the choice of coordinates, the rate of accretion of the scalar field ¢
by a black hole and the rate of increase of its mass in the regime of the delayed field
approximation is equal to

M = 47(2GM)? $%.. (13)

It is easy to check that this formula is equivalent to the first law of black hole
thermodynamics 0F = TdS. We can rewrite (13) in the form (1/4GM) = —4nG ¢2,
which is readily similar to the corresponding formula (6) for the slow roll scalar field in
quasi-de Sitter geometry.

If we turn to the case of a massive scalar field with V(¢) = %m2¢2, when
the background scalar oscillates around the minimum, we find that the delayed field
approximation (11) quickly fails, see figure 4, and formula (13) is not valid. In this
case the scalar field can be described in the WKB approximation. The accretion of the
massive scalar field looks like accretion of free massive quasi-particles of mass m. Notice
that this is different from a massive oscillating scalar field in the de Sitter background,

Journal of Cosmology and Astroparticle Physics 05 (2003) 009 (stacks.iop.org/JCAP/2003/i=05/a=009) 9


http://stacks.iop.org/JCAP/2003/i=05/a=009

Inflation and de Sitter thermodynamics

Figure 4. A snapshot of the field profile for the potential V(¢) = %m2¢2 with
a large mass m when the field oscillates. The red (solid) curve is the numerical
solution, and the green (pale) curve is the delayed field approximation.

where the flux of the heavy scalar field through the horizon remains the same as for the
light slow roll field, ~ ¢?.

In appendix A, we briefly discuss some astrophysical applications of the results
of this section.

4. Perturbed metric and horizon thermodynamics

Classical perturbations in the de Sitter geometry die out in accordance with the ‘no-hair’
theorem. Therefore, as in the black hole case, there are well-defined concepts of the
entropy S and temperature T" associated with the pure de Sitter horizon [13].

The spherical symmetry of the spacetime naturally selects a foliation by surfaces of
the constant physical radius p = const, with normal vector V,p. If the spacetime is
static (i.e. admits a timelike Killing vector field k* with vanishing differential invariant
k. kpetP™; do not mix with static form of the metric), as de Sitter spacetime is for
example, the vector {# = —e#"V, p orthogonal to V,p is also a Killing vector and a null
generator of the event horizon (which coincides with the apparent and Killing horizons
in the static case). Therefore one can define the surface gravity at the horizon x by
€€, = rE, and identify k = H and the temperature in the usual way 7' = H/2n. The
area entropy is equal to one quarter of the apparent horizon area in the Planck units,
S =n/GH.

For the quasi-de Sitter geometry with the homogeneous scalar field ¢(t) slowly rolling
towards its minimum, when the horizon radius 1/H(t) is adiabatically changing with
time, we still can introduce an entropy S = (7/G) 1/H(t)? and temperature T' = H(t)/27
associated with the apparent horizon.
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In inflationary cosmology, classical perturbations which could exist prior to inflation
die out. However, one of the striking features of the quasi-de Sitter inflationary stage is
that the quantum fluctuations of the light (minimally coupled to gravity) scalar field §¢
are unstable and inevitably generate scalar metric perturbations ®(t,Z) [5, 19], so that
the quasi-de Sitter metric (1) becomes perturbed

ds? = —(1 +2®)dt* + (1 — 2®)e*/ 4 (dr? +12d0?) . (14)

If the spacetime is not static (timelike Killing vector does not exist), as in the
inflationary geometry (14), the situation with the horizon thermodynamics is not quite
so simple. The event horizon and apparent horizon are in general different surfaces, and
the Killing horizon does not exist, so the notion of surface gravity is ill-defined.

Fortunately, in the case of spherical symmetry one can define the mass (energy) M
inside the spherical region of the physical radius p by 1 — 2GM/p = (Vp)?. The mass
function M obeys the mass formula [20] which follows from the Einstein equations

M., = 47p*(Toy — Tgap) p*, (15)

where a, b stands for (¢,7) only. We derive the mass formula (15) in appendix B and give
there other definitions to be used in this section.

We will argue now that the mass formula (15) applied at the apparent horizon can be
interpreted as a first law of thermodynamics 6F = T'dS for an arbitrary spherically
symmetric metric. In the next section, we will apply this result to the perturbed
inflationary metric (14), which as we will show can be well treated as (locally) spherically
symmetric.

Let us look at the apparent horizon, as it is locally defined and much easier to find
than an event horizon. In spherical symmetry, the position of the apparent horizon is
given by f = (Vp)? = 0. The vector V,f is normal to the apparent horizon, which is the
surface f = 0, while the orthogonal vector (¢ = £V, f is tangent to it. Unlike in the
static case, these vectors are not necessary null. The change of the mass function M along
the apparent horizon is trivially related to the change of the radius of apparent horizon,

G(" My = pCtpa = % ¢ (0% ar (16)
which allows its interpretation as the first law of thermodynamics
i T s
Fn- (i) . (17)
’ 2m 4G/,

The parameter x is defined in appendix B and generalizes the surface gravity. To relate
the heat flow term with the stress-energy tensor, we use the mass formula (15) which gives

(“M,, = 4mp* (T2 — Tg2) ¢ pa.- (18)

The above expression can be rewritten in a more convenient form if one realizes that
("M, = =2k M,

A
- (%) = 2AT76 py. (19)

This formula relates the change of the apparent horizon area to the (spherically symmetric)
flux of matter through the p = const surface passing through the point on the horizon at
which M is evaluated.
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5. Fluctuations from inflation and wiggles of the horizon area

In the time-dependent metric (1) of the quasi-de Sitter geometry, quantum fluctuations
of the inflaton scalar field can be expanded with respect to the eigenmodes

06t F) =) / Ak (@kim Prim + Ay, Phim) (20)
Im

where Gy, and a;;,, are annihilation and creation operators; ¢gm = ¢ (t) 2kj,(kr) Y}m(ﬁ)
are the eigenmodes. The r-dependent eigenmode factor is given in terms of the spherical
Bessel functions jj(kr), Y;,,(2) are the spherical harmonics, and the time-dependent
eigenmode factor is given in terms of Hankel functions ¢ (t) = (v/7/2) Hn3? HW (kn),
where 7 is the conformal time n = —(1/H)e*. The Bunch-Davies vacuum corresponds
to the absence of particles in the past @, |0) = 0. This corresponds to the positive-
frequency asymptotic ¢n(t) ~ (1/v/2k)e " in the far past n — —oo. Quantum
fluctuations of the inflaton field are unstable and turn into long-wavelength classical
inhomogeneities. Indeed, the modes which have physical wavelengths smaller than the
horizon 1/H, have kn > 1 at the horizon and quickly oscillate without producing
physical effects. In contrast, the modes with wavelengths which exceed the horizon size
kn = k < 1 cease to oscillate, freeze out, and look like a classical scalar field with amplitude
or(t) =~ H//2K32.

We need to know the form of the eigenmodes at the apparent horizon where r = 7.
Again, the time-oscillating modes with small physical wavelengths kr = kn > 1 are
spatially oscillating functions j;(kr). Large wavelength modes with kr = kn < 1
have asymptotics ji(kr) ~ (kr)!. Notably, only the s-wave with [ = 0 survives in this
asymptotic. Therefore, in our discussion of the wiggles of the horizon area due to metric
fluctuations, we can consider only spherically symmetric perturbations.

Fluctuations d¢ generate scalar metric perturbations which are represented in (14)
by scalar ®(¢,r). Now we are going to relate d¢ and ¢ using the apparent horizon
thermodynamics.

In the perturbed spacetime (14), the physical radius is p = (1 — @) ef dtH . The
apparent horizon is defined by (Vp)? = 0. From here we find for the apparent horizon

> O,
pth—1(1+<I>+—— ) (21)

H a

The entropy of the apparent horizon and the temperature are identified with geometrical
quantities as

A 7w} K 1
_ = _’ T = — = 5
4G G 2r  dwpy
where £ is defined by equation (34) of Appendix B. Evaluating the equation (19) relating
the change in the horizon area to the energy flux at the position of the apparent horizon
in the perturbed spacetime (14), and keeping only the linear terms with respect to ®, §¢
and their derivatives, one finds the following expression for the perturbations

. 9
b —

(22)

) 1 . 1
¢, + 2 Q, + HP =81G ¢ <590 - 690,1”) ) (23)
a a

a
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\V vt
P do

X
dx

~_

Figure 5. A sketch of the apparent horizon of radius p. Left: the horizon in
quasi-de Sitter geometry where p = 1/H very slowly increases with time. Right:
the same but with small metric perturbations where p = (1/H)(1+®) is wiggling
with time due to the randomly varying ®.

valid at the position of the apparent horizon.

Even though we know already that the first law of thermodynamics (17) originated
from the Einstein equations in the form of (15), and hence the above equation would
follow from the linearized Einstein equations, let us explicitly demonstrate this fact. The
usual equations for metric perturbations from scalar field fluctuations are [19]

Vi _ (92 (@®) _, .

where the for spherically symmetric ®, V2® = 9,,® + %&@. Combining both equations
by substituting them into an identity 206 = ©? (/@) + (pdp), we find that

. 2. 1 . 2 (1 1
b—-¢, + =&, +HO+ = |(-—a )P, =871Gp|dp——0dp, |. (25)
a a? a? \r ’ a

This equation holds everywhere in the perturbed spacetime. When evaluated at the
apparent horizon, the last term in the left-hand side vanishes and we are left exactly with
the equation (23).

Consider the area of the apparent horizon A = 47wp?. For frozen long-wavelength
fluctuations, we can drop derivatives in formula (21) for p,. Then the leading contribution
of the frozen classical fluctuations to area is

A
Thus, the quantum fluctuations of the inflaton field generate wiggles of the quasi-de Sitter
horizon area, as described by (26) and sketched in figure 5.

Locally (within the Hubble patch), almost spherical metric perturbation ® can be

viewed as the variation of the Hubble parameter H [4, 12]. Indeed, transform the metric

(14) to synchronous coordinates t = t + ft dt®, ; = x; + ft(dt/a) | V;®. Then we have
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ds? = —di? +e2/ 9132 where the new Hubble parameter is H = (1—®)H. As expected,
the area of the horizon is the same

= — (1+420) = o (27)

Therefore an observer within a Hubble patch sees the local Hubble parameter H
simultaneously slow rolling and wiggling due to the instability of quantum fluctuations of
the inflaton field, in the spirit of the stochastic picture of inflation.

We have to note that there is another, much smaller correction to the geometrical
entropy due to the back reaction of quantum field effects in the curved background. Indeed,
quantum gravity effects give one-loop corrections of order of R? ~ H* in the right-hand
side of the Einstein equations, which slightly shift the Hubble parameter [21] and the
horizon area by a factor 1 + ¢ H? /Mg, where c¢ is some numerical coefficient. However,
this leads to a tiny correction in the area entropy.

Let us discuss the formula (26). Metric fluctuations ®(t, ) ~ d¢ have a flat spectrum

V3zoq

Sy =C— —7
CU, B

where C' = }—g(?m)?’/ 2 is a numerical coefficient. Classical fluctuations of the inflaton field
d¢ can be treated as a random (Wiener) process with zero vacuum expectation value, but
with the increasing dispersion

aH 3
dt  H
§¢°) ~ — = —t.
6 [ =
Suppose for a moment that the background value of H(t) is changing very slowly. Then,
scalar metric fluctuations ®(¢,7) have zero mean value but their dispersion is increasing

with time linearly,

ve et dk
%) = C* ———T———U/r — ~t.
W=z

Thus, the area of the apparent horizon looks like a random (Wiener) process with the mean
value A = 4r/H (t)? and with the dispersion (®2) linearly increasing with time. Imagine
an ensemble of inflationary Hubble patches with apparent horizon areas given by the
formula (26). Then their area is a statistical value which obeys the Gaussian distribution
P(A,t) ~ e=A=A/2®%)  Now_ if we take into account variation of background values like
H(t) and V(¢(t)) with time, time-dependence and statistical properties of the horizon
area given by (26) or equivalently (27) will be more complicated. We will discuss this
issue below.

6. Discussion: entropy and cosmological fluctuations

In this paper we calculated the apparent horizon area and geometrical entropy of quasi-
de Sitter geometry, which describes an inflationary stage, and the energy flux of the
scalar fields through the apparent horizon. Issues related to de Sitter thermodynamics
are commonly considered in the static de Sitter coordinates, where an observer at the

origin is surrounded by the event horizon and detects a thermal flux of temperature
T =H/2m.
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We work with the geometrical entropy S of the apparent horizon in the time-
dependent planar de Sitter coordinates adopted in inflationary cosmology, which admit
a simple generalization to the quasi-de Sitter geometry and, most importantly, admit a
clear interpretation of fluctuations generated from inflation.

The slow roll of the inflaton field leads to slow change in the horizon radius. Assuming
that the energy flux of the rolling scalar field through the horizon changes the geometrical
entropy 0 E = T'dS, we reproduce the Einstein equation (6) which relates H and ¢?. Other
background scalars y which are subdominant during inflation give similar contributions
to the energy flux x?2, independent of their potentials.

This change of the quasi-de Sitter horizon radius due to the rolling scalar field is very
similar to the increase of the mass of a black hole due to the accretion of a background
scalar field rolling towards the minimum of its potential M ~ ¢?. This type of accretion,
which can be described analytically with the delayed field approximation, can be realized
for runaway potentials of the background scalar field or for very light massive fields. We
present this material here mainly to illustrate similar calculations for rolling scalars in
quasi-de Sitter geometry, as the astrophysical effects of accretion of a rolling scalar onto
a black hole that we considered (say quintessence and astrophysical-size black holes) are
negligibly small. An oscillating heavy scalar field accretes onto a black hole very differently
as quasi-particles.

The inflationary, quasi-de Sitter stage erases classical inhomogeneities which could
exist prior to it. However, quantum fluctuations of the inflaton field (as well as other
light scalars minimally coupled to gravity) are unstable and produce long-wavelength
fluctuations of the inflaton field d¢ which behave as classical inhomogeneities at scales
larger than the Hubble patch of size H . Fluctuations d¢ generate long-wavelength scalar
metric perturbations ®. Geometrical quantities, like an area of the apparent horizon,
acquire corrections due to the scalar metric perturbations. We calculate the energy flux
of the inhomogeneous scalar field ¢(t) 4+ do(t, &) through the apparent horizon and the
change in the apparent horizon area of the perturbed metric multiplied by its (geometrical)
temperature T'dS. Again, equating 0E = T'dS, we show that this thermodynamics
relation is compatible with the linearized Einstein equations which relate ® and d¢.

Thus, as long as the Einstein equations hold, generation of the inflaton fluctuations
is in full agreement with the variation of the entropy of the quasi-de Sitter horizon.
Therefore, in the picture of the rolling inflaton with quantum fluctuations generated with
time, we did not find that quantum fluctuations may violate the holographic bound during
inflation. (Notice that the fluctuations from inflation are described by squeezed states,
which do not carry entropy [22, 23]. In simple terms, locally the effect of fluctuations is
just a wiggling of the local Hubble parameter.)

It was suggested in [16] that in the ‘hot tin can’ picture the entropy of fluctuations
may violate the holographic bound during inflation'. The issue of inflaton fluctuations
in the ‘hot tin can’ picture is not clear to us. In the theory of inflation, scalar
field fluctuations are usually considered in the time-dependent metric (1), as was
described in section 5. The Bunch—Davies vacuum corresponds to the thermal state
in the static coordinates. Omn the other hand, in the static de Sitter coordinates,
discussion of the quantum field theory is usually restricted to thermal radiation from

L If frozen fluctuations from inflation were carrying large entropy, then a number N of free light scalars produced
during inflation would have N times bigger entropy and the UV cutoff proposed in [16] would depend on N.
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the horizon, usually in terms of the detector response. Thermal radiation associated
with the de Sitter horizon is related to any free quantum field, scalar fields with mass
m and any coupling to gravity, vector fields etc, the difference will be only in the
radial dependence of the wave functions (‘grey-body factor’). On the other hand,
instability of quantum fluctuations from inflation occurs only for very light minimally
coupled scalar fields. It will be interesting to understand what is the relation of the
quantum field theory in the ‘hot tin can’ picture, and the instability of fluctuations from
inflation. For this it will be essential to work with the regularized vacuum expectation
value (0¢?).

As we already mentioned, in the picture of a rolling scalar field with accumulating
inflaton fluctuations, which we adopt in this paper, the holographic bound and quantum
fluctuations from inflation are compatible.

A lesson from our calculations is that in the quasi-de Sitter geometry with slowly
rolling scalar field, the horizon area, or geometrical entropy, is perturbed by the scalar
metric fluctuations according to the formulae (26), (27). This means that the area of
the horizon for an ensemble of the different Hubble patches is not the same but is a
statistical variable by itself. For small metric perturbations (of order of & ~ H/M,),
its mean value is A = 47/ H?, where H(t) is the slowly decreasing background value, but
dispersion around the mean value is defined by (®?), which grows with time. Equivalently,
we can talk about statistical properties of the local Hubble values H [4, 12]. Notably,
this picture is converging with the stochastic description of inflation in terms of the
probability distribution of the inflaton field [9, 10, 12]. The probability to have the
value of the inflaton field ¢ in the quasi-static regime is P(¢) ~ exp (—3M2/8V (¢))
and can be interpreted in terms of the entropy S = log P(¢) [24]. Remarkably, this
entropy is identical to the geometrical entropy A/4G. During inflation and rolling
of ¢ the Wiener process of accumulating fluctuations d¢ (or similarly perturbations
of ®) changes distribution of P(¢). Distribution of the horizon areas of different
Hubble patches, defined by the local values of the Hubble parameters, depends on the
background slow roll regime and the regime of accumulation of fluctuations, both of
which depend on the model of inflation [9, 10, 12]. It would be interesting to understand
further the correspondence between the stochastic approach to inflation and geometrical
entropy (26), (27).

So far we have discussed small metric fluctuations ® or small local variations of H.
However, in the chaotic inflationary scenario for large enough values of ¢, variations of H
due to the quantum jumps of d¢ can be large and lead to the self-reproducing inflationary
universe [11]. We would like to draw attention to this regime (which is still below the
Planck energy density) and to note that the ‘adiabatic’ geometrical thermodynamics which
we considered in this paper is not applicable here. Indeed, consider the Hubble patch
where H is increasing due to the quantum jumps. Increase of H is not compatible with
the classical Einstein equation (6). Consequently, quantum jumps are not compatible
with the horizon thermodynamics (of a single Hubble patch) since §E = T'dS does not
hold either. Geometrical entropy of the local Hubble patch is decreasing. However,
we have to take into account the entropy of all Hubble patches. Self-reproduction of
inflating regions looks like a chain reaction, which is described by the branching diffusion
process [25].
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Appendix A. Rolling cosmic scalars and black holes

Here we briefly discuss astrophysical applications of the results of section 3. One of the
most important examples of a slowly rolling scalar field is a homogeneous cosmological
scalar field, whose evolution is given by the field equation ¢ + 3H¢ + V; = 0 with the
Hubble friction. This type of field appears, for instance, in the cosmological models of
quintessence. To dominate at the present cosmological stage while avoiding gravitational
clustering, the value of ¢ should be of order of the Planck mass Mp, and its effective mass
mZ; = Ve very small, m%; < H, where H(t) is the present day Hubble parameter.

Quintessence may interact gravitationally with black holes of different masses,
ranging from tiny primordial black holes to astrophysical black holes of solar masses
to supermassive black holes. Accretion of quintessence onto a black hole is given by the
formula (13). Scalar field velocity ¢(t)s is defined by its equation of motion; however,
the kinetic energy ¢® cannot exceed the total energy density of the universe M3 H?2.
Substituting this upper limit in (13), we estimate the rate of the black hole growth due
to the accretion of the rolling cosmological scalar field

: N
M~H2M2~(Hﬁl> , (28)
where r, = 2M is the gravitational radius of the black hole, H~! is the size of the
universe, and we switched to Planck units Mp = 1. Thus, accretion of cosmic scalars
including quintessence is absolutely negligible for all types of astrophysical black holes.
For primordial black holes at the moment of formation, when the ratio (r,/H™!) is of
order of unity, the study of section 3 of rolling scalar field accretion is not applicable
directly, as the black hole spacetime would be significantly different from Schwarzschild
in this case. Even if one believes the equation (13) in this regime, it would seem unlikely
that the accretion of quintessence can cause explosive growth of primordial black holes
(contrary to some claims in the literature). For this to occur, the seed primordial black
hole would have to be much bigger than the cosmological horizon if the quintessence is
subdominant.

It is interesting to take into account the back reaction of an accretion on the evolution
of the cosmic scalar field itself. From the energy balance we obtain a correction to the
Hubble friction term due to the accretion of the rolling scalar onto black holes

¢+ (3H + npur2)d + V'(¢) = 0, (29)

where ngy is the spatial density of black holes. This correction is proportional to the
filling factor of black holes, i.e. the fraction of volume occupied by black holes. The last
is tiny so that the effect of the interaction of a rolling scalar field with black holes is
negligible.
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A rolling scalar field interacting with a black hole also emerges in the context of the
Brans—Dicke or more general scalar-tensor theories [18, 26].

Appendix B. Mass formula in spherical symmetry

A general spherical spacetime is described by the metric
ds? = g dz®da® 4 p?dQ?, (30)

where g, is the metric on a two-manifold with coordinates (¢,r), and p is the physical
radius of spherical slices. The field dynamics is given by the Einstein-Hilbert action, which
in spherical symmetry can be dimensionally reduced to yield

S = /\/—_7d2:17 {ﬁ [pgR['y] +2(Vp)? + 2] + pzﬁmatter} . (31)

The Einstein equations for spherically symmetric spacetime (30) follow from the above
action by varying it with respect to the two-metric g,;, and the two-scalar p. In particular,
the {ab} component of the Einstein equations is

2p g p — Piab) + P 29u[(Vp)? — 1] = 871G Ty (32)

By subtracting the (two-dimensional) trace, this equation can be written in a more
convenient form

Piab — KGab = —4rG P(Tab - Tgab)7 (33)

where we have defined

k= 2—2[1 (Vo)) (34)

In the case of a Schwarzschild black hole, x coincides with the surface gravity at the
horizon. We will continue to use the same notation since x defined in (34) will enter the
thermodynamics relation in the more general case.

In spherical symmetry, it is possible to define a local mass function M (z®) by

1—T:(VP)25f~ (35)

The change in mass is related to the flux of matter given by the stress-energy tensor T,.
To see this, let us take the derivative of M = (p/2)(1 — f)

GM,, = —g(f;a = 26p0) = —p(piab — Figar)P” (36)
and use the Einstein equation (33) we derived above to obtain

M., = 47 p*(Tup — T'gap) p*. (37)
This is the differential mass formula in a spherically symmetric spacetime [20].
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