Simon Fraser University Economics 798 - Fall 2015 Final Exam

This is a closed book exam. You have TWO HOURS to complete all questions. AL-WAYS EXPLAIN your answers.

1. For any two convex sets A and B in \mathbb{R}^2 with $A \cap B \neq \emptyset$ explain whether the following is true or false:

- (a) the set $A \cup B$ is convex
- (b) the set $A \setminus B$ is convex
- (c) the set $A \cap B$ is convex
- **2.** Consider the matrix $M = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. Do its columns form a basis in \mathbb{R}^2 ? How about in \mathbb{R}^3 ? Find **all solutions** to the linear system $Mx = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ where $x \in \mathbb{R}^3$.
 - **3.** Consider the function $f(x,y) = \sqrt{x^2 + y^2}$ from \mathbb{R}^2 to \mathbb{R} .
 - (a) compute the gradient and Hessian of f. Is the Hessian positive or negative (semi-) definite?
 - (b) Prove that f(x,2) is continuous and differentiable at x=1. Compute $\frac{\partial f(1,2)}{\partial x}$.

[Reminder: a function g(x) is continuous at point a if $\forall \varepsilon > 0$ there exists a $\delta > 0$ such that $|g(x) - g(a)| < \varepsilon$ for all x for which $|x - a| < \delta$. A function is differentiable at a if $\lim_{t\to 0} \frac{f(a+t) - f(a)}{t}$ exists.]

4. Solve the following constrained maximization problem using either the Lagrange or the Kuhn-Tucker method.

$$\max_{a,b} a\sqrt{b}$$
s.t. $a^2 + b^2 \le 3$
 $a > 0$ and $b > 0$

- 5. Suppose the weather can be either $\{\text{sunny}\}$, $\{\text{cloudy without rain}\}$, or $\{\text{rainy}\}$ with equal probability. Assign the numbers 1,0 and -2 to these outcomes (call them 'weather scores'), respectively and define two random variables: X = the product of the weather scores today and yesterday, and Y = the sum of the weather scores today and yesterday.
 - (a) find the supports of X and Y and write (a table suffices) the joint probability function f(x,y)
- (b) find the marginal probability functions $f_x(x)$ and $f_y(y)$ and the conditional probability function f(y|X=0).

- (c) compute Var(Y), E(X), and cov(X,Y). Are the random variables X and Y^2 independent?
- (d) define the discrete random variable $Z \equiv E(X|Y)$ as taking the values $E(X|Y = y_j)$ with respective probabilities $f_y(y_j)$ for any y_j in the support of Y. Prove, using only the definition of expectation, that

$$E(X) = E(Z)$$

6. Optimal investment

A firm has the production function $f(k_t) = Ak_t$ where k_t is the firm's capital stock at time $t = 0, 1, ..., f(k_t)$ is the amount of output produced and $A \ge 1$. The initial amount of capital $k_0 > 0$ is given. The price of output is 1 at all t. Each period the firm decides how much from its revenue $f(k_t)$ to distribute as dividends, $d_t \ge 0$ and how much, $i_t \ge 0$ to invest. The firm's capital stock evolves over time as:

$$k_{t+1} = (1 - \delta)k_t + i_t$$

where $\delta \in (0,1)$ is the capital depreciation rate. The firm owners maximize their present value utility from the dividends: $\sum_{t=0}^{\infty} \beta^t u(d_t)$ where $u(d_t) = 2\sqrt{d_t}$ and $0 < \beta < 1/A$.

- (a) Write down the owners' maximization problem as the sequence problem (SP) of choosing an infinite sequence $\{k_{t+1}\}_{t=0}^{\infty}$ for firm capital.
- (b) Determine what is a proper state variable for this problem and write down the functional equation (FE) problem corresponding to (SP) from part (a). What is the state space X? The feasibility correspondence Γ ? The return function?
- (c) Suppose all required assumptions from lecture are satisfied. Solve problem (FE) for the value function v and the optimal policy g. Use the 'guess and verify' method by guessing $v(x) = C\sqrt{x}$ where x is the state variable you identified in (b) and C is some constant.